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RESUMO  
 
 Um dos principais contaminante da caulinita, o ferro, impacta diretamente na qualidade em seu valor 
comercial. O monitoramento espectroscópico, medido a profundidade da absorção da caulinita, é comparado 
com a literarura a fim de identificar possíveis contaminantes. A ocorrência da caulinita se deve à formação a de 
minerais primários após a liberação parcial de cátions e sílicio. Este argilo-mineral tem uma forma simples, com 
imperfeições cristalográficas variáveis, especialmente na presença de ferro, que substituem o alumínio na cadeia 
mineral, causando várias desorganizações estruturais. A extração de minerais industriais combinada com 
estudos geológicos, permite o desenvolvimento de novas fontes de energia, como minerais argilosos, em 
particular caulinita. Dependendo da origem das caulinitas, apresença de óxidos de ferro em sua estrutura, Fe2O3 
e FeO(OH) são comuns. Ao comparar os resultados da espcetroscopia (fluorescenica de raio-X, difração de raio-
x; RAMAN) e no imagiamento através do MEV-EDS, foi possível identificar a caulinita, com maior coeficiente de 
determinação, quando a proporção de caulinita atinge 60% ou mais na mistura. A caulinita pode ser identificada 
e quantificada com alta correlação na mistura a partir da absorção da amostra. Assim, o método possui grande 
potencial para auxiliar na quantificação e, consequentemente, na discriminação da qualidade da caulinita. 
 
Palavras-chave: Goetita, Argilo-minerais; Espectroscopia. 
 
ABSTRACT  
 
 One of the main contaminants of kaolinite, the iron, directly impacts quality in its commercial value. The 
spectroscopic monitoring, measured the depth of absorption of kaolinite, is compared with the literature in order 
to identify possible contaminants. The occurrence of kaolinite is due to the formation of primary minerals after the 
partial release of cations and silicon. This clay-mineral has a simple shape, with variable crystallographic 
imperfections, especially in the presence of iron, which replaces aluminum in the mineral chain, causing various 
structural disorganizations. The extraction of industrial minerals combined with geological studies, allows the 
development of new sources of energy, such as clay minerals, in particular kaolinite. Depending on the origin of 
the kaolinites, the presence of iron oxides in its structure, Fe2O3 and FeO(OH), are common. By comparing the 
results of spectroscopy (X-ray fluorescence, X-ray diffraction, RAMAN) and imaging using SEM-EDS, it was 
possible to identify kaolinite, with a higher determination coefficient, when the proportion of kaolinite reaches 60% 
or more in the mix. Kaolinite can be identified and quantified with a high correlation in the mixture from the sample 
absorption. Thus, the method has great potential to assist in quantifying and, consequently, in discriminating the 
quality of kaolinite. 
 
Keywords: Goethite; Clay Minerals; Spectroscopy. 
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1. INTRODUCTION  

  

Brazil's extractive economy is mainly 
focused on supplying the metalworking industry 
(Schrecker et al., 2018; Giacomin et al., 2017; 
Paulino, 2014). About 85% by volume are of 
metallic minerals extracted in the country, and the 
other 15% are non-metallic (Macedo et al., 2003; 
De Souza et al., 2019). The extraction of industrial 
minerals combined with geological studies allows 
the development of new energy sources such as 
clay-minerals, in particular, kaolinite (Sruthi and 
Reddy, 2017). A large volume of reserves and 
production allows the development of the ceramic 
sector. Kaolinite prices are influenced by the 
availability of reserves, geographic location 
(transport), and aggregate technology for 
processing and treatment (Pardo et al., 2018; Illera 
et al., 2015). Clay minerals are hydrated aluminum 
silicates made up of layers of SiO2 tetrahedrons 
and Al2O3 octahedrons, which are intercalated in 
proportions: 1: 1 (kaolinite) and 2: 1 
(montmorillonite) (Klunk et al., 2019a). These 
minerals are part of the group defined as hydrated 
silicates, essentially made up of aluminum, in 
addition to iron, magnesium, and other impurities 
(Klunk et al., 2019b). 

Clay minerals are widely used in the 
industry. The use of these minerals as raw 
material results from the quality of the material 
produced. Kaolinites can present different degrees 
of purity and crystallinity due to cationic 
exchanges, with contaminants such as quartz and 
iron oxides (Klunk et al., 2019c). Thus, the 
identification of the minerals present in the clays, 
as well as their physical-chemical 
characterization, are critical points in determining 
and understanding the behavior of the materials 
for the quality control of the final product (Ruosso 
et al., 2019; Klunk et al., 2019d; Klunk et al., 
2020a). Depending on the origin of the kaolinites, 
structural defects can occur due to the presence 
of iron oxides in its structure, being hematite 
(Fe2O3), and goethite (FeO(OH) - predominantly), 
the most common (Klunk et al., 2020b). These 
compounds can be predicted through 
geochemical modeling using speciation of the 
elements (Klunk et al., 2015; Klunk et al., 
2019e,f,g). 

Thus, it is necessary to evaluate the 
potential of these materials for applications in the 
traditional ceramic industry. The goethite 
concentration is directly related to the depositional 
system. The availability of water promotes the 
concentration of humic acids, favoring the 

formation of FeO(OH) (Klunk et al., 2012). Usually, 
Fe oxides have a high specific surface, resulting in 
high anion adsorption power, contributing to the 
kaolinite ion exchange capacity. However, few 
studies relate the influence of goethite with 
kaolinite, mainly on the effect on mineralogy 
(Fraga et al., 2014).  

Therefore, the objectives of this study are 
to relate the contents of goethite in kaolinite under 
different mixtures and to follow the evolution of the 
system through the techniques of XRF, XRD, 
Scanning Electron Microscopy (SEM) images 
allied to Spectrometer Energy Dispersive X-ray 
(EDS and RAMAN. The basic structural unit of iron 
oxides is associated with the octahedral 
arrangement, in which each iron atom is 
surrounded by six oxygen and hydroxyls, so the 
oxides are differentiated by the type of octahedral 
arrangement. In this way, it is possible to identify 
the occurrence of goethite in kaolinite by the 
manifestation of functional groups related to iron. 

 

2. MATERIALS AND METHODS 

 

2.1. Sistema de Mistura 

  

The mixtures were performed with 
kaolinite:goethite, powered (mean diameter < 62 
µm), with a weight proportion of 90:10 % with 
increments of 10 % in goethite until the proportion 
of 10:90 %, respectively. 

 

2.2. Characterization of the Materials 

 

2.2.1. X-Ray Fluorescence Spectroscopy 

 

The chemical composition of the solid, 
liquid and gaseous materials can be easily 
determined by the X-Ray Fluorescence 
Spectroscopy (XRF), which allows the 
identification and quantification of chemical 
elements from almost the entire periodic table 
(Klunk et al., 2015; Klunk et al., 2018). When a 
sample is irradiated with primary X-Rays, the 
electron of the innermost layer of the atom is 
ejected, causing a void. The excited atom returns 
to the ground state through a series of electronic 
transitions. This electronic transition process emits 
characteristic fluorescent X-Rays. Such a 
phenomenon is known as X-Ray fluorescence 
(Elaiopoulos et al., 2010).  
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Therefore, each element emits 
characteristic radiation (energy and wavelength 
defined) that are detected and used for qualitative 
analysis. The quantitative information of the 
elements present in the sample is directly related 
to the intensity of the radiation emitted 
(Elaiopoulos et al., 2010). 

The X-Ray fluorescence technique can be 
divided into dispersive wavelength (sequential or 
simultaneous), dispersive, and special energy 
categories (synchrotron radiation source, total 
reflection, and particle induction). The dispersive 
energy fluorescence (EDXRF) technique has a 
lower resolution than the wavelength dispersion 
technique (WDXRF), but it is also widely used for 
rapid and exploratory analysis (Somerset, 2004).  

X-Ray Fluorescence by wavelength 
dispersion (WDXRF) using the fundamental 
parameters (FP) method provides semi-
quantitative and multi-elemental analyzes, as well 
as being non-destructive and fast. This method 
relates the theoretical fluorescence intensity of the 
chemical elements by means of samples of known 
chemical composition and the measured 
fluorescent intensity, thus, being able to determine 
the unknown chemical composition (Caetano et 
al., 2015a). The XRF technique is not very 
sensitive for the detection of light elements due to 
induced Auger emission that reduces the intensity 
of XRF in the sample (Caetano et al., 2015b). 

 

2.2.2. X-Ray Diffraction  

 

The X-Ray Diffraction (XRD) technique has 
wide application in the field of material 
characterization due to the information it provides 
on the mineralogical composition, the 
arrangement of the atoms and the study of details 
of the lattice structures in crystalline of the various 
materials (Caetano et al., 2015c; Cataluña et al., 
2018). To identification of the compounds present 
in kaolinite and Goethite, DRX is an indispensable 
tool because this type of material has several 
compounds in crystalline form. X-rays are 
generated both by the deceleration of the 
electrons in a metal target and by the excitation of 
the electrons of the target atoms. An electron 
bombarded copper target is considered a good 
target for producing a strong line to CuKα 
(Caetano et al., 2018; Cataluña et al., 2017).  

The phenomenon of diffraction occurs 
because X-Rays are scattered around the ordered 
environment of a crystal, causing interference 
between X-Ray waves. Constructive and 

destructive interferences form patterns capable of 
providing information regarding the characteristics 
of the compounds present in a sample. Diffraction 
occurs when the wavelength of radiation is 
comparable to the characteristic spacings within 
the object that causes diffraction. Therefore, in 
order to obtain diffraction patterns of layers of 
atoms, it is necessary to use radiation having a 
wavelength comparable to the spacing of the 
layers, which is the case with X-Rays (Zhang et 
al., 2018; Suzzoni et al., 2018). The main 
diffraction methods are: i) Laue Method, which is 
used for the determination of crystal orientation in 
solid-state physics experiments; ii) Method of 
rotating crystal used for the determination of the 
configuration of enzymes, determination of the 
form of molecules, among other applications; and 
iii) Powder Method for Sprayed Samples (Pietzsch 
et al., 2015; De Aza et al., 2014).  

In the diffraction technique by the powder 
method, a monochromatic X-Ray beam is directed 
to a sprayed sample, spread on a support, and the 
diffraction intensity is measured when a detector is 
moved at different angles. The pattern obtained is 
characteristic of the material in the sample and can 
be identified by comparison with standards base 
of data from ICDD (Joint Committee on Powder 
Diffraction Standards - JCPDS) da International 
Union of Crystallography (Cora et al., 2014; Yan et 
al., 2017).  

Thus, XRD by the powder method provides 
a fingerprint of the sample. It can also be used to 
identify the size and type of the unit cell by 
measuring the spacing of the lines in the diffraction 
pattern (Miranda-Trevino and Coles, 2003).   

The central equation for analyzing the 
results in a powder diffraction experiment is the 
Bragg equation (2d sen θ = λ); were, θ are the 
angles at which constructive interference occurs 
with the spacing d of the layers of atoms in the 
samples for X-rays of wavelength λ (Atkins e 
Jones, 2001). X-rays are reflected by the crystal 
only if the angle of incidence satisfies the condition 
established by Bragg's Law (Castrillo et al., 2015; 
Zulfiqar et al., 2015).  

 

2.2.3. Scanning Electron Microscopy and 
Spectrometer Energy Dispersive X-ray 

 

The morphology of materials can be 
studied by obtaining images through the Scanning 
Electron Microscopy (SEM) and Spectrometer 
Energy Dispersive X-ray (EDS) analysis, which 
provides micrographs at higher resolutions than 
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those provided by light microscopy, which is 
limited by diffraction effects of the order of 
magnitude of the wavelength of the light (Klunk et 
al., 2019e; Rong et al., 2008; Shahwan et al., 
2005; Frost et al., 2002; Gupta et al., 2011). 

 In a scanning electron microscope, the 
surface of a solid sample is swept with an electron 
beam. Samples that conduct electricity are easier 
to study because the free electron flow minimizes 
the charge accumulation and the possibility of 
thermal degradation of the sample. A number of 
techniques were developed to obtain electron 
microscopy images of non-conducting samples. 
The most common procedure involves coating the 
surface with a thin metallic film. 

 

2.2.4. Raman Spectroscopy 

 

Raman spectroscopy is a spectroscopic 
technique used to observe vibrational, rotational, 
and other low-frequency modes in a system (Frost 
et al., 1997; Kloprogge, 2017). This technique is 
commonly used in chemistry to provide a structural 
fingerprint by which molecules can be identified 
(Khanna, 1981; Thibeau et al., 1978; De Faria et 
al., 2007; Clark and Curri, 1998; Oh et al., 1998). 

 

3. RESULTS AND DISCUSSION 

 

3.1. Chemical Composition 

 

The chemical composition of Kaolinite and 
Goethite with its respective mixtures was 
determined by XRF found in Figure 1. The present 
compounds are derived from the inorganic fraction 
in both Kaolinite and Goethite, and therefore, the 
results are presented in the form of oxides. 
According to Figure 1, there were large variations 
between the contents of the main components 
(kaolinite 100% and goethite 100%) of the different 
mixtures.  

The content of the principal compounds 
forming the kaolinite structure are SiO2 and Al2O3, 
and for goethite is Fe2O3 (in the form of oxide as 
read from the XRF equipment). For the kaolinite, 
the SiO2 content varied from 52.80% (100% 
Kaolinite) to 6.58% (represented by the mixture of 
G90% + K10%) and the Al2O3 content ranged from 
38.90% (100% Kaolinite) to 3.71 % (represented 
by the mixture of G90% + K10%). 

Thus, for the compounds forming the 

goethite structure, the amount of Fe2O3 varied 
from 5.97% in the mixture of G 10% + K 90% to 
84.42 in the mixture of G 90% + K 10%. Figure 1 
shows all fractions of a mixture of kaolinite and 
goethite. 

 

3.2. Mineralogical Composition 

 

The technique of XRD allowed the 
identification of the crystalline phase’s present 
kaolinite and goethite. Figure 2 shows the 
diffractograms of the samples of Kaolinite and 
Goethite (pattern and in the study), respectively. 

The XRD pattern of the kaolinite sample is 
shown in Figure 2a. The spectrum of the kaolinite 
sample contains all the major peaks referring to 
(Joint Committee on Powder Diffraction 
Standards) JCPDS, database file (PDF-01-089-
6538), thus indicating the formation of 
Al2Si2O5(OH)4. The main (hkl) indices of kaolinite 
like (001) and (002) are indicated in the pattern. 
The peaks are slightly broad, indicating a smaller 
crystal size (Phoebe and Medard 1991; Jehan et 
al., 1970). 

The XRD pattern of the goethite samples is 
shown in Figure 2b. The spectrum of the goethite 
sample contains all the major peaks referring to 
(Joint Committee on Powder Diffraction 
Standards) JCPDS, database file (PDF-17-0536), 
thus indicating the formation of α-FeOOH. The 
main (hkl) indices of goethite like (020), (110), 
(120), (130), (111), (121), (140) and (221) are 
indicated in the pattern. The peaks are slightly 
broad, indicating a smaller crystal size (Ghosh et 
al., 2012).  

