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THE KERNEL AND SHELL STRUCTURE AS A TOOL FOR 
IMPROVING THE GRAPH OF TRANSPORTATION CONNECTIONS 

A model of a transportation system is expected to be useful in simulations of a real system to 
solve given transportation tasks. A connection graph is routinely used to describe a transportation sys-
tem. Vertices can be train stations, bus stops, airports etc. The edges show direct connections between 
vertices. A direct approach can be difficult and computational problems can arise in attempts to or-
ganize or optimize such a transportation system. Therefore, a method for aggregating such graphs was 
introduced, using a general kernel and shell structure and its particular instances: α-clique structured 
graphs of connections and a hub and spoke transformation of the source graph. These structures ena-
ble the concentration and ordering of transport between vertices and reduction of the analyzed graph. 
To obtain the desired structures, several versions of a specialized evolutionary algorithm were devel-
oped and applied.  
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1. Introduction 

A logistic system is usually represented by a graph of connections, allowing the 
introduction of corresponding kernel and shell structures [9, 10]. The vertices of this 
graph can be railway stations, bus stations or airports, etc., and edges correspond to 
the presence of connections between vertices. In this paper, we propose an evolution-
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ary method for optimizing a logistic network by introducing a kernel and shell struc-
ture, which is a generalization of the well known hub and spoke structure, [3, 4, 8], 
and similar approaches, including the α-clique structure, [6, 7, 9–11]. 

The kernel and shell structure enables convenient concentration of flows of 
transport. The kernel subgraph is constituted of a set of strongly connected vertices 
with cheap, fast or frequent connections (depending on the transportation system mod-
eled), while the shell vertices are less frequently connected, mostly with their kernel 
vertices (hubs). Instead of many bilateral connections between vertices, only local 
connections between kernel vertices and local connections between kernel vertices and 
the corresponding shell vertices are required. To simplify the problem, we deal with 
simple, undirected and unweighted graphs but the methods proposed can be extended 
and applied to weighted and directed graphs. The graph of an existing traffic system 
has vertices corresponding to traffic nodes and edges corresponding to traffic connec-
tions. The kernel and shell structure reduces the complexity of the resource manage-
ment problem and allows more frequent connections between selected points, lower 
average journey times, lower costs of transport, and a lower number of vehicles re-
quired to service all connections. Thanks to this transformation, local connections are 
easier to synchronize and it is easier to make timetables. We use two basic approaches 
to transform an unstructured graph of connections into a kernel and shell structure: the 
α-clique method, [13], and the hub and spoke method. In the case where connections 
between shell nodes and their kernel node and also bilateral connections among nodes 
within the shell structure are required, the α-clique seems to be an appropriate solu-
tion, [12, 13]. This method is based on the notion of an α-clique, a connected 
subgraph with nodes less connected than a clique, but with at least an α  percentage of 
connected nodes within an α-clique. This method, and the notion of an α-clique were 
developed by the authors as a method of transforming the graph of connections into 
a kernel and shell structure. The α-clique method can be applied in two modes: 

• the number of α-cliques and possibly some kernel nodes are predetermined, 
• values of α for the kernel subgraph and the shell subgraphs are imposed and the 

kernel nodes are chosen using an appropriate method. 
The first case is probably more useful than the second, because in real-world sys-

tems candidates for kernel nodes are often known. The hub and spoke method has 
been developed based on work presented in [3, 4, 8], where similar structures and their 
applications are described. This method is useful in situations where only connections 
between the kernel node (the hub) and the shell nodes (spokes) are important, all the 
remaining transfers are realized via kernel nodes. Similarly, as in the case of the  
α-clique method, it is possible to define several cases of applications: 

• predetermined number of and/or specified kernel nodes, 
• minimum number of kernel nodes assuring the connectivity of a graph, 
• indirectly determined structure of connections according to chosen parameters. 
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The evolutionary algorithm (EA) has been chosen as a tool for transforming such 
graphs, because the transformation process is a hard computational problem and there 
are no efficient algorithms specifically designed for solving it. 

2. Graphs 

The notions described below are based on [15]. A graph is a pair G = (V, E), 
where V is a non-empty set of vertices and E is a set of edges. Each edge is a pair of 
vertices {v1, v2} with v1 ≠ v2. A clique (a complete subgraph) Q = (Vq, Eq) in the graph 
G = (V, E) is a graph such that Vq  ⊆  V and Eq  ⊆  E and Card(Vq) = 1 or each pair of 
vertices v1, v2  ∈ Vq fulfills the condition {v1, v2} ∈ Eq [2]. Any subgraph of a clique is 
also a clique. 

