Volume 7 Issue 5
Oct.  2021
Turn off MathJax
Article Contents
Hao Sun, Zilong Guo, Haiyan Hong, Ping Yu, Zhenyong Xue, Hu Chen. Protein folding mechanism revealed by single-molecule force spectroscopy experiments[J]. Biophysics Reports, 2021, 7(5): 399-412. doi: 10.52601/bpr.2021.210024
Citation: Hao Sun, Zilong Guo, Haiyan Hong, Ping Yu, Zhenyong Xue, Hu Chen. Protein folding mechanism revealed by single-molecule force spectroscopy experiments[J]. Biophysics Reports, 2021, 7(5): 399-412. doi: 10.52601/bpr.2021.210024

Protein folding mechanism revealed by single-molecule force spectroscopy experiments

doi: 10.52601/bpr.2021.210024
Funds:  This research was supported by the National Natural Science Foundation of China (11874309 and 11474237), 111 project (B16029), and the Start-up grant of Wenzhou Institute, University of Chinese Academy of Sciences (WIUCASQD2021008).
More Information
  • Corresponding author: chenhu@xmu.edu.cn (H. Chen)
  • Received Date: 18 July 2021
  • Accepted Date: 21 August 2021
  • Publish Date: 31 October 2021
  • Force spectroscopy experiments use mechanical force as a control factor to regulate the folding and unfolding process of proteins. Atomic force microscopy has been widely used to study the mechanical stability of proteins, and obtained unfolding forces and unfolding distance of different proteins, while recently, more low force folding and unfolding measurements were done by optical tweezers and magnetic tweezers. Due to the relatively small distortion of the free energy landscape, low force measurements give the free energy landscape information over bigger conformational space. In this review, we summarize the results of force spectroscopy experiments on different proteins. The unfolding distance obtained at high forces by atomic force microscopy are mostly smaller than 2 nm, while the unfolding distances at low forces distribute over a larger range: from a negative value to more than 6 nm. The sizes of the transition states at low force are ~4 nm for most compact two-state globular proteins, which indicates that this transition state might be the general free energy barrier separating the unfolded state and the theoretically predicated molten globule state. Up to now, only a limited number of proteins has been studied at low forces. We expect that more and more proteins with different conformations will be studied at low forces to reveal the general protein folding mechanism.
  • loading
  • [1]
    Ainavarapu RK, Li LY, Badilla CL, Fernandez JM (2005) Ligand binding modulates the mechanical stability of dihydrofolate reductase. Biophys J 89(5): 3337−3344 doi: 10.1529/biophysj.105.062034
    [2]
    Arad-Haase G, Chuartzman SG, Dagan S, Nevo R, Kouza M, Binh KM, Hung TN, Li MS, Reich Z (2010) Mechanical unfolding of acylphosphatase studied by single-molecule force spectroscopy and MD simulations. Biophys J 99(1): 238−247 doi: 10.1016/j.bpj.2010.04.004
    [3]
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5): 288−290 doi: 10.1364/OL.11.000288
    [4]
    Balbach J, Forge V, Lau WS, Jones JA, van Nuland NAJ, Dobson CM (1997) Detection of residue contacts in a protein folding intermediate. Proc Natl Acad Sci USA 94(14): 7182−7185 doi: 10.1073/pnas.94.14.7182
    [5]
