
SQLQuery Processing Using an Integrated FPGA-based
Near-Data Accelerator in ReProVide

Demo Paper

Lekshmi B.G., Andreas Becher, Klaus Meyer-Wegener, Stefan Wildermann, Jürgen Teich
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

Erlangen, Germany
{lekshmi.bg.nair,andreas.becher,klaus.meyer-wegener,stefan.wildermann,juergen.teich}@fau.de

ABSTRACT
In this demo, we explain the working of ReProVide, a frame-
work that integrates an on-the-fly reconfigurable FPGA-based
SoC architecture with a DBMS for accelerated query processing.
For this, a capability-aware optimization that can optimize and
partition the queries is demonstrated. This optimization for the
hardware is based on its capabilities. Our hardware can also gen-
erate statistics of the data while executing a query. In contrast
to the existing approaches, this does not have any additional
costs in terms of execution time. We will demonstrate how these
statistics are later used by the DBMS to select the best plan from
the search space using accurate cost values.

1 INTRODUCTION
Current trends in hardware technologies such as manycores,
GPUs and field-programmable gate arrays (FPGAs) for data pro-
cessing, NVRAM and open-channel SSDs for storage solutions
and RDMA-capable high-speed network solutions are interest-
ing candidates for the acceleration of database query processing
on Big Data. In this scenario, the German DFG Priority Pro-
gram no. 20371 on “Scalable Data Management for Future Hard-
ware”, funds research projects to develop new architectural con-
cepts for data management systems that support both current
as well as future hardware technologies. Our Reconfigurable
data provider (ReProVide) project is one of them. The goal of
the ReProVide project is to provide a new FPGA-based smart
storage solution together with query optimization techniques,
which considers the capabilities of the hardware for the scalable
and powerful near-data processing of Big Data. The benefits of
FPGA technology are pipelined processing of data at line rate (at
least for non-blocking operators), energy-efficiency and speedup
through parallelization, as well as the option of dynamic adapta-
tion of the hardware through reconfiguration. In the ReProVide
project, a generic FPGA architecture named ReProVide process-
ing unit (RPU) for the efficient processing of database queries is
developed. The goal of such an architecture is to serve as intel-
ligent storage system and reconfigurable data (pre-) processing
interface between diverse data sources and host systems request-
ing data from these sources. This can reduce network utilization
and host workload as well as saving power to a great extent.

Integrating smart storage like RPUs into a database manage-
ment system (DBMS) requires novel optimization techniques to
(a) decide which operations are worthwhile to assign to the RPU,
and which are not (query partitioning [2]) and (b) to determine
1https://www.dfg-spp2037.de/

© 2020 Copyright held by the owner/author(s). Published in Proceedings of the
23rd International Conference on Extending Database Technology (EDBT), March
30-April 2, 2020, ISBN 978-3-89318-083-7 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

how to map and execute the assigned (sub-)queries or database
operators on the RPU (query placement [1]). For query partition-
ing, the DBMS query optimizer must take the characteristics of
an RPU system into account. This involves considering which
particular operators are actually supported by the RPU as not
all operators and data types can be accelerated at line rate on
FPGAs. It also includes using novel cost models for estimating
the RPU performance which consider hardware reconfiguration
overheads and make use of hardware-generated statistics of the
data it currently stores. We therefore also investigate a novel hi-
erarchical (multi-level) query-optimization technique where the
global optimizer of the DBMS and the architecture-specific local
optimizer of the RPU work together to obtain scalable query pro-
cessing [2]. A bidirectional hint interface (see Fig. 1b) exchanging
hints between global and local optimizer enables scalable opti-
mization in both directions. i. e., globally and locally.

In this demo, we show how DBMS and RPU work together to
process database queries with the goal of minimizing the overall
execution time. We will demonstrate how our techniques abstract
away the complex decision space of how to partition and execute
queries on heterogeneous hardware. We furthermore will explain
the underlying hardware concepts and optimization techniques.

2 SYSTEM OVERVIEW
2.1 ReProVide
The ReProVide system is a distributed/federated data-processing
system which includes Apache Calcite as the DBMS as well as
FPGA-based hardware (RPU) as the co-processor and the remote
data storage (see Fig. 1a). ReProVide follows the idea of near-
data processing, which means the RPU has the query-processing
capabilities (near to data storage), that can be used for data (pre-
)processing.

Apache Calcite2 is a dynamic data-management framework
that provides query processing, optimization, and query-language
support to many data-processing system [5]. It is a complete
query-processing system, except for data storage. The framework
that Calcite provides for building databases allows to extend its
set of rules, cost models, relational expressions, and user-defined
functions. This property of Calcite has encouraged us to choose
it as our DBMS for this project. Calcite provides data-provider
federation through adapters. Hence it is possible to connect any
number of databases to Calcite using their own adapter.

An RPU is implemented on a programmable SoC (multi-core
CPU + FPGA) that serves as a data provider accessible via an
Ethernet network. The data is stored in non-volatile storage
such as solid-state disks (SSDs) and in volatile memory such
as DDR-SDRAM, which is directly attached to and managed by
the platform and can be processed by accelerators implemented

2https://calcite.apache.org/

Demonstration

Series ISSN: 2367-2005 639 10.5441/002/edbt.2020.83

https://OpenProceedings.org/
http://dx.doi.org/10.5441/002/edbt.2020.83

(a) ReProVide architecture (b) Interplay of Global and Local Optimizer

cba

Main
Memory

Memory
Bus

Memory
Bus

Network
Controller

HW-MEM 0

HW-MEM 1
Scan Controller

PR0: Accelerator 0

PR1: Empty

CPU-Cache
CPU 0

CPU 1

FLASH
ARRAY

Network
IF

Master Slave

PL

PS

PSoC

(c) The architecture of an RPU [1]

Figure 1: (1a) shows the architecture diagram of ReProVide system. (1b) gives the interaction between co-operating opti-
mizers in ReProVide. (1c) illustrates the RPU with the FPGA part (programmable logic (PL)) of the system on chip (SoC)
colored blue and the processing system (PS) with its dual core processor colored yellow. Two partially reconfigurable
regions (PRs) are available with PR0 being configured with Accelerator 0.

in the Programmable Logic (PL/FPGA) part of the system. This
design also enables an RPU to locally optimize the storage layout
of the data with regards to availability, access latency, power con-
sumption, and the access patterns of the hardware accelerators.

The interaction of the DBMS and ReProVide is sketched in
Fig. 1b. Global optimization applies rules to the query-evaluation
plan (QEP), with the major goal of partitioning the QEP into
sub-trees and assigning some of them to the RPU (query parti-
tioning). The local optimizer is responsible for finding the best
implementation of a sub-tree on the RPU (query placement [1]).

The execution of a query mainly consists of three phases (see
Fig. 2) : In the first phase, the local optimizer provides information
on its capabilities. The global optimizer uses this information
to decide, which operations of a QEP can be assigned to the
RPU. Based on this the query will be partitioned. For finding
the best partitioning, statistics of the data stored in the RPU
can be requested. Generation of such statistics on streaming
hardware comes at almost no cost [3] and can even be refined
when subsequently accessing the same data (see section 4.2).

In the second phase, the sub-tree of QEP (partition) is passed
from the global optimizer to the local optimizer, including some
hints (e.g. re-execution probability, upper latency bound, a time
budget for running the local optimizer). The local optimizer then
selects the required accelerators, maps query operations to these
accelerators, and schedules the reconfiguration of the accelerators
specific to the operations that it receives. Based on the hints, the
local optimizer can adjust buffer sizes for higher throughput but
decreased latency until the first data is sent.

In the third and final phase, the query is executed and the
results are returned to the host system.

2.2 RPU
The RPU constitutes a heterogeneous hardware/software system,
as shown in Figure 1c. The table management is executed on
one core of the processing system (PS). While the processing
system could also process the full variety of operators and types,
its performance may be limited. Thus, handling of the data is
mostly dealt with within the programmable logic (PL). Requests
are received via a high-speed network interface and forwarded
to the management software for further processing. To relieve
the processing system from the task of result transmission, a
specialized Network Controller implemented in the static system
allows sending the resulting data to the requesting host with
minimum intervention from the management software.