Αn α-clique [6, 10–12] can be defined as follows: let A = (V', E') be a subgraph of 
graph G = (V, E), V' ⊆ V, E' ⊆ E, k = Card(V') and let ki be the number of vertices 
vj ∈ V' such that {vi, vj} ∈ E'. 

1. For k = 1 the subgraph A of graph G is an α-clique(α). 
2. For k > 1 the subgraph A of graph G is an α-clique(α) if for all vertices vi ∈ V'  

the condition α = (ki + 1)/k is fulfilled, where α ∈ (0, 1]. 
From here onwards, we will use the notion of α-clique to denote α-clique(α) for 

an earlier established α. A subgraph of an α-clique may not be an α-clique for the 
established α. 

A kernel and shell structure in the graph G(V, E) is composed of two graphs: 
• kernel – a subgraph, which is constituted of a group of strongly connected vertices 

K(Vk, Ek), depending on the needs and possibilities of the transport system or on the struc-
ture of the input graph, it can be a clique (ideally), an α-clique, or a connected subgraph; 

• shell – a graph S(Vs, Es) where Vs = V – Vk and Es = E – Ek, depending on the re-
quirements of the optimized transportation system, it can be an α-clique (including its 
kernel node) or a tree with the kernel node being the root and shell nodes being leaves. 

For logistic modeling, we propose evolutionary methods (denoted EA, for evolu-
tionary algorithms) that transform the graph of connections into an instance of the shell 
and kernel structure leading to hub-and-spoke or α-clique structures according to prob-
lem-specific restrictions. An α-clique structure in the graph of connections (Fig. 1b) is 
also an instance of the more general kernel and shell form. It consists of several pe-
ripheral (shell) α-cliques Gα with the desired values of α, connected with a central 
(kernel) α-clique Gc of strongly connected nodes, ideally with α ≈ 1. In the case of 
a sparse graph of connections, the requirement that α ≈ 1 for the kernel subgraph can 
be weakened to the condition that it must be a connected graph to preserve its func-
tionality. Depending on the type of solution required, the kernel nodes or the number 
of kernel nodes can be imposed, or the evolutionary method can suggest the best can-



B. MAŻBIC-KULMA et al. 94

didates, taking into account the α parameters imposed on the shell α-cliques, which 
describe the strength of connections within the derived α-cliques. In both cases, the 
EA maximizes the strength of connections within the obtained α-cliques and tries to 
derive structures with the desired properties. 

  

Fig. 1. A source graph (a) and the α-clique kernel and shell structure obtained (b) 

  

Fig. 2. A source graph (a) and the hub and spoke structure obtained (b) 

A hub and spoke structure (Fig. 2b) is a graph Hs = (Gh ∪ Gs, E), where the subset Gh 
forms at least a connected graph (kernel) with the relevant subset of edges from the 
set E, each vertex from the subset Gs has degree 1 and is connected with exactly one 
vertex from the subset Gh (shell) [7, 12]. Hub and spoke is a particular case of the ker-
nel and shell structure. This structure can be used in logistic models, where direct con-
nections between the nodes-“spokes” attached to a hub are not very important and 
direct connections are not necessary. The hub and spoke structure can be derived using 
one of three possible methods. The first method uses a predetermined, given by some ex-
pert, number of communication hubs with the possibility of directly determining which 
nodes should become hubs or selecting them by an appropriate method. The second meth-
od makes an attempt to find the minimum number of hubs which constitute at least a con-

a) b)

a) b)



The kernel and shell structure as a tool for improving the graph of transportation connections 95

nected subgraph with all the remaining nodes connected to their hubs. It should be noted 
that the number of hubs used in the first method must be at least as big as this minimum 
value. The third method assumes that the number of communication hubs is determined 
indirectly by the program parameters imposed, mainly the value of α (a hub subgraph 
must constitute an α-clique with the imposed value of α).  

