Published June 20, 2013 | Version 13133
Journal article Open

Design of a Hybrid Fuel Cell with Battery Energy Storage for Stand-Alone Distributed Generation Applications

Description

This paper presents the modeling and simulation of a hybrid proton exchange membrane fuel cell (PEMFC) with an energy storage system for use in a stand-alone distributed generation (DG) system. The simulation model consists of fuel cell DG, lead-acid battery, maximum power point tracking and power conditioning unit which is modeled in the MATLAB/Simulink platform. Poor loadfollowing characteristics and slow response to rapid load changes are some of the weaknesses of PEMFC because of the gas processing reaction and the fuel cell dynamics. To address the load-tracking issues in PEMFC, a hybrid PEMFC and battery storage system is considered and modelled. The model utilizes PEMFC as the main energy source whereas the battery functions as energy storage to compensate for the limitations of PEMFC.Simulation results are given to show the overall system performance under light and heavyloading conditions.

Files

13133.pdf

Files (667.0 kB)

Name Size Download all
md5:b6ac8f9729c4d962c00928e4acd4c993
667.0 kB Preview Download

Additional details

References

  • J.M. Guerrero, F. Blaabjerg, T. Zhelev, K. Hemmes, E. Monmasson, S. Jemei, M. P. Comech, R. Granadino, and J. I Frau, " Distributed generation: toward a new energy paradigm," Industrial Electronics Magazine, IEEE, vol. 4, pp.52-64, March 2010.
  • N.A. Zambri, A. Mohamed, and H. Shareef, "Performance comparison of dynamic models of proton exchange membrane and planar solid oxide fuel cells subjected to load change," IREMOS., vol. 4 no. 6, pp. 3402-3409, December 2011.
  • M.H. Nehrir, C. Wang, and S.R. Shaw, "Fuel cells: promising devices for distributed generation," IEEE Power and Energy Magazine, vol. 4, pp. 47-53, Jan-Feb 2006.
  • M.Y.El-Sharkh, A.Rahman, M.S.Alam, P.C.Byrne, A.A. Sakla, and T.Thomas, "A dynamic model for a stand-alone PEM fuel cell power plant for residential applications," J. Power Sources , vol. 138, pp. 199-204, November 2004.
  • N. Femia, G. Petrone, G. Spagnuolo and M. Vitelli, " Optimization of perturb and observe maximum power point tracking method," IEEE Trans. Power Elect., vol. 20, pp. 963-973, July 2005.
  • A.M.A Mahmoud, H.M. Mashaly, S.A. Kandil, H. ElKhashab and M.N.F. Nashed, "Fuzzy logicimplementation for photovoltaic maximum power tracking," Proceeding of the 26th AnnualConference of the IEEE International Workshop onRobot and Human Interactive Communication, vol. 1, pp. 735-740, Oct. 2000.
  • R. Marouani, and F. Bacha, "A maximum-powerpoint tracking algorithm applied to a photovoltaic water-pumping system," Proceeding of the 8th International Symposium on Advanced Electromechanical Motion Systems and ElectricDrives Joint Symposium , vol. 1, pp: 1-6, Sept. 2009.
  • V. Zheglov, G. Wenzhong, E. Muljadi,andG. Wang , "A new control strategy for stand-alone fuel cell-battery hybrid power supply system," Power & Energy Society General Meeting, vol. 1, pp.1-6, July 2009.