Figure 2: Sequence Diagram for the demonstrated query
processing

RPUs include partially reconfigurable regions (PR) into which
hardware accelerators can be dynamically loaded and which can
be configured to process operations on streaming data. By means
of hardware reconfiguration, different hardware accelerators can
be loaded onto the FPGA for processing the locally-stored data
before transmitting it to the requesting DBMS.

A dedicated and parameterizable hardware component called
Scan Controller is responsible for data loading. The controller also
has direct access to the attached FLASH storage to stream the
relevant data to the accelerators. RPUs make use of a library of
pre-synthesized reconfigurable hardware accelerators for query
placement as the dynamic synthesis of a new hardware acceler-
ator (query compilation) can take from minutes up to multiple
hours. As such, the capabilities of a RPU are determined by the
accelerators in the library: Operators for which no accelerators
are available in the library cannot be executed on the RPU. Oper-
ators available span from simple filters on integer values to more
complex filters such as regular expressions. Also accelerators for
hash-joins have been developed. Please see [4, 15].

2.3 RPU-enabled DBMS
The implemented RPU-enabledDBMS is prototyped usingApache
Calcite. We have implemented the Global Optimizer as follows.

Calcite allows to extend its rules for query optimization via
adapters. The global optimizermust be tuned to act as a capability-
aware optimizer by defining some additional rules (push-down

640

(a) Logical plan. (b) Feasible plans. (c) Selected physical plan.

Figure 3: Query optimization by global optimizer.

rules) to consider the capabilities of RPU during the query opti-
mization. These push-down rules define required operations and
attributes which can be pushed down to RPU. The main purpose
of the attribute push-down is to avoid unnecessary data transfer
over the network and thus to reduce network traffic as well as
host workload. These push-down rules are not RPU specific, and
can be applied with any hardware configuration connected with
Calcite but require the capabilities of the connected co-processor.
As an example, consider the query below:

SELECT d_year, d_dow
FROM date_dim
WHERE d_day_name="Monday" AND
(d_year > 1900 OR d_moy > 4)
ORDER BY d_year

Fig. 3a. shows the logical plan of the given query. The global op-
timizer (GO) partitions the query using push-down rules. In this
example, the RPU is only capable (a) of doing Filter operations
in the Where clause, so the Sort operation cannot be assigned to
the RPU, and (b) it can either do String comparison or Integer
comparison at a time. Hence, the Filter node is partitioned into
a String comparison and an Integer comparison node. Only one
can be pushed down to the RPU, so two plans are generated acc.
to Fig.3b. Based on cost models and statistics, the GO now selects
one alternative and converts it into a physical plan (see Fig. 3c).

3 EVALUATION
Initial measurements of our system were performed on Intel Core
i9-7920x processor with CPU 2.90GHz × 24 and Memory 64 GiB.
For comparison, PostgreSQL executed on the same system is used
as a baseline for comparison. Please note that for the PostgreSQL
baseline the data is available locally and, in contrast to our setup,
has no network overhead involved. For the ReProVide setup, the
RPU is connected via a 1Gb/s Ethernet. Both, the RPU and Post-
greSQL are connected to Calcite using their respective software
drivers. To evaluate the performance of our proposed system, we
chose two different SELECT statements and varied the WHERE
clause to test the influence of selectivity. As Table we used the
date dimension of the TPC-DS benchmark suite. Figure 4 depicts
the relative execution time difference of ReProVide versus Post-
greSQL. Due to the run-to-completion implementation of this
early version of the RPUs, we can observe a slowdown for the
query (blue) with bigger tuple sizes of the result table: Overhead
for allocating and synchronizing buffers depends on their sizes.