3. The evolutionary method of finding the kernel  
and shell structure of the graph of connections 

EAs are often used to solve difficult graph problems such as graph coloring, TSP, 
graph partitioning, finding maximum cliques, etc., [1, 5, 14, 16], thus it seems fully 
justified to apply an evolutionary algorithm to the presented problem. The problem of 
encoding (an individual representation) depends on the desired graph structure to be 
obtained using the EA. In our approach, the information about any graph being pro-
cessed is stored in an adjacency matrix describing all the connections between nodes 
of the graph, but particular problems require different methods to represent solutions. 
The “kernel and shell” representation of a graph of connections is a general structure, 
several particular instances of which are described in this article together with a spe-
cific method of encoding in each case. Generally, the encoding methods described are 
rather similar, but it is necessary to point out the differences. The fitness function is a mod-
ified (scaled, translated, etc.) function evaluating each member of the population (how 
good a solution each represents). It is calculated for computational purposes within the 
EA. This quality function is responsible for obtaining the appropriate structure of a graph. 
This function must precisely direct the EA toward the desired structure of the graph, but 
usually several quality functions may be used, depending on the input data, or the set of 
kernel nodes or shell nodes one wants to obtain. Usually, the fitness function has to con-
tain a penalty component for potentially invalid solutions. Another important problem is to 
design genetic operators for the accepted data structure, taking into account the constraints 
imposed on solutions, so that when standard crossover and mutation operators are not 
appropriate, specialized operators must be defined to efficiently solve such problems. This 
section describes appropriate modifications of the methods of solution in detail. 

3.1. The α-clique structure of kernel and shell 

3.1.1. The α-clique structure with a predetermined number of kernel nodes 

The data structure accepted contains a table of the predetermined number of  
α-cliques which constitute a shell of ordinary nodes. Each α-clique has a list of nodes 
attached and the element chosen to be the representative of this α-clique in the kernel 
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structure – a communication hub. Each node is considered only once in each solution, thus 
the α-cliques are disjoint structures. The kernel is an α-clique with the value of α  as big 
as possible. Ideally, a kernel should constitute a clique, but in real cases where the 
connections between nodes are rather sparse, it is admissible that the kernel constitutes 
simply a connected graph. This condition is checked during the computations and if it 
is not satisfied, the penalty function significantly decreases the value assigned to the 
quality of such a solution:  
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where: n – imposed number of shell α-cliques in the solution evaluated, k – number of 
nodes in the considered graph, ki – number of nodes in the ith α-clique, li – number of 
connections between the hub of the ith α-clique and other nodes in this α-clique,  
m – number of connected subgraphs in the kernel, αmin – minimum value of α in the 
shell α-cliques derived, αK – value of α in the kernel α-clique derived. 

The fitness function (1) promotes a kernel α-clique with a value of αΚ as close to 1 
as possible, or if the transformed graph is very sparse favors a connected subgraph, if 
this is possible. If not, this means that the input graph is not connected and the prob-
lem is unsolvable. The shell α-cliques should have values of α as high as possible and 
as many as possible of their nodes should be connected with their communication hub. 
The data structure described requires specialized genetic operators, which modify the 
population of solutions. Each operator is designed to preserve the property of being  
α-clique in the modified parts of solutions. If a modified solution violates the condi-
tion of being an α-clique, then the operation is canceled and no modification of the 
solution is performed. Using this method, it is more difficult for the evolutionary algo-
rithm to find satisfactory solutions, due to the possible bigger problems with existence 
of local maxima than when using the penalty function, but it gives the certainty that 
the solutions computed are always feasible. The genetic operators defined are: 

1. Mutation – the exchange of randomly chosen nodes in different α-cliques. 
2. Movement of a randomly chosen node to a different α-clique. 
3. Random selection of a kernel node from a selected α-clique – this operator is 

inactive when kernel nodes are explicitly assigned. 
4. “Intelligent” movement – performed only if such a modification gives a better 

value of the fitness function. 

3.1.2. The α-clique structure with a non-fixed number of kernel nodes 

In the case of a non-fixed size of kernel subgraph, the number of kernel nodes is 
unknown and varies during the computations. Instead of fixing the number of shell 
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nodes, the minimum values of α for the shell α-cliques are imposed on accepted solu-
tions. This limitation, together with the quality function to be optimized (2), indirectly 
determines the structure of the solutions obtained. Thus, the algorithm must find the 
best candidates for kernels. In this case, a somewhat different method of encoding is 
accepted than in the previous case. The data structure contains a list of the kernel 
nodes chosen (communication hubs) and lists of α-cliques, which constitute shells of 
ordinary nodes. As in the previous case, each node is considered only once in each 
solution.  
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where: n – number of α-cliques in the solution evaluated, m – number of connected 
subgraphs in the kernel subgraph, ki – number of nodes in the ith α-clique, k – number 
of nodes in the whole graph, li – number of connections between the hub from the ith 
α-clique and other nodes in this α-clique, hi – number of connections between hub i 
and other hubs. 

The fitness function (2) promotes lower numbers of bigger shell subgraphs, ideally 
of a size almost equal to the average number of nodes in α-cliques, thus minimizing 
the number of α-cliques obtained, while assuring the connectivity of the kernel 
subgraph, maximizing the number of connections between hubs and the number of 
connections between each hub selected and its α-clique. As in the previously de-
scribed case, each operator is designed in such a manner that the modified parts of 
these solutions remain α-cliques. If the modified part of a solution is not an α-clique, 
then the operation is canceled and no modification of the solution is performed. Addi-
tionally, each operator modifies the elements selected to be hubs for each α-clique, 
using a simple mutation operator. The genetic operators defined are: 

1. Mutation – exchange of randomly chosen nodes in different α-clique. 
2. Movement of a randomly chosen node to a different α-clique. 
3. “Intelligent” movement – performed only if this modification gives a better  

value of the fitness function; 
4. Concatenation – attempt to concatenate (mainly small) α-cliques. 

3.2. The hub and spoke structure 

3.2.1. The hub and spoke structure with a predetermined number of kernel nodes 

A population member defines the spokes that do not constitute α-cliques, but are 
groups of nodes that are connected with their hubs. The subgraph of hubs is an  
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α-clique with as big value of α as possible – ideally, hubs should constitute a com-
plete subgraph but in real applications where hubs are defined to be the existing junc-
tion nodes, it is admissible that the subgraphs of hubs simply constitute a connected 
graph. The kernel nodes can be explicitly assigned or only their number may be set. 
An individual encoding resembles the structures used in the previously described cas-
es, containing a table of the hubs selected with the corresponding, dynamic lists of 
selected spokes for each hub. For the hub and spoke structure with a predetermined 
number of kernel nodes, the quality function promotes solutions where a rather small 
subgraph of hubs is (almost) fully connected and the generated sets of spokes attached 
to their hubs are of medium size. The fitness function (3) promotes bigger shell 
subgraphs, ideally of a size almost equal to the average number of spokes, assuring the 
connectivity of the kernel and maximizing the number of connections among hubs: 
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where: n – predetermined number of hubs in the solution evaluated, m – number of 
connected subgraphs in the kernel subgraph, ki – number of spokes attached to the ith 
hub, k – number of nodes in the whole graph, hi – number of connections between 
hub i and other hubs. 

This problem can be solved using similar operators to the ones used for the  
α-clique methods, but different conditions are checked before they are performed. 
When one node (spoke) is to be moved to another hub shell, first it must be checked 
that it is connected to this new hub. If not, the operation is canceled with similar con-
sequences to those previously described for the α-clique method. In this case, the set 
of genetic operators contains: 

1. Mutation – exchange of randomly chosen nodes in different sets of spokes. 
2. Movement of a randomly chosen node to a different set of spokes. 
3. Exchange of randomly selected hubs of randomly selected spokes – this opera-

tor is inactive when kernel nodes are explicitly assigned. 
A problem arises when the predetermined number of kernel nodes is lower than the 

minimal value that assures that all the shell nodes will be attached to their kernel hubs. 
This problem can be solved in two ways. The former enables the final result to contain 
unattached shell nodes. The other increases the number of kernel nodes to obtain a con-
nected graph. These methods are realized using modified forms of the quality func-
tion (3) with a penalty for unattached shell nodes or additional kernel nodes. 

3.2.2. The hub and spoke structure with a non-fixed number of kernel nodes 

In this case, the number of kernel nodes (hubs) is unknown in advance and varies 
during the computations. The algorithm must find the set of kernel candidates optimiz-
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ing the quality function (4). The data structure contains a dynamic table of the kernel 
nodes chosen and dynamic lists of spokes, which constitute shells of ordinary nodes. 
As in the previously considered cases, each node is considered only once in each solu-
tion. 
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where: n – number of hubs in the solution evaluated, m – number of connected 
subgraphs in the kernel subgraph, ki – number of nodes (spokes) attached to the ith 
hub, k – number of nodes in the whole graph, hi – number of connections between hub 
i and other hubs. 

The fitness function (4) promotes bigger shell subgraphs, ideally of a size almost 
equal to the average number of spokes, assuring connectivity of the kernel subgraph 
and maximizing the number of connections among hubs. The set of genetic operators 
in this case contains: 

1. Mutation – exchange of randomly chosen nodes in different sets of spokes. 
2. Movement of a randomly chosen node to a different set of spokes (random and 

“intelligent” versions, the “intelligent” version performs changes in an individual only 
if the new set of spokes is better connected with their kernels than before this opera-
tion). 

3. Exchange of a randomly selected hub for a randomly selected spoke (as in the 
previous case – random and the “intelligent” versions). 

4. Concatenation – attempt to concatenate two sets of spokes (so as to minimize 
the number of kernel nodes). 

3.2.3. The hub and spoke structure with the minimum number of kernel nodes 

The hub and spoke structure with the minimum size of kernel subgraph is a special 
case of the structure with an indirectly imposed number of kernel nodes but this prob-
lem is computationally more difficult to solve. The method of encoding is identical to 
the case of a non-fixed size of kernel subgraph but the fitness function to be optimized 
is different: 

 min Q nm=  (5) 

where: n – number of hubs in the solution, m – number of connected subgraphs in the 
kernel. 

The fitness function (5) promotes small sets of connected kernel nodes with all the 
spokes attached to their hubs. The set of genetic operators in this case contains: 

1. Mutation – exchange of randomly chosen nodes in different sets of spokes. 
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2. Movement of a randomly chosen node to a different set of spokes (random and 
“intelligent” versions, the “intelligent” version performs changes in an individual only 
if the new set of spokes is better connected with their kernels than before this opera-
tion). 

3. Exchange of a randomly selected hub for a randomly selected spoke (as in the 
previous case, random and “intelligent” versions). 

4. Concatenation – attempt to concatenate two sets of spokes (tries to minimize the 
number of kernel nodes). 

4. Results of computer simulations 

To test these methods, we used examples from BHOSLIB (Benchmarks with Hid-
den Optimum Solutions for Graph Problems):  

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm. 
The problems selected involve a graph with 450 vertices and 83 198 edges with 

the maximum clique size equal to 30 (frb30-15-clq.tar.gz) and a graph with 4000 ver-
tices and 7 425 226 edges (frb100-40.clq.gz). The sizes of these problems are relative-
ly big, but their complexity is similar to problems encountered during the planning of 
real connections. 

4.1. Results obtained for the α-clique method 

4.1.1. The problem with a non-fixed number of kernel nodes 

The first step of obtaining a kernel and shell structure from the input graph using 
the α-clique method is to find a value of α  that gives the desired results. Thus, it is 
necessary to decide which solution is the closest to our requirements. Using various 
values of α, we obtained several different solutions. It is difficult to foresee a priori, 
taking into account only the value of α, which value would be the best, but after com-
putations it is quite easy to choose the solution with the most acceptable parameters. 
The most important factor influencing this decision is the number of kernel nodes 
obtained. For a problem similar to that of connecting large European cities (frb30-15-1), 
the best solutions are probably the ones for α = 0.8 with 10 kernel nodes. Of course, 
we can also try to find different numbers of kernel nodes by adopting values of α be-
tween the tested ones. The process of genetic computations lasts about 5–10 minutes, 
depending on the operating system and machine used, together with the value of α. 
Thus it is possible to compute solutions using several values of α, before accepting 
one. The results presented provide a distinctly simplified structure of connections. For 
example, in the case of α = 0.80, we obtained an output structure with about 1018 connec-
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tions in place of the input structure with 83 198 connections. This lower number of con-
nections implies faster and more frequent connections with lower costs for carriers and 
their clients. The results obtained for larger graphs have similar properties, but the 
computations last longer, especially for the frb100-40 problem. The computational 
complexity depends mainly on the number of edges, the number of vertices is less 
significant. It should be noted that for all the graphs considered, the kernel constitutes 
at least a connected subgraph with strongly connected α-cliques attached to shell 
subgraphs. 