    Banachewicz W, Johnson CM, Fersht AR (2011) Folding of the Pit1 homeodomain near the speed limit. Proc Natl Acad Sci USA 108(2): 569−573 doi: 10.1073/pnas.1017832108
    [6]
    Bartlett AI, Radford SE (2009) An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 16(6): 582−588 doi: 10.1038/nsmb.1592
    [7]
    Best RB (2012) Atomistic molecular simulations of protein folding. Curr Opin Struc Biol 22(1): 52−61 doi: 10.1016/j.sbi.2011.12.001
    [8]
    Best RB, Li B, Steward A, Daggett V, Clarke J (2001) Can non-mechanical proteins withstand force? Stretching barnase by atomic force microscopy and molecular dynamics simulation. Biophys J 81(4): 2344−2356 doi: 10.1016/S0006-3495(01)75881-X
    [9]
    Bolhuis PG (2009) Two-state protein folding kinetics through all-atom molecular dynamics based sampling. Front Biosci (Landmark Ed) 14(8): 2801−2828 doi: 10.2741/3415
    [10]
    Brockwell DJ, Beddard GS, Clarkson J, Zinober RC, Blake AW, Trinick J, Olmsted PD, Smith DA, Radford SE (2002) The effect of core destabilization on the mechanical resistance of I27. Biophys J 83(1): 458−472 doi: 10.1016/S0006-3495(02)75182-5
    [11]
    Brockwell DJ, Beddard GS, Paci E, West DK, Olmsted PD, Smith DA, Radford SE (2005) Mechanically unfolding the small, topologically simple protein L. Biophys J 89(1): 506−519 doi: 10.1529/biophysj.105.061465
    [12]
    Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Proteins 21(3): 167−195 doi: 10.1002/prot.340210302
    [13]
    Bustamante C, Alexander L, Maciuba K, Kaiser CM (2020) Single-molecule studies of protein folding with optical tweezers. Annu Rev Biochem 89(1): 443−470 doi: 10.1146/annurev-biochem-013118-111442
    [14]
    Cao Y, Lam C, Wang MJ, Li HB (2006) Nonmechanical protein can have significant mechanical stability. Angew Chem Int Edit 45(4): 642−645 doi: 10.1002/anie.200502623
    [15]
    Carrion-Vazquez M, Li HB, Lu H, Marszalek PE, Oberhauser AF, Fernandez JM (2003) The mechanical stability of ubiquitin is linkage dependent. Nat Struct Biol 10(9): 738−743 doi: 10.1038/nsb965
    [16]
    Carrion-Vazquez M, Oberhauser AF, Fowler SB, Marszalek PE, Broedel SE, Clarke J, Fernandez JM (1999) Mechanical and chemical unfolding of a single protein: a comparison. Proc Natl Acad Sci USA 96(7): 3694−3699 doi: 10.1073/pnas.96.7.3694
    [17]
    Cecconi C, Shank EA, Bustamante C, Marqusee S (2005) Direct observation of the three-state folding of a single protein molecule. Science 309(5743): 2057−2060 doi: 10.1126/science.1116702
    [18]
    Charvin G, Strick TR, Bensimon D, Croquette V (2005) Tracking topoisomerase activity at the single-molecule level. Annu Rev Biophys Biomol Struct 34(1): 201−219 doi: 10.1146/annurev.biophys.34.040204.144433
    [19]
    Chen H, Chandrasekar S, Sheetz MP, Stossel TP, Nakamura F, Yan J (2013) Mechanical perturbation of filamin A immunoglobulin repeats 20-21 reveals potential non-equilibrium mechanochemical partner binding function. Sci Rep 3(1): 1642. https://doi.org/10.1038/srep01642
    [20]
    Chen H, Fu HX, Zhu XY, Cong PW, Nakamura F, Yan J (2011) Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA. Biophys J 100(2): 517−523 doi: 10.1016/j.bpj.2010.12.3700
    [21]