0 20 40 60 80 100

−40

−20

0

20

40

Tuple Selectivity [%]

Ex
ec
ut
io
n
tim

e
im

pr
ov
em

en
t[
%]

SELECT *
SELECT 'd_date_sk'

Figure 4: Relative execution time improvement vs.
Tuple Selectivity. The improvement is calculated as
t imePostдreSQL−t imeReProV ide

t imePostдreSQL
. One query (blue) selects all

available attributes of the TPC-DS date dimension while
the second query (red) only selects a single attribute.

This overhead is greatly reduced if only a small part (columns)
will be present in the intermediate result (red) or the selectivity
rises and the buffers become less and less oversized. Furthermore,
as the RPU is network connected there is an initial latency to
send the request and receive the results which PostgreSQL run-
ning in the same host doesn’t suffer from. As one can see, even
with PostgreSQL having these benefits and higher data transfer
rates, our approach already shows benefits in terms of execution
time reduction of up to 40%.

4 DEMONSTRATIONWALKTHROUGH
For the demonstration, we will present all the above mentioned
concepts to the conference attendees. They will be explained
how to use our framework for executing their own queries. They
do not require any prerequisite understanding about any of the
hardware or software that we are using for demonstration. The
demo includes a laptop where the DBMS (particularly Calcite)
is running which will be connected with an FPGA board (RPU)
using an Ethernet cable.

4.1 Query partition and execution
The conference attendees can select/ frame a query that they
want to execute in our framework. When the attendee types in a

641

query and presses the execute button, the query execution log
will be displayed. The push-down rules are listed and possible
execution plans generated by the global optimizer using those
push-down rules are visualized. Furthermore, the selected plan
for the execution and, finally, the result of the query (as depicted
by Fig 5) are shown.

Figure 5: Final results

Figure 6: Statistics received from RPU

4.2 Online Statistics Visualization
One speciality of the RPU is the possibility to generate statistics
such as histograms at almost zero cost during regular query
execution runs [3]. The demo will present the refined histograms
after new information is available in an event driven way to
demonstrate that statistics can be refined without additional cost
(see Fig 6). The statistics can then guide the optimizer to select
the better plans with more accurate cost estimations.

5 RELATEDWORKS
Research about the benefits of modern hardware, especially FP-
GAs and GPUs, for query accelerations is well exploited in recent
years. [11–14] are studying the performance improvement when
integrating FPGAs into CPU systems for query acceleration. Con-
trary, we are introducing a co-operating optimizer, where FPGA
and CPU are interacting. Based on this interaction, a capability-
aware optimization is implemented.

In [7] the statistics (histogram) have been generated as a side
effect of query processing but with additional hardware resources
while in our system, statistics are gathered during the execution
of partial query[3].

Heterogeneity-aware query optimization has been studied
extensively in [6, 8–10]. But other than the approaches they have

implemented, a capability-aware optimization using the hints
from the attached co-processor is used in our approach to find
the best operations for them.

6 CONCLUSION AND FUTUREWORK
A reconfigurable near-data accelerator and a capability-aware
global optimizer for a scalable and energy efficient execution of
an SQL query processing is shown in this demo. In the current
version, we are focusing on the query partition and on-the-fly
reconfiguration of accelerators. In the future work, we would like
to address multi-query optimization and common sub-expression
evaluation.

Acknowledgements. This work has been supported by the Ger-
man Research Foundation (Deutsche Forschungsgemeinschaft,
DFG) as part of the SPP 2037.

REFERENCES
[1] Andreas Becher, Achim Herrmann, Stefan Wildermann, and Jürgen Teich.

2019. ReProVide: Towards Utilizing Heterogeneous Partially Reconfigurable
Architectures for Near-Memory Data Processing. In BTW 2019 – Workshop-
band, Holger Meyer, Norbert Ritter, Andreas Thor, Daniela Nicklas, Andreas
Heuer, and Meike Klettke (Eds.). Gesellschaft für Informatik, Bonn, 51–70.
https://doi.org/10.18420/btw2019-ws-04

[2] Andreas Becher, BG Lekshmi, David Broneske, Tobias Drewes, Bala Guru-
murthy, Klaus Meyer-Wegener, Thilo Pionteck, Gunter Saake, Jürgen Teich,
and Stefan Wildermann. 2018. Integration of FPGAs in Database Management
Systems: Challenges and Opportunities. Datenbank-Spektrum 18, 3 (2018),
145–156.