Table 1. Comparison of the results obtained with various values of α 

α Subject Min Max Median
No. of 
kernel
nodes 

αK 
No. of 

connections 

Name of problem: frb30-15-1 Vertices: 450 Edges: 83 198 

0.80 
cardinality of shell 40 50 45 

10 1.00 9067 degree of kernel nodes in shell subgraphs 39 48 43 
degree of kernel nodes in kernel subgraph 10 10 10 

0.90 
cardinality of shell 22 23 22 

20 0.95 5225 degree of kernel nodes in shell subgraphs 21 23 22 
degree of kernel nodes in kernel subgraph 19 20 20 

1.00 
cardinality of shell 14 16 15 

30 0.93 4025 degree of kernel nodes in shell subgraphs 14 16 15 
degree of kernel nodes in kernel subgraph 28 30 29 

Name of problem: frb100-40 Vertices: 4000 Edges: 7 425 226 

0.80 
cardinality of shell 4000 4000 4000 

1 1.00 7 429 226 degree of kernel nodes in shell subgraphs 3727 3727 3727 
degree of kernel nodes in kernel subgraph 1 1 1 

0.90 
cardinality of shell 76 420 187 

20 0.75 462 250 degree of kernel nodes in shell subgraphs 74 407 173 
degree of kernel nodes in kernel subgraph 16 20 18 

1.00 
cardinality of shell 44 49 48 

82 0.96 102 869 degree of kernel nodes in shell subgraphs 44 49 48 
degree of kernel nodes in kernel subgraph 79 82 81 

4.1.2. The problem with a fixed number of kernel nodes 

In this approach, the results depend on the number of shell structures. The results 
obtained show that conversion of a graph of connections into a kernel and shell struc-
ture can be obtained using a different approach. As in the previous case, the computa-
tions last significantly longer for the graph with 7 425 226 edges but the kernel 
subgraphs are successfully connected. All the constraints imposed on the obtained 
kernel and shell structures can be fulfilled for a range of numbers of kernel nodes, 
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beyond these values it would be necessary to modify the graph of connections to ob-
tain feasible solutions. 

Table 2. Comparison of the results obtained for various numbers of kernel nodes 

Desired 
number 
of kernel 
 nodes 

Subject Min Max Median αmin αK No. of 
connections 

Name of problem: frb30-15-1 Vertices: 450 Edges: 83 198 

5 
cardinality of shell 53 140 92 

0.81 1.00 20 035 degree of kernel nodes in shell subgraphs  45 117 79 
degree of kernel nodes in kernel subgraph 5 5 5 

10 
cardinality of shell 28 78 34 

0.82 1.00 11 140 degree of kernel nodes in shell subgraphs 26 67 32 
degree of kernel nodes in kernel subgraph 10 10 10 

50 
cardinality of shell 1 21 7 

1.00 0.80 5111 degree of kernel nodes in shell subgraphs 1 21 7 
degree of kernel nodes in kernel subgraph 40 49 42 

100 
cardinality of shell 1 20 1 

1.00 0.79 7881 degree of kernel nodes in shell subgraphs 1 20 1 
degree of kernel nodes in kernel subgraph 79 93 84 
Name of problem: frb100-40 Vertices 4000 Edges 7 425 226 

5 
cardinality of shell 230 1871 537 

0.90 1.00 2 319 961 degree of kernel nodes in shell subgraphs 211 1727 502 
degree of kernel nodes in kernel subgraph 5 5 5 

10 
cardinality of shell 46 1706 126 

0.91 1.00 1 917 039 degree of kernel nodes in shell subgraphs 42 1558 120 
degree of kernel nodes in kernel subgraph 10 10 10 

50 
cardinality of shell 44 538 59 

0.93 0.94 322 273 degree of kernel nodes in shell subgraphs 41 503 56 
degree of kernel nodes in kernel subgraph 47 50 48 

100 
cardinality of shell 1 71 49 

1.00 0.89 120 893 degree of kernel nodes in shell subgraphs 1 98 49 
degree of kernel nodes in kernel subgraph 89 98 93 

4.2. Results obtained for the hub and spoke method 

4.2.1. The problem of finding the minimum number of kernel nodes 

It should be noted that this version of the algorithm limits the possibilities of trans-
forming the graph too strongly. In this case, only one solution is generated and the sets 
of spokes may be too big to be useful. But this result helps us to find the lower limit 
on the possible and practically useful numbers of hubs. 
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Table 3. The minimum numbers of kernel nodes 