    Chen H, Yuan GH, Winardhi RS, Yao MX, Popa I, Fernandez JM, Yan J (2015) Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces. J Am Chem Soc 137(10): 3540−3546 doi: 10.1021/ja5119368
    [22]
    Chen H, Zhu XY, Cong PW, Sheetz MP, Nakamura F, Yan J (2011) Differential mechanical stability of filamin A rod segments. Biophys J 101(5): 1231−1237 doi: 10.1016/j.bpj.2011.07.028
    [23]
    Choudhary D, Mossa A, Jadhav M, Cecconi C (2019) Bio-molecular applications of recent developments in optical tweezers. Biomolecules 9(1): 23. https://doi.org/10.3390/biom9010023
    [24]
    Chyan CL, Lin FC, Peng HB, Yuan JM, Chang CH, Lin SH, Yangy GL (2004) Reversible mechanical unfolding of single ubiquitin molecules. Biophys J 87(6): 3995−4006 doi: 10.1529/biophysj.104.042754
    [25]
    Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338(6110): 1042−1046 doi: 10.1126/science.1219021
    [26]
    Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Annu Rev Biophys 37(1): 289−316 doi: 10.1146/annurev.biophys.37.092707.153558
    [27]
    Dobson CM (2004) Principles of protein folding, misfolding and aggregation. Semin Cell Dev Biol 15(1): 3−16 doi: 10.1016/j.semcdb.2003.12.008
    [28]
    Edwards DT, Leblanc MA, Perkins TT (2021) Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations. Proc Natl Acad Sci USA 118(12): e2015728118. https://doi.org/10.1073/pnas.2015728118
    [29]
    Elms PJ, Chodera JD, Bustamante C, Marqusee S (2012) The molten globule state is unusually deformable under mechanical force. Proc Natl Acad Sci USA 109(10): 3796−3801 doi: 10.1073/pnas.1115519109
    [30]
    Finkelstein AV (2018) 50+ Years of Protein Folding. Biochemistry(Mosc) 83(Suppl 1): S3−S18 doi: 10.1134/S000629791814002X
    [31]
    Forman JR, Clarke J (2007) Mechanical unfolding of proteins: insights into biology, structure and folding. Curr Opin Struc Biol 17(1): 58−66 doi: 10.1016/j.sbi.2007.01.006
    [32]
    Freddolino PL, Harrison CB, Liu YX, Schulten K (2010) Challenges in protein-folding simulations. Nat Phys 6(10): 751−758 doi: 10.1038/nphys1713
    [33]
    Fuson KL, Ma L, Sutton RB, Oberhauser AF (2009) The C2 domains of human synaptotagmin 1 have distinct mechanical properties. Biophys J 96(3): 1083−1090 doi: 10.1016/j.bpj.2008.10.025
    [34]
    Gao X, Qin M, Yin PG, Liang JY, Wang J, Cao Y, Wang W (2012) Single-molecule experiments reveal the flexibility of a Per-ARNT-Sim domain and the kinetic partitioning in the unfolding pathway under force. Biophys J 102(9): 2149−2157 doi: 10.1016/j.bpj.2012.03.042
    [35]
    Gore J, Bryant Z, Stone MD, Nollmann MN, Cozzarelli NR, Bustamante C (2006) Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature 439(7072): 100−104 doi: 10.1038/nature04319
    [36]
    Guo ZL, Hong HY, Yuan GH, Qian H, Li B, Cao Y, Wang W, Wu CX, Chen H (2020) Hidden intermediate state and second pathway determining folding and unfolding dynamics of GB1 protein at low forces. Phys Rev Lett 125(19): 198101. https://doi.org/10.1103/PhysRevLett.125.198101
    [37]
    He CZ, Genchev GZ, Lu H, Li HB (2012) Mechanically untying a protein slipknot: multiple pathways revealed by force spectroscopy and steered molecular dynamics simulations. J Am Chem Soc 134(25): 10428−10435 doi: 10.1021/ja3003205
    [38]
