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RESUMO 

Os nanofluidos tornaram-se hoje em dia de especial importância por causa de seus diferentes usos na 
indústria, portanto, propor métodos para calcular suas propriedades térmicas seriam úteis. Neste trabalho, 
propõe-se uma nova variante para o cálculo da condutividade térmica e difusividade de nanofluidos; são 
estudadas as possibilidades e limitações desse método não estacionário, que utiliza a radiação de luz como 
fonte de calor. Aqui, a luz é incidente homogêneo em uma das superfícies de extremidade de um cilindro que 
tem uma superfície lateral isolada termicamente, ajustando a temperatura na outra extremidade para um valor 
constante, então a distribuição da temperatura é obtida em função da coordenada e do tempo; ajustando o 
modelo teórico, a equação de difusão de calor parabólico, aos dados experimentais obtidos. São analisadas as 
condições de validade do método para medir a difusividade térmica e a condutividade térmica dos fluidos; bem 
como a forma como ele poderia ser usado para verificar a validