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FOR PUBLIC FACILITIES 

We present a flexible, formal framework for maintenance scheduling for public facilities. Key 
features of the model include an accelerating deterioration scheme, a general utility measure, and real 
estate market effects in the salvage function. The model is rich enough to capture a range of stylistic 
scenarios pertaining to public facilities while remaining simple enough to allow formal analysis of the 
optimal maintenance schedule. Based on our analysis, we draw a phase diagram that classifies the ge-
neric behavior of the optimal solution. We illustrate our analysis in numerical examples that highlight 
essential trade-offs and the time dependence of the facility maintenance problem. Under simplifying 
assumptions, we also derive the basics of an exact solution. 
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1. Introduction 

The analysis of maintenance schedules for public facilities involves the deteriora-
tion-maintenance relation, a measure of utility with respect to building state, inter-
temporal substitution effects, a real-estate market, and presents an applied and complex 
decision problem. Maintenance of public facilities is important because facilities are 
significant inputs in the production of public services and public facilities represent vast 
amounts of capital. Importance notwithstanding, maintenance tends to lose budgetary 
battles against current service provision and new investments and may suffer dispropor-
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tionally when policy makers must cut public budgets. Public budget decisions are com-
plex matters subject to a host of factors. In our view, the following are key factors related 
to maintenance: Facilities deterioration is slow and difficult to observe in the short run, 
say, within election cycles, and the understanding of optimal maintenance schedules is 
somewhat underdeveloped, such that effects of postponement or reduction in mainte-
nance are misrepresented. Both factors underpin the lack of political – and perhaps man-
agerial – will to prioritize maintenance. 

Maintenance models and systems are broad issues in the engineering and management 
literatures. Common themes are the importance of maintenance to secure reliability and 
availability, and direct and indirect costs of poor maintenance. Direct costs include expe-
dited and accelerated deterioration of physical capital; indirect costs include unnecessary or 
expedited replacement costs and loss of services and business. Fraser [8] provides an ex-
tensive and fairly recent review of maintenance models; Fraser et al. [9] reviews empir-
ical studies. Much of the literature is concerned with maintenance in manufacturing and 
processing, where maintenance has become a strategic concern. But Fraser [8] notes 
that maintenance has become more strategically important also with regard to buildings 
and facilities. With technological development and innovative ideas about maintenance 
planning and organization, the extensive issue of maintenance has increased in com-
plexity and strategic importance [5, 6].  

We establish a simplified but flexible analytical framework to analyze optimal mainte-
nance schedules for public facilities. We consider a governmental agent who produces 
a welfare service, for example schooling or elderly care, in a public purpose building. 
The quality or level of this service depends on the state of the facility in a simple way; 
generally such that a better state may provide better or more public service. The gov-
ernment seeks to maximize the utility provided to a representative voter, who gains pos-
itive utility from the welfare service and suffers negative utility from the cost of the 
service and maintenance costs. Further, we assume the nature of the deterioration pro-
cess to be such that it accelerates the further the facility has deteriorated. 

The need for purpose buildings and public facilities changes over time. Facilities 
may become obsolete with regard to public service provision, regardless of their tech-
nical state, for example because of new technical requirements or demographic changes. 
Facilities soon to become obsolete may not defend maintenance spending unless the 
service provision is critically dependent upon the state of the facility. Thus, the age or 
datedness of a facility are significant for the maintenance schedule. Further, decommis-
sioned public facilities may be of interest to private real-estate developers who may or 
may not value the state of the facility. These factors, obsoleteness and the real-estate 
market, provides strategic motifs for the government in their maintenance scheduling 
and decommissioning of public facilities. 

Our formal analysis enables us to draw a state-space phase diagram that describes 
general properties of the optimal maintenance schedule and the resulting development 
of the facility state. Broadly, the optimal maintenance schedule has a moderate level of 
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maintenance effort when the facility is new. This effort is then scheduled to increase to 
prevent deterioration to accelerate too fast. Thus, the facility deteriorates relatively 
slowly. At some point however, as deterioration has started to take hold and the state of 
the facility is such that it is less valuable in the service production, the maintenance 
effort is scheduled to decrease and the deterioration is allowed to accelerate toward the 
point where the facility is decommissioned. Thus, we have two periods; the first signi-
fied by increasing maintenance efforts and the second signified by decreasing efforts. 
However, these findings are sensitive to various assumptions, in particular with regard 
to the real-estate market, but also to what we call the rate relationship (involving the 
discount rate and the rate of deterioration acceleration) and the shape of the service 
production function. Under different assumptions, the optimal maintenance effort may 
be increasing throughout the life cycle of the facility, or the facility may be kept in 
a constant state for parts of its service time. We explore some of these dynamics in 
numerical examples. 