[3] Andreas Becher and Jürgen Teich. 2019. In situ Statistics Generation within
partially reconfigurable Hardware Accelerators for Query Processing. In 15th
International Workshop on Data Management on New Hardware (DaMoN) Held
with ACM SIGMOD/PODS 2019 (2019-07-01/2019-07-01).

[4] Andreas Becher, Daniel Ziener, Klaus Meyer-Wegener, and Jürgen Teich. 2015.
A co-design approach for accelerated SQL query processing via FPGA-based
data filtering. In 2015 International Conference on Field Programmable Tech-
nology, FPT 2015, Queenstown, New Zealand, December 7-9, 2015. 192–195.
https://doi.org/10.1109/FPT.2015.7393148

[5] Edmon Begoli, Jesús Camacho-Rodríguez, Julian Hyde, Michael J Mior, and
Daniel Lemire. 2018. Apache Calcite: A Foundational Framework for Opti-
mized Query Processing Over Heterogeneous Data Sources. In Proceedings of
the 2018 International Conference on Management of Data. ACM, 221–230.

[6] Sebastian Breß, Bastian Köcher, Max Heimel, Volker Markl, Michael Saecker,
and Gunter Saake. 2014. Ocelot/HyPE: optimized data processing on heteroge-
neous hardware. Proceedings of the VLDB Endowment 7, 13 (2014), 1609–1612.

[7] Zsolt Istvan, Louis Woods, and Gustavo Alonso. 2014. Histograms as a side
effect of data movement for big data. In Proceedings of the 2014 ACM SIGMOD
international conference on Management of data. ACM, 1567–1578.

[8] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2015. Local vs. Global
Optimization: Operator Placement Strategies in Heterogeneous Environments..
In EDBT/ICDT Workshops. 48–55.

[9] Tomas Karnagel, Dirk Habich, and Wolfgang Lehner. 2017. Adaptive work
placement for query processing on heterogeneous computing resources. Pro-
ceedings of the VLDB Endowment 10, 7 (2017), 733–744.

[10] Tomas Karnagel, Dirk Habich, Benjamin Schlegel, and Wolfgang Lehner. 2014.
Heterogeneity-aware operator placement in column-store DBMS. Datenbank-
Spektrum 14, 3 (2014), 211–221.

[11] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen. 2013.
Flexible query processor on FPGAs. Proceedings of the VLDB Endowment 6, 12
(2013), 1310–1313.

[12] Muhsen Owaida, David Sidler, Kaan Kara, and Gustavo Alonso. 2017. Centaur:
A framework for hybrid CPU-FPGA databases. In 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 211–218.

[13] David Sidler, Zsolt István, Muhsen Owaida, and Gustavo Alonso. 2017. Ac-
celerating pattern matching queries in hybrid CPU-FPGA architectures. In
Proceedings of the 2017 ACM International Conference on Management of Data.
ACM, 403–415.

[14] Louis Woods, Zsolt István, and Gustavo Alonso. 2014. Ibex: an intelligent
storage engine with support for advanced SQL offloading. Proceedings of the
VLDB Endowment 7, 11 (2014), 963–974.

[15] Daniel Ziener, Helmut Weber, Jörg-Stephan Vogt, Ute Schürfeld, Klaus Meyer-
Wegener, Jürgen Teich, Christopher Dennl, Andreas Becher, and Florian Bauer.
2016. FPGA-Based Dynamically Reconfigurable SQL Query Processing. ACM
Transactions on Reconfigurable Technology and Systems 9 (2016), 25:1–25:24.
https://doi.org/10.1145/2845087

642

	SQL Query Processing Using an Integrated FPGA-based Near-Data Accelerator in ReProVideLekshmi B.G., Andreas Becher, Klaus Meyer-Wegener, Stefan Wildermann, Jürgen Teich