The results of the XRD analysis indicate 
that in the samples of kaolinite (A) pattern and in 
the study, we showed the absence of goethite. 
Therefore, in the samples of goethite (B) pattern 
and in the study, we find the same behavior of 
absence of compounds of another nature, thus 
without traces of kaolinite.  

The difference in relative intensity of the 
diffraction peaks found in the kaolinite and goethite 
pattern when compared to Kaolinite and Goethite 
in the study may indicate different proportions of 
the phases found, as may be the result of sample 
preparation in the X-ray diffraction tests. The 
discrepancies between the amounts of the 
compounds found in the different samples can be 
attributed to the different geological conditions in 
the formation of kaolinite and goethite in the study. 
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3.3. Morphology 

 

The technique of Scanning Electron 
Microscopy (SEM) images allied to Spectrometer 
Energy Dispersive X-ray (EDS) analysis were 
used in this present work for the study of 
morphology. The objective is to complement the 
other characterization techniques in the evaluation 
of the shape of the particles and composition 
present in the samples. Figure 3 shows us the 
micrographics’ of Kaolinite and Goethite in the 
study. 

In Fig. 4 are the micrographies of the 
mixture of 50% kaolinite + 50% Goethite (A) with 
their respective EDS (B and C). At point 051 and 
052 (Fig. 4A) the Spectrometer Energy Dispersive 
X-ray show particularity in the diffractogram. 
Characteristic of each mineral phase in the blend. 
Kaolinite is represented in EDS-051 and Goethite 
in EDS-052. 

 

3.4. Raman Spectroscopy 

 

The Raman spectroscopic analysis 
identified the phase of goethite (fig. 5). Raman 
bands occurring at 299, 400, 484, 550, and 674 
cm-1 were assigned to the Fe-OH symmetric bend; 
Fe-O-Fe/-OH symmetric stretching; Fe-OH 
asymmetric stretching and Fe-O symmetric 
stretching, respectively (Dunnwald and Otto 1989; 
Kieser et al., 1983; Boucherit et al., 1991). As the 
amount of kaolinite increases in the mixture, the 
RAMAN spectrum reveals a decrease in Goethite 
band. 

 

4. CONCLUSIONS  

 

With the results obtained from techniques 
used allowed the following conclusions to be 
drawn:  

- XRD identified crystalline phases of Kaolinite and 
Goethite; 

- XRF showed the compounds present and 
derived from the mixture fraction in both Kaolinite 
and Goethite; 

- SEM-EDS showed the grain morphology in the 
Kaolinite mixture 50% + Goethite 50% with the 
respective compositions); 

- RAMAN (reveals a decrease of Goethite peaks 
as the percentage of Kaolinite increases in the 

mixture) made it possible to characterize Kaolinite 
and Goethite in a mixing system.  

We show in this research the potential of 
spectroscopy in the identification and 
quantification of mineral kaolinite in mixtures with 
mineral Fe. We conclude that kaolinite can be 
identified and quantified with a high correlation in 
the mix from the depth of the main diagnostic 
absorption feature with little sample preparation. 
Thus, the method has great potential to assist in 
quantification and, consequently, in the 
discrimination of kaolinite quality. 

With little or no sample preparation, the 
spectroscopy can be used in obtaining many 
important information of mineralogy. The 
spectroscopy is a non-expensive, fast, and non-
evasive, or little evasive methodology that offers 
great potential for the identification and 
qualification of minerals and mix.  
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Figure 1. XRF of kaolinite (K) and goethite (G) with mixture respective. 

 

 

Figure 2. XRD of kaolinite (a) and goethite (b). 
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Figure 3. SEM of kaolinite in study (A), goethite in study (B). 
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Figure 4. SEM of the mixture 50% kaolinite + 50% goethite (A) in study with yours  EDS (B and C). 
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Figure 5. Raman spectroscopic of goethite in the study (100%) plus a mixture of the kaolinite. 
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