2. Literature review 

Kamien and Schwartz [16], Bensoussan and Sethi [2], and others analyze machine 
maintenance, and our analysis has common features with this literature. Kamien and 
Schwartz [16] address the stochastic problem of optimal maintenance and sale age for 
a machine subject to stochastic failure by assuming that the failure probability is gov-
erned by a deterministic equation, and are thus able to formulate the problem as a de-
terministic problem. The probability of failure is the state variable, while maintenance 
and sale age are the control variables. The generic approach is subsequently applied to 
a range of problems; see Bensoussan and Sethi [2] for a brief review. Bensoussan and 
Sethi [2], rather than reducing the problem to a deterministic problem, address the un-
derlying stochastic problem that potentially has a wider area of application than the 
original approach. A further review of the machine maintenance literature leads astray 
from our focus on maintenance of public facilities, thus we think it suffices to point out 
key features of interest in the forthcoming analysis. 

As mentioned above, the engineering and management literatures on maintenance are 
extensive. The review by Fraser [8] highlights the four most popular maintenance models: 
total productive maintenance, reliability-centered maintenance, condition-based mainte-
nance, and condition monitoring. Notably, in most of this literature, the notion of model 
is different than the formal notion we promote below. Most of the literature considers 
theoretical or principal issues, and the empirical evidence on applied maintenance mod-
els is more limited [9]. A common observation (see, for example, Cooke [6] and Fraser 
[8]) is that maintenance has become more complex and demanding with technological 
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development, automation, and sophistication of equipment and procedures. More com-
prehensive health and safety regulations have added further to resource needs in mainte-
nance. At the same time, ideas about maintenance systems and their organization, and 
further about coordination between maintenance and the overall business strategy, have 
progressed. Broadly, maintenance strategies have moved from reactive and preventive 
to proactive schemes [6]. Finally, that maintenance needs are somewhat unpredictable 
and difficult to budget adds complexity in its management [5]. All these developments 
have contributed towards maintenance becoming regarded as a strategic business issue 
in many sectors [9].  

There exists a small but relevant literature on local public facilities. Borge and Hop-
land [3, 4] and Hopland and Kvamsdal [13] study maintenance and building conditions 
in Norwegian local governments and find that poor fiscal conditions and myopic polit-
ical leadership are important predictors for low levels of maintenance and poor building 
conditions. Borge and Hopland [4] further provide a useful analogy between mainte-
nance backlogs and debt: Both insufficient maintenance and debt mean that costs are 
postponed. If the deterioration process is accelerating, as we assume in the present anal-
ysis, postponing maintenance leads to higher maintenance requirements in the future. 
That is, a maintenance backlog incurs interests, not unlike debt. Hopland and Kvamsdal 
[13] observe negative correlations in building conditions over a relatively short period, 
and worry that this, together with further evidence, suggest that local governments spend 
too little on maintenance. A related study [14] report on a survey among public facility 
managers. The survey reveal concerns over weak economic conditions and lack of po-
litical will to prioritize facility management. 

A common theme in many of the studies on local public facilities is that myopic be-
havior on behalf of politicians at least partly explains low levels of maintenance spending. 
Yet, studies that take a game-theoretic approach show that low levels of maintenance 
can be fully consistent with rational decision making in the local governments. Hopland 
[11] argues that local governments can postpone maintenance strategically in order to 
extract additional funds (bailouts) in the future. He thus argues that decay of public 
buildings is not necessarily a consequence of myopia or irrationality, but can result from 
rational behavior. Gauteplass and Hopland [10], however, contend that low capital ex-
penditures in local governments could reflect that local governments do not fully take 
into account value of the services produced in their buildings because there are positive 
but unacknowledged spillover effects. Central grants to stimulate local capital expend-
itures may remedy the situation [10]. 

Hopland and Kvamsdal [12] promotes a model for cost-minimization of mainte-
nance of local public buildings. The model assumes that service production is unaffected 
by building condition as long as the condition is above a given minimal threshold. The 
model further has no real-estate market, and the objective function is linear in the con-
trol. The simplified framework notwithstanding, Hopland and Kvamsdal [12] identify 
two key mechanisms of public maintenance. First, savings yield interests, providing 
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incentives to postpone maintenance expenditures. Second, the accelerating deterioration 
process inflates an eventual maintenance backlog, which may offset the savings interests 
effect. This rate relationship, the relationship between the rate of discount (the interest 
rate) and the rate of accelerating deterioration, is central to maintenance scheduling. 

While we are not aware of other studies taking the micro approach to optimal public 
maintenance, several theoretical studies have discussed the importance of maintenance 
at a macro level. Analyzing endogenous growth models Rioja [19, 20], Kalaitzidakis 
and Kalyvitis [15], and Agénor [1] emphasize the distinction between maintenance and 
the building of new infrastructure. These are similar to our study in the sense that they 
derive optimal policies based on rational actors. The policy purposes, on the other hand, 
are very different. Whereas the macro studies give guidance about optimal spending 
rules that a central government can take into account in national budgets, micro-level 
studies give guidance for how to schedule maintenance of existing buildings. The results 
show that fiscal variables are important determinants for both expenditures, and that 
maintenance seems to be somewhat more sensitive, at least to short-run fluctuations 
than investment. Further, whereas political fragmentation is associated with low levels 
of maintenance, it does not seem to affect investments. 

Whereas maintenance of public facilities has received limited attention in the inter-
national literature, many have raised concerns about the more general issue of low levels 
of public investment. For example, the experiences in the OECD countries during the 
1980s have received much attention; see, among others, Oxley and Martin [18], De 
Haan et al. [7] and Sturm [21]. Hopland and Kvamsdal [14] discuss the literature on 
public investments further. 

3. A facility maintenance model 

We formulate our model in continuous time. Let x  0 denote the state of a given 
facility. We have x = 1 for a new facility, and this “as new” state is the highest possible 
facility state (x  1). The facility deteriorates naturally according to a known function, 
g(x)  0 but the deterioration can be reduced, halted, or reversed with maintenance, 
denoted m  0. Following Hopland and Kvamsdal [12], we assume  

  ( ) 0, 0,1g x x     (1) 

That is, deterioration accelerates as x falls away from 1. In effect, the worse the state 
of a facility, the more maintenance is needed to keep it from further deterioration. We 
further have g(1) > 0, that is, a new facilitate naturally deteriorates without maintenance. 
To maintain x  0, we have g(0) = 0. Deterioration and maintenance are the only varia-
bles affecting the facility state, such that 
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 ( )x m g x    (2) 

The dot-notation is shorthand for the time derivative. Maintenance, m, is the control 
or decision variable. 

The facility is used for public service provision, and the quality (q) of the service de-
pends on the state of the facility such that a better facility may provide a higher quality 
service. We write q(x)  0 and q(x)  0. Maintenance costs, c(m), depend on the level of 
maintenance and are strictly convex, c(m) > 0, c(m) > 0. There are certain fixed running 
costs, cF > 0, such that c(m)  cF (thus, costs cannot go to zero). The objective of the gov-
ernmental agent running the facility is to maximize service quality less of maintenance costs, 
thus we consider Q(x, m) = q(x) – c(m) as the objective function in the optimization problem. 

The facility has a salvage value that is obtained when the facility is taken out of use. 
The salvage value depends on the state, but also on time, and we write S(x, t)  0. The 
salvage value increases with x such that S(x, t)  0; the subscript denotes the partial 
derivative. The time dependence reflects a general appreciation of real estate values and 
can also represent that the facility gets outdated. 

The facility is in public use from time 0 to T, where T is decided by the governmen-
tal agent. In practice, there is an upper limit on T because of changing technical require-
ments and limited durability of structural components. In our formal analysis, we ab-
stract from any upper limit on the decommissioning time, however, the agent maximizes 
discounted returns (service quality less maintenance costs) plus salvage value. Thus, we 
consider the following criterion 

 
0

e ( , ) e ( , )
T

rt rtQ x m dt S X T    (3) 

In Equation (3), r is the rate of discount and X = x(T). The criterion in Eq. (3) is to be 
maximized with respect to stoppage time, T > 0, and the maintenance schedule, m(t), 
0  t  T. The maximization is subject to the dynamics, Eq. (2), the initial condition, x(0) = x0, 
and further assumptions made above regarding g(x), Q(x, m), and S(x, t). We also assume 
all involved functions to be continuous and sufficiently smooth. For a brand new facility, 
we have x0 = 1, but we may consider any 0 < x0  1, if, for example, the government obtains 
an existing facility, wants to change the maintenance regime for an existing facility where 
the state is not “as new”, or if the facility is built for a different usage than the one we model 
with q(x). In our examples below, we consider both cases with x0 = 1 and with x0 < 1. 

4. Analysis 

As mentioned earlier, our model is related to that of Kamien and Schwartz [16] and 
subsequent research into machine maintenance. Thus, before we proceed with our main 
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analysis, we develop an expression for the optimal decommissioning time T in the same 
manner as Kamien and Schwartz [16]. Let V(T) denote the maximum of Eq. (3) if T is 
the time of decommissioning. We differentiate, obtaining V(T), and consider V(T) = 0. 
After some manipulations, we get 

           , , , , ,t xQ rS S S fX M X T X T X T X M      (4) 

In Equation (4), M = m(T) and f (x, m) = m – g(x). Collected on the left hand side 
are gains and losses from postponing decommissioning slightly: Gained is utility from 
the quality of service less maintenance costs; lost is interest on the salvage value. Col-
lected on the right hand side are the changes to the salvage value from a slight change 
in the time of decommissioning: Change simply from the passage of time (datedness, 
real estate market valuation), and change from changes to the state of the facility. Equa-
tion (4) shows that at the optimal decommissioning time T, gains and losses from post-
poning decommissioning just balance changes in the salvage value. The last term on the 
right in Eq. (4) is additional to the expression derived in Kamien and Schwartz [16] 
because in the classical machine model, the salvage value did not depend on x. 

If, for example, the only time dependence of the salvage value is real-estate appre-
ciation, we can write S(x, t) = eT(x), where  is the rate of appreciation in real-estate 
values and (x) is the relationship between salvage value and state. Then, Eq. (4) can 
be written as follows 

  
       

,
e

,
T Q X M

f X Mr X X


 



   

If r > , that is, if the rate of discount is larger than the rate of appreciation in real-
estate values, the optimal decommissioning time T is earlier than if r < . If (x) = 0, that 
is, there is no salvage value, the above equation yields either that the terminal (decommis-
sioning) time T is infinitely large and where x approaches a steady state, or Q(X, M) = 0. 
Intuitively, decommissioning means that no further gains are possible when there is no 
salvage value. Thus, as long as there is a steady state with a positive utility flow, indef-
inite postponement of decommissioning is optimal. An effect of datedness in either the 
service quality or maintenance costs would likely yield a finite optimal decommission 
time. It is worth noting that cases with a constant real salvage value have equivalent 
analyses to the zero salvage case because a constant term can be scaled to zero. Such 
cases may be important as public facilities may have insignificant market values in 
themselves, for example because they often are highly specialized, but the land that they 
stand on may have a value that is constant in real terms. 

It appears as somewhat of a paradox that indefinite postponement of decommission-
ing (that is, infinitely large T) is optimal for both small (near zero) and large (larger 
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than r) values for the rate of appreciation in real-estate, while the optimal date for de-
commissioning is indeed finite for a mid-range of -values. This apparent paradox can 
however be intuitively understood. The latter case is straightforward: when real estate 
appreciates fast (large ), it will at all times be optimal to postpone decommissioning, 
in particular if the facility state can be kept constant with a positive utility flow. Such 
steady states do indeed exist. The first case is in practice identical to a zero salvage value 
as discounting withers away any reasonable, initial salvage value. The zero salvage 
value case was discussed above. 

A strong case can be made for   r being reasonable because the discount rate r 
reflects alternative investments that include other real estate prospects. 

The facility maintenance model poses a typical optimal control problem, and our 
analysis applies basic optimal control theory [17]. To solve for the optimal maintenance 
schedule, the optimal policy, we define the current value Hamiltonian 

      , , , ( )H Qx m x m m g x      (5) 

where  is the (current value) costate or shadow value of the state x. The optimal pol-
icy m* must maximize H at all times, where the shadow value satisfies the following 
equation 

    ( )( )xr q xr g x          (6) 

From Equation (1), we have g(x)  0. In the name of simplicity, in what follows we 
adopt the assumption of a linear g(x) from Hopland and Kvamsdal [12]. We can then 
write g(x) =1 + 2(1 – x), where both 1 and 2 are positive constants. Note that alt-
hough g(x) is linear, the deterioration process accelerates linearly with the difference 
between the current state, x, and the “as new” state, x = 1. The crucial assumption is that 
of acceleration; linearity is the simplest specification. We have g(1) = 1 > 0 and 
g(x) = –2 < 0, as above. The latter means that the rate of natural deterioration (without 
maintenance) increases with 2 as x falls. 

From the maximum principle, we have 

 ( )mH c m        (7) 

For inner solutions with a positive shadow value, the inequality in Eq. (7) holds 
with equality. That is, c(m) = . Because c(m) is convex per assumption, this equality 
provides a one-to-one relationship between the policy variable and the shadow value. 
Notably, the relationship is increasing such that a higher shadow value implies a higher 
maintenance level. Let  be the inverse of c(m), and we have, for inner solutions, the 
well-defined equation 
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 ( )m     (8) 

That is, if we can solve for the shadow value, we implicitly solve for the optimal 
maintenance schedule. For corner solutions, we simply have 

 0 ifm      (9) 

To solve for the shadow value, we return to Eq. (6) under the assumption of a linear 
g(x). That is, 2( ) ( ).r q x       The equation has integrating factor 2( )e r t   and can 
be solved by integrating over the period (t, T). We get 

      2 2( ) e e ( ( ))
T

r rT t s t

t

t q x s ds           (10) 

In Equation (10), we follow the convention from above and write (T) = . At  
t = T, any positive shadow value reflects the salvage value. Thus, if the salvage value is 
zero, we have a zero shadow value at the terminal time. Polynomial forms of  () with 
no constant term – a typical case in important examples – will then yield a zero mainte-
nance level at the terminal time.  

The terminal condition on the shadow value is  = e–rTSx(X, T). The interpretation 
of the current shadow value is that it reflects the discounted marginal value from invest-
ing in the state variable. In our maintenance model, investing in the state of a facility is 
through maintenance. The terminal condition can thus be interpreted as follows: At the 
time of decommissioning, the marginal (present) value of continued maintenance is 
equal to the marginal change to the salvage value. With the terminal condition, Eq. (10) 
becomes 

        2 2( ) e e e ( ( )),
T

r rrTT t s t
X

t

t S q x s dsX T           (11) 

Evaluated at t = T, the terminal condition holds. The solution for  is positive for all 
t  T, thus excluding the degenerate solution with T = 0 where the optimal policy nev-
ertheless is of no significance. Equation (11) is well defined and via Eq. (8), we have 
obtained the optimal maintenance schedule. 

If we return to the interpretation of the current shadow value and consider Eq. (11), 
the discounted stream of utility generated by a marginal investment in the state variable, 
from the present to the end of the planning horizon, we note that Eq. (11) has two parts. 
The first reflects the discounted contribution from the terminal state in terms of salvage 
value; the second reflects the discounted stream of marginally better service quality 
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from the current time to the end of the planning horizon. In more detail, the first part 
shows that the salvage term itself is a constant (e–rTSx(X, T)) in the shadow price expres-
sion that has exponentially increasing influence on the shadow price schedule. Without 
the salvage term, the shadow price goes to zero at t = T. 

Based on Eqs. (2) and (6), we can draw a phase diagram illustrating the system dy-
namics and thus characterize the optimal maintenance schedule. The zero locus ( 0)x   
of Eq. (2) is given by  = c(g(x)). g(x) is linear in x. Thus, if c(·) is linear, which is the 
case for quadratic costs, the zero locus of Eq. (2) is linear. Equation (6) yields the fol-
lowing expression for the zero locus 2( ) : ( /( ).q x r        That is, the zero locus 
of Eq. (6) has the same shape as q(x). Note that as q(x)  0, the locus is above the -axis if 
r > 2 and below if r < 2. 

To illustrate, let us assume that costs are quadratic such that the locus ( 0)x  is 
linear. Further, if the service quality q(x) has an s-shape, q(x) will be bell-shaped, as 
will the     locus. An s-shaped service quality function seems reasonable. It implies 
that at high facility state levels, small changes to the state has little impact on the service 
quality. That is, whether a facility is “as new” or almost “as new” does not matter much 
for service provision in the facility. Similarly, at low facility state levels, small changes 
to the state has little impact on service quality. However, there is a mid-range of facility 
state levels where the service quality responds more to changes. A basic assumption in 
the following discussion is that there is no salvage value, but we will comment on the case 
with a non-zero salvage value when appropriate. Finally, let us assume that r > 2 such that 
the    locus is above the -axis. The resulting phase diagram is shown in Fig. 1.  

 
Fig. 1. Phase diagram based on Eqs. (2) and (6) and with a zero salvage value.  

Solid curves represent the zero loci of (2) and (6), 
 the dashed curve illustrates the generic optimal maintenance schedule 
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As noted above, the optimal maintenance level is increasing in . Thus, above the 
x   locus, the maintenance level is higher than the level required to keep the state 
fixed, and x will increase. This feature is shown by arrows pointing to the right in Fig. 1. 
Similarly, below the x   locus, maintenance is insufficient to keep the state fixed, and 
x will decrease; shown by arrows pointing to the left. Turning to the     locus, we 
note that the governing equation for the shadow value, Eq. (6), is linear and increasing 
in . Thus, for a given x-level,  is increasing above the zero locus and decreasing be-
low. These features are shown by arrows pointing upward above the locus and down-
ward below. In Fig. 1, the loci are drawn such that they intersect (in points a and b), 
something that not necessarily is the case, but providing for a somewhat more interest-
ing phase diagram. 

The dashed curve in Fig. 1 traces a generic optimal maintenance schedule. The 
curve starts at x = x0, at some level below the 𝑥ሶ = 0 locus. 𝑥଴ is the highest possible 
state and points above the locus, implying an increasing state variable, is not relevant. 
Thus, the optimal level of maintenance in the initial phase allows the condition to slide 
downwards. As the condition slides, the maintenance level is increasing alongside an 
increasing deterioration of the facility. If the shadow value increases rapidly such that 
the maintenance increases to a level where the deterioration is halted and reversed, the 
path enters the region above the x   locus and both the state and maintenance level 
will increase until t = T. That is, maintenance spending is invested to increase the phys-
ical capital towards the time horizon. Such maintenance schedules are only optimal with 
a nonzero and significant salvage value. However, with no salvage value, as we have 
currently assumed, the path will at some point (x > xb) meet the     locus. Note that 
with no salvage value, the shadow price goes to zero at the time horizon, that is, the 
optimal path meets the horizontal axis in the diagram. At the     locus, maintenance 
remain insufficient to keep the facility condition from sliding and the path continues 
into the region below the locus. In this region, both maintenance and the condition de-
creases until one reaches the time horizon, t = T. 

The phase diagram can also describe optimal paths if the facility condition is below 
the “as new” level initially. Say that the initial condition is somewhere between where 
the zero loci meets (between xa and xb). If the shadow value is high enough such that the 
path starts above the x    locus, but still below the    locus, the initial phase has 
increasing x. With incentives to build up physical capital toward the horizon, to receive 
a high salvage value, the path may cut the     locus above the x    locus, and both 
the state and maintenance level will increase until t = T. This phase is analogous to the 
potential phase outlined above, with a significant salvage value. With no or a lower 
salvage value, the path will cut the x    locus and enter a phase where both the facility 
condition and maintenance decreases towards the horizon. Further below, we illustrate 
some of the generic optimal paths described above in numerical examples. 
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5. An exact solution 

In what follows, we make some simplifying assumptions to enable an exact, formal 
solution to the facility maintenance problem stated above. The main, simplifying as-
sumption is that the salvage value is zero. As discussed above, for a range of cases, this 
has no effect on the principal analysis. We also assume that both q(x) and c(m) passes 
through the origin (that is, cF = 0). 

For the terminal time T, which is freely chosen, we have that the Hamiltionian (5) 
should equal zero because the Hamiltonian is the shadow price of time 

    ( ) ( ) 0, , ( )H q X c MX M g X        (12) 

As above, capital variables denote variables evaluated at T, for example, (T) = . 
Further, X = 0 must hold, with both X  0 and   0. That is, either X = 0 or  = 0. If 
X = 0, and with q(0) = 0 and g(0) = 0, Eq. (12) yields M = c(M). If  > 0, M = c(M) 
has two possible solutions, one with M = 0 and one with M > 0 (c(m) is convex and 
passes through the origin). If  = 0, we have M = 0; see Eq. (9). Equation (12) reduces 
to q(X) = 0. We have assumed that q(x) passes through the origin and is non-decreasing. 
Thus, from X = 0, X = 0 must hold. 

For inner solutions, we have  = c(m), which is monotone in m. If we take the 
derivative with respect to time and use Eq. (6), we obtain 

  2( ) ( ) ( )c m m c m q xr       (13) 

Using Eq. (2), we can rewrite (13) as 

     2( ) ( ) ( )( ) dmc m c m q xrm g x
dx

      (14) 

With known x(T) = X and m(T) = M (see above), we can solve Eq. (14) by integration. 
When x =1 (the original initial condition), we stop the integration. This solution to 
Eq. (14) sets up a correspondence between the state variable x and the maintenance level 
along the optimal path. Let m = (x) define maintenance as a function of x. The state 
equation (2) can then be written ( ) ( ) ( ).x x g x h x    

Let 

1

1 ( )X

dsT
h s

    
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that is, the time it takes for the state variable to pass from x = X to x = 1 along the optimal 
path. We illustrate our solution for the state variable in Fig. 2. 

 
Fig. 2. Illustration of the optimal path for the state variable.  

The solid line represents x(t) 

As indicated in the figure, there may be an initial period, t  (0, ), where x is opti-
mally kept at x = 1 with (1) = m = g(1). That is, there may be an initial plateau in x(t). 
We have continuity of  that ensures continuity of m, see Eq. (8), which again ensures 
continuity of x. Thus, there is no jump at t = . If (1) < g(1), that is, the integrated 
solution from Eq. (14), at x = 1, falls short of the level required to keep x constant at 
x = 1, then there is no initial period where x is kept constant at x = 1 because there can 
be no jump in x. 

We have that Hx = rc(m)  0. If (1) = g(1), that is, there may be an initial plateau, 
x has to decrease immediately after t = . As we want to maximize the Hamiltonian, we 
want to stay on the plateau as long as possible. That is, with no constraint on the terminal 
time, we have T  . Whenever there is an upper constraint on T, which in all practical 
matters there will be, the final period of length T1 is described by the solution from 
integrating Eq. (14), as discussed above.  

6. Numerical examples 

In our examples, we use the following s-shaped curve for the service quality function 

 
0

1( )
1 eQ xq x 


  (15) 



 A. O. HOPLAND et al. 30

Costs are quadratic in the level of maintenance c(m) = c0m2 + cF. The parameter cF 
is the fixed running cost. We consider a case where the phase diagram in Fig. 1 applies, 
thus, r > 2, and where the salvage function is as follows 

    0e, tS x t S x      (16) 

That is, the only time dependence in the salvage value is the appreciation of real 
estate. Further, the salvage value has two parts; one constant, S0, pertaining to land 
value, and one that varies with the facility state ;x   decreasing returns to scale. Pa-
rameter values are given in the Appendix. 

The solution is governed by the Hamilton–Jacobi–Bellman equation: 

         
, 0

max 0, , , ,t xT m
V Q V fx t x m x t x m


     (17) 

In Equation (17), V(x, t) is the optimal value function, which is subject to the end-
point constraint V(X, T) = e–rTS(X, T).  In what follows, we consider numerical solutions 
of (17). 

 
Fig. 3. Optimal time paths for x(t) – solid curve given in percent relative to “as new state”,  

and m(t) – dashed curve, given in percent relative to “as new steady state level”.  
Basic case with x(t) =1 (parameters in the Appendix) 

Figure 3 displays the optimal time paths for x(t) and m(t) in the basic case. Both are 
given in percent; x(t) in percent of the “as new” state x0, m(t) in percent of the level 
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needed to maintain the “as new” state indefinitely, which is simply given by 1. We 
observe that the optimal paths agree with the generic optimal path indicated in the phase 
diagram in Fig. 1. In particular, the state declines slowly throughout the period, while 
the maintenance level first has a phase with increasing effort before dropping off toward 
the end. The optimal decommissioning time is at T = 64.25. Further numerical details 
from this and subsequent examples are provided in the Appendix. 

 
Fig. 4. Optimal time paths for x(t) – solid curve given in percent relative to “as new state” 

 and m(t) – dashed curve given in percent relative to “as new steady state level”. 
Basic case with x(t) = 0.6 (parameters in the Appendix) 

Figure 4 illustrates optimal time paths in the basic case for a facility that is not “as new” 
at t = 0. Rather, the state at the beginning of the planning horizon is at 60%. The example 
corresponds to situations where the maintenance regime is changed the optimal regime at 
some point after the facility was new. The behavior of the optimal paths are different than 
what is observed in Fig. 3, and corresponds to a path in the phase diagram that has its starting 
point between xa and xb and above the x = 0 locus (Fig. 1). The state is increasing initially, 
before leveling off and dropping towards the end. The maintenance level starts out at a high 
level and decreases throughout at a varying rate. Notably, maintenance is most of the time 
much higher than in Fig. 3. Both the reduced initial state and the increased maintenance 
level reduces the utility of the facility and its service production, and the initial net present 
value is reduced by more than 60% when compared to the initial net present value of a brand 
new facility. The optimal decommissioning time is at T = 57.75, which is just a few years 
short of the case with a brand new facility. That it is optimal to retain a facility for so long 
when its initial state is close to the decommissioning state of the brand new facility exposes 
the strong time dependence (non-autonomy) of the maintenance problem. 
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Fig. 5. Optimal time paths for x(t) – solid curve given in percent relative to “as new state” 

and m(t) – dashed curve given in percent relative to “as new steady state level”.  
Case with linear salvage value (parameters in the Appendix) 

Figure 5 illustrates optimal solutions for our example where the logarithm in the salvage 
value function is replaced with a linear relationship such that S(x, t) = et(S0 + x). This 
makes the salvage value larger and more sensitive to the facility state, and returns to 
scale are constant. The date for optimal decommissioning is earlier than in the base case 
(T = 50.75) and the facility is generally kept at in better condition throughout the project 
horizon. In particular, towards the end of the project horizon maintenance spending is 
increased to levels such that the facility state improves. In contrast, in our first example 
(Fig. 3), maintenance spending dropped off quickly towards the date for decommission-
ing. The larger salvage value contributes to a higher net present value and represents 
more than five times the salvage value from the case with logarithmic salvage value (the 
increased realized salvage value depends on both the functional form and the shorter 
time horizon). Nevertheless, most of the added value is spent on higher maintenance 
expenditures, and the initial net present value is just 2% higher in the case with a linear 
salvage value. 

The final twist to our example is to consider a higher real estate appreciation rate ( = r) 
together with an increase (a tripling) in the running maintenance costs parameter (with-
out the increased running maintenance costs, the example falls into the “infinite hori-
zon” case discussed above). Optimal solutions are shown in Fig. 6. Note that the salvage 
value is again logarithmic (Eq. (17)). The optimal date for decommissioning is T = 33.0, 
again significantly earlier than in the base case. As in our first example, the facility state 
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falls – notably faster – throughout the project period. Maintenance efforts are increasing 
slowly for most of the time before dropping off towards the end. The realized salvage 
value is again higher than in the base case, but contrary to the linear case that had a high 
facility state at decommissioning, the facility state at decommissioning is relatively low. 
The higher realized salvage value thus depends on a higher appreciation rate and the 
shorter time horizon (smaller effect from discounting). The shorter time horizon and the 
generally lower facility state means that lesser services are delivered, and the initial net 
present value is reduced by approximately 7% when compared to the base case. 

 
Fig. 6. Optimal time paths for x(t) – solid curve given in percent relative to “as new state” 

and m(t) – dashed curve given in percent relative to “as new steady state level”. 
Case with  = r and c0 = 3 (further parameters in the Appendix) 

Our examples demonstrate that our model facilitates a rich set of scenarios and wide 
range optimal behaviors, although the model is kept at a conceptual level.  

7. Concluding remarks 

Facilities represent a significant part of public capital, but investigation into mainte-
nance and its relation to public services and facility deterioration has been limited. We 
develop a basic theory of maintenance for public facilities. The theory enables us to 
derive optimal paths for maintenance and the decommissioning time. Our examples 
demonstrate a wide array of behavior for the optimal solutions, depending on the para-
metrization and auxiliary assumptions about initial conditions and functional forms. The 
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examples also illustrate some of the trade-offs that are involved in facilities manage-
ment. For example, when the real estate appreciation rate is higher, the facility is de-
commissioned much earlier but still with a lower facility state. 

Extensions of our theory that would be of interest includes a more comprehensive 
(multidimensional) measure of the facility state and a service quality measure that re-
flects datedness. Time dependence in service quality would reflect technical progress 
on a structural level, that is, innovations that require changed facility structures. Further 
effects of datedness could also be considered, for example in the salvage function or the 
maintenance costs. 
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Appendix 

Table A1. Parameter values 

Parameter  c0 cF 1 2  Q0 r S0  

Value 0.05 1 0.1 0.3 0.05 0.1 10 0.08 0.2 20

Table A2. Numerical results 

Example 
Base case
x(0) = 1

Base case
x(0) = 0.6

Linear salvage
value

High  
 = r, c0 = 3 

T 64.25 57.75 50.75 33.0 
x(T) 0.56 0.53 0.85 0.37 
NPV(0) 10.53 3.90 10.75 9.81 
Salvage discounted 0.077 0.092 0.42 0.47 
Salvage nominal 13.30 9.41 24.09 6.61 
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