No. of kernel 
nodes obtained Subject Min Max Median αK No. of 

connections 

Name of problem: frb30-15-1 Vertices: 450 Edges: 83 198 

2 
cardinality of shell 104 344 104 

1.00 899 degree of kernel nodes in shell subgraphs 104 344 104 
degree of kernel nodes in kernel subgraph 2 2 2 

Name of problem: frb100-40 Vertices: 4000 Edges: 7 425 226 

2 
cardinality of shell 435 3563 435 

1.00 7999 degree of kernel nodes in shell subgraphs 435 3563 435 
degree of kernel nodes in kernel subgraph 2 2 2 

4.2.2. The problem with a fixed number of kernel nodes 

This method generates a kernel and shell structure with the given number of hubs. 
Due to the structure of the input graph, some hub and spoke structures with a prede-
fined number of kernel nodes may not be achieved without leaving any shell nodes 
unattached. In the results presented here, we considered the results obtained in the 
previous section and requested kernel sizes bigger than the minimal values obtained. 

Table 4. Results obtained for various desired numbers of hubs 

The desired  
number 

of kernel  
nodes 

Subject Min Max Median αK 
No. of 

 connections 

Name of problem: frb30-15-1 Vertices: 450 Edges: 8319 

5 
cardinality of shell 89 89 89 

1.00 901 degree of kernel nodes in shell subgraphs 89 89 89 
degree of kernel nodes in kernel subgraph 5 5 5 

10 
cardinality of shell 44 44 44 

1.00 926 degree of kernel nodes in shell subgraphs 44 44 44 
degree of kernel nodes in kernel subgraph 10 10 10 

50 
cardinality of shell 8 8 8 

0.92 1975 degree of kernel nodes in shell subgraphs 8 8 8 
degree of kernel nodes in kernel subgraph 44 50 46 

100 
cardinality of shell 3 4 3 

0.89 5232 degree of kernel nodes in shell subgraphs 3 4 3 
degree of kernel nodes in kernel subgraph 89 96 92 
Name of problem: frb100-40 Vertices: 4000 Edges: 7 425 226 

5 
cardinality of shell 799 799 799 

1.00 8001 degree of kernel nodes in shell subgraphs 799 799 799 
degree of kernel nodes in kernel subgraph 5 5 5 
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The desired  
number 

of kernel  
nodes 

Subject Min Max Median αK 
No. of 

 connections 

10 
cardinality of shell 399 399 399 

0.90 8024 degree of kernel nodes in shell subgraphs 399 399 399 
degree of kernel nodes in kernel subgraph 9 10 10 

50 
cardinality of shell 79 79 79 

1.00 9126 degree of kernel nodes in shell subgraphs 79 79 79 
degree of kernel nodes in kernel subgraph 50 50 50 

100 
cardinality of shell 39 39 39 

0.99 12 717 degree of kernel nodes in shell subgraphs 39 39 39 
degree of kernel nodes in kernel subgraph 99 100 99 

 
The results from Table 4 show that the method based on a given number of hubs is 

more flexible, because it is possible to obtain the desired structure of the transformed 
graph, while the previous method gives only one solution for each case. As it can be 
seen, for larger numbers of hubs, the subgraph becomes not fully connected, but the 
numbers of connections between hubs are very high (α is close to 1). However, it is 
possible to obtain worse results for sparse graphs or for a larger number of hubs. It is 
thus necessary to assess at least the connectivity of the kernel subgraph. 

4.2.3. The problem with a non-fixed number of kernel nodes 

The results obtained in this case are similar to those obtained in the case of mini-
mum kernel size (see Section 4.2.1, Table 3), although this is not a general rule. We 
conducted simulations for different sets of data and the results obtained were, on occa-
sion, different. 

5. Conclusions 

It is well known that for problems of great complexity, where there are no effec-
tive algorithms to solve them, specialized evolutionary methods are very efficient and 
give satisfactory results. The results of the series of experiments conducted are rather 
positive. The parameter α introduced into the traditional notion of a clique gives rise 
to a flexible tool that solves the kernel and shell structure problem using α-cliques. 
Likewise, a traditional hub and spoke structure, which can be also treated as an in-
stance of kernel and shell, can be easily obtained using an evolutionary method. The 
methods presented can be very useful for developing logistic-transportation systems. 
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