    He CZ, Hu CG, Hu XD, Hu XT, Xiao A, Perkins TT, Li HB (2015) Direct observation of the reversible two-state unfolding and refolding of an alpha/beta protein by single-molecule atomic force microscopy. Angew Chem Int Edit 54(34): 9921−9925 doi: 10.1002/anie.201502938
    [39]
    He CZ, Li HB (2017) Staphylokinase displays surprisingly low mechanical stability. Langmuir 33(4): 1077−1083 doi: 10.1021/acs.langmuir.6b04425
    [40]
    He CZ, Li S, Gao XQ, Xiao A, Hu CG, Hu XD, Hu XT, Li H (2019) Direct observation of the fast and robust folding of a slipknotted protein by optical tweezers. Nanoscale 11(9): 3945−3951 doi: 10.1039/C8NR10070E
    [41]
    Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5): 347−355 doi: 10.1038/nmeth871
    [42]
    Hoffmann T, Tych KM, Brockwell DJ, Dougan L (2013) Single-molecule force spectroscopy identifies a small cold shock protein as being mechanically robust. J Phys Chem B 117(6): 1819−1826 doi: 10.1021/jp310442s
    [43]
    Hoffmann T, Tych KM, Hughes ML, Brockwell DJ, Dougan L (2013) Towards design principles for determining the mechanical stability of proteins. Phys Chem Chem Phys 15(38): 15767−15780 doi: 10.1039/c3cp52142g
    [44]
    Hu W, Kan Z-Y, Mayne L, Englander SW (2016) Cytochrome c folds through foldon-dependent native-like intermediates in an ordered pathway. Proc Natl Acad Sci USA 113(14): 3809−3814 doi: 10.1073/pnas.1522674113
    [45]
    Hughes ML, Dougan L (2016) The physics of pulling polyproteins: a review of single molecule force spectroscopy using the AFM to study protein unfolding. Rep Prog Phys 79(7): 076601. https://doi.org/10.1088/0034-4885/79/7/076601
    [46]
    Junker JP, Ziegler F, Rief M (2009) Ligand-dependent equilibrium fluctuations of single calmodulin molecules. Science 323(5914): 633−637 doi: 10.1126/science.1166191
    [47]
    Kuwajima K (2020) The molten globule, and two-state vs. non-two-state folding of globular proteins. Biomolecules 10(3): 407. https://doi.org/10.3390/biom10030407
    [48]
    Leblanc MA, Fink MR, Perkins TT, Sousa MC (2021) Type III secretion system effector proteins are mechanically labile. Proc Natl Acad Sci USA 118(12): e2019566118. https://doi.org/10.1073/pnas.2019566118
    [49]
    Lei H, He CZ, Hu CG, Li JL, Hu XD, Hu XT, Li HB (2017) Single-molecule force spectroscopy trajectories of a single protein and its polyproteins are equivalent: a direct experimental validation based on a small protein NuG2. Angew Chem Int Edit 56(22): 6117−6121 doi: 10.1002/anie.201610648
    [50]
    Li HB, Fernandez JM (2003) Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy. J Mol Biol 334(1): 75−86 doi: 10.1016/j.jmb.2003.09.036
    [51]
    Li JY, Li HB (2018) Mechanical unfolding pathway of the high-potential iron-sulfur protein revealed by single-molecule atomic force microscopy: toward a general unfolding mechanism for iron-sulfur proteins. J Phys Chem B 122(40): 9340−9349 doi: 10.1021/acs.jpcb.8b07614
    [52]
    Li JY, Li HB (2020) Single molecule force spectroscopy reveals that a two-coordinate ferric site is critical for the folding of holo-rubredoxin. Nanoscale 12(44): 22564−22573 doi: 10.1039/D0NR06275H
    [53]
    Li MS (2007) Secondary structure, mechanical stability, and location of transition state of proteins. Biophys J 93(8): 2644−2654 doi: 10.1529/biophysj.107.106138
    [54]
    Liang H, Vu KT, Krishnan P, Trang TC, Shin D, Kimel S, Berns MW (1996) Wavelength dependence of cell cloning efficiency after optical trapping. Biophys J 70(3): 1529−1533 doi: 10.1016/S0006-3495(96)79716-3
    [55]
    Lipman EA, Schuler B, Bakajin O, Eaton WA (2003) Single-molecule measurement of protein folding kinetics. Science 301(5637): 1233−1235 doi: 10.1126/science.1085399
    [56]
    Lof A, Walker PU, Sedlak SM, Gruber S, Obser T, Brehm MA, Benoit M, Lipfert J (2019) Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proc Natl Acad Sci USA 116(38): 18798−18807 doi: 10.1073/pnas.1901794116
    [57]
    Lv C, Gao X, Li W, Xue B, Qin M, Burtnick LD, Zhou H, Cao Y, Robinson RC, Wang W (2014) Single-molecule force spectroscopy reveals force-enhanced binding of calcium ions by gelsolin. Nat Commun 5(1): 4623. https://doi.org/10.1038/ncomms5623
    [58]
    Lv CM, Tan C, Qin M, Zou DW, Cao Y, Wang W (2012) Low folding cooperativity of Hp35 revealed by single-molecule force spectroscopy and molecular dynamics simulation. Biophys J 102(8): 1944−1951 doi: 10.1016/j.bpj.2012.03.028
    [59]
    Maitra A, Arya G (2010) Model accounting for the effects of pulling-device stiffness in the analyses of single-molecule force measurements. Phys Rev Lett 104(10): 108301. https://doi.org/10.1103/PhysRevLett.104.108301
    [60]
    Maitra A, Arya G (2011) Influence of pulling handles and device stiffness in single-molecule force spectroscopy. Phys Chem Chem Phys 13(5): 1836−1842 doi: 10.1039/C0CP01528H
    [61]
    Maxwell KL, Wildes D, Zarrine-Afsar A, de los Rios MA, Brown AG, Friel CT, Hedberg L, Horng JC, Bona D, Miller EJ, Vallee-Belisle A, Main ERG, Bemporad F, Qiu LL, Teilum K, Vu ND, Edwards AM, Ruczinski I, Poulsen FM, Kragelund BB, Michnick SW, Chiti F, Bai YW, Hagen SJ, Serrano L, Oliveberg M, Raleigh DP, Wittung-Stafshede P, Radford SE, Jackson SE, Sosnick TR, Marqusee S, Davidson AR, Plaxco KW (2005) Protein folding: defining a "standard" set of experimental conditions and a preliminary kinetic data set of two-state proteins. Protein Sci 14(3): 602−616 doi: 10.1110/ps.041205405
    [62]
    McCallister EL, Alm E, Baker D (2000) Critical role of β-hairpin formation in protein G folding. Nat Struct Biol 7(8): 669−673 doi: 10.1038/77971
    [63]
    Nasreen K, Parray ZA, Ahamad S, Ahmad F, Ahmed A, Alamery SF, Hussain T, Hassan MI, Islam A (2020) Interactions under crowding milieu: chemical-induced denaturation of myoglobin is determined by the extent of heme dissociation on interaction with crowders. Biomolecules 10(3): 490. https://doi.org/10.3390/biom10030490
    [64]
    Nauli S, Kuhlman B, Baker D (2001) Computer-based redesign of a protein folding pathway. Nat Struct Biol 8(7): 602−605 doi: 10.1038/89638
    [65]
    Nauli S, Kuhlman B, Le Trong I, Stenkamp RE, Teller D, Baker D (2002) Crystal structures and increased stabilization of the protein G variants with switched folding pathways NuG1 and NuG2. Protein Sci 11(12): 2924−2931 doi: 10.1110/ps.0216902
    [66]
    Neuman KC, Chadd EH, Liou GF, Bergman K, Block SM (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77(5): 2856−2863 doi: 10.1016/S0006-3495(99)77117-1
    [67]
    Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5(6): 491−505 doi: 10.1038/nmeth.1218
    [68]
    Noy A (2011) Force spectroscopy 101: how to design, perform, and analyze an AFM-based single molecule force spectroscopy experiment. Curr Opin Chem Biol 15(5): 710−718 doi: 10.1016/j.cbpa.2011.07.020
    [69]
    Oberhauser AF, Badilla-Fernandez C, Carrion-Vazquez M, Fernandez JM (2002) The mechanical hierarchies of fibronectin observed with single-molecule AFM. J Mol Biol 319(2): 433−447 doi: 10.1016/S0022-2836(02)00306-6
    [70]
    Oberhauser AF, Marszalek PE, Erickson HP, Fernandez JM (1998) The molecular elasticity of the extracellular matrix protein tenascin. Nature 393(6681): 181−185 doi: 10.1038/30270
    [71]
    Park S-H, Shastry MCR, Roder H (1999) Folding dynamics of the B1 domain of protein G explored by ultrarapid mixing. Nat Struct Biol 6(10): 943−947 doi: 10.1038/13311
    [72]
    Peng Q, Li HB (2008) Atomic force microscopy reveals parallel mechanical unfolding pathways of T4 lysozyme: evidence for a kinetic partitioning mechanism. Proc Natl Acad Sci USA 105(6): 1885−1890 doi: 10.1073/pnas.0706775105
    [73]
    Peterman EJG, Gittes F, Schmidt CF (2003) Laser-induced heating in optical traps. Biophys J 84(2): 1308−1316 doi: 10.1016/S0006-3495(03)74946-7
    [74]
    Piana S, Klepeis JL, Shaw DE (2014) Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations. Curr Opin Struc Biol 24(1): 98−105 doi: 10.1016/j.sbi.2013.12.006
    [75]
    Popa I, Rivas-Pardo JA, Eckels EC, Echelman DJ, Badilla CL, Valle-Orero J, Fernandez JM (2016) A HaloTag anchored ruler for week-long studies of protein dynamics. J Am Chem Soc 138(33): 10546−10553 doi: 10.1021/jacs.6b05429
    [76]
    Radford SE (2000) Protein folding: progress made and promises ahead. Trends Biochem Sci 25(12): 611−618 doi: 10.1016/S0968-0004(00)01707-2
    [77]
    Religa TL, Markson JS, Mayor U, Freund SMV, Fersht AR (2005) Solution structure of a protein denatured state and folding intermediate. Nature 437(7061): 1053−1056 doi: 10.1038/nature04054
    [78]
    Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315): 1109−1112 doi: 10.1126/science.276.5315.1109
    [79]
    Rief M, Pascual J, Saraste M, Gaub HE (1999) Single molecule force spectroscopy of spectrin repeats: low unfolding forces in helix bundles. J Mol Biol 286(2): 553−561 doi: 10.1006/jmbi.1998.2466
    [80]
    Rivera M, Hao YX, Maillard RA, Baez M (2020) Mechanical unfolding of a knotted protein unveils the kinetic and thermodynamic consequences of threading a polypeptide chain. Sci Rep 10(1): 9562. https://doi.org/10.1038/s41598-020-66258-5
    [81]
    Schlierf M, Li HB, Fernandez JM (2004) The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques. Proc Natl Acad Sci USA 101(19): 7299−7304 doi: 10.1073/pnas.0400033101
    [82]
    Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Zidek A, Nelson AWR, Bridgland A, Penedones H, Petersen S, Simonyan K, Crossan S, Kohli P, Jones DT, Silver D, Kavukcuoglu K, Hassabis D (2020) Improved protein structure prediction using potentials from deep learning. Nature 577(7792): 706−710 doi: 10.1038/s41586-019-1923-7
    [83]
    Seol Y, Carpenter AE, Perkins TT (2006) Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. Opt Lett 31(16): 2429−2431 doi: 10.1364/OL.31.002429
    [84]
    Shank EA, Cecconi C, Dill JW, Marqusee S, Bustamante C (2010) The folding cooperativity of a protein is controlled by its chain topology. Nature 465(7298): 637−640 doi: 10.1038/nature09021
    [85]
    Sharma D, Perisic O, Peng Q, Cao Y, Lam C, Lu H, Li HB (2007) Single-molecule force spectroscopy reveals a mechanically stable protein fold and the rational tuning of its mechanical stability. Proc Natl Acad Sci USA 104(22): 9278−9283 doi: 10.1073/pnas.0700351104
    [86]
    Sikora M, Sulkowska JI, Cieplak M (2009) Mechanical strength of 17 134 model proteins and cysteine slipknots. Plos Comput Biol 5(10): e1000547. https://doi.org/10.1371/journal.pcbi.1000547
    [87]
    Sikora M, Sułkowska JI, Witkowski BS, Cieplak M (2010) BSDB: the biomolecule stretching database. Nucleic Acids Res 39(Database issue): D443−D450 doi: 10.1093/nar/gkq851
    [88]
    Sonar P, Bellucci L, Mossa A, Heidarsson PO, Kragelund BB, Cecconi C (2020) Effects of ligand binding on the energy landscape of Acyl-CoA-binding protein. Biophys J 119(9): 1821−1832 doi: 10.1016/j.bpj.2020.09.016
    [89]
    Strick TR, Croquette V, Bensimon D (2000) Single-molecule analysis of DNA uncoiling by a type II topoisomerase. Nature 404(6780): 901−904 doi: 10.1038/35009144
    [90]
    Su HH, Sun H, Hong HY, Guo ZL, Yu P, Chen H (2021) Equilibrium folding and unfolding dynamics to reveal detailed free energy landscape of src SH3 protein by magnetic tweezers. Chin Phys B 30(7): 78201. https://doi.org/10.1088/1674-1056/abfb56
    [91]
    Tapia-Rojo R, Alonso-Caballero A, Fernandez JM (2020) Talin folding as the tuning fork of cellular mechanotransduction. Proc Natl Acad Sci USA 117(35): 21346−21353 doi: 10.1073/pnas.2004091117
    [92]
    van der Kant R, Goldstein LSB, Ossenkoppele R (2020) Amyloid-beta-independent regulators of tau pathology in Alzheimer disease. Nat Rev Neurosci 21(1): 21−35 doi: 10.1038/s41583-019-0240-3
    [93]
    Whitley KD, Comstock MJ, Chemla YR (2018) Ultrashort nucleic acid duplexes exhibit long wormlike chain behavior with force-dependent edge effects. Phys Rev Lett 120(6): 068102. https://doi.org/10.1103/PhysRevLett.120.068102
    [94]
    Wolynes PG, Onuchic JN, Thirumalai D (1995) Navigating the folding routes. Science 267(5204): 1619−1620 doi: 10.1126/science.7886447
    [95]
    Xiao A, Li HB (2019) Direct monitoring of equilibrium protein folding-unfolding by atomic force microscopy: pushing the limit. Chem Commun 55(86): 12920−12923 doi: 10.1039/C9CC06293A
    [96]
    Yuan GH, Le SM, Yao MX, Qian H, Zhou X, Yan J, Chen H (2017) Elasticity of the transition state leading to an unexpected mechanical stabilization of Titin immunoglobulin domains. Angew Chem Int Edit 56(20): 5490−5493 doi: 10.1002/anie.201700411
    [97]
    Zheng P, Chou CC, Guo Y, Wang YY, Li HB (2013) Single molecule force spectroscopy reveals the molecular mechanical anisotropy of the FeS4 metal center in rubredoxin. J Am Chem Soc 135(47): 17783−17792 doi: 10.1021/ja406695g
    [98]
    Zheng P, Li HB (2011) Direct measurements of the mechanical stability of zinc-thiolate bonds in Rubredoxin by single-molecule atomic force microscopy. Biophys J 101(6): 1467−1473 doi: 10.1016/j.bpj.2011.08.021
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (2419) PDF downloads(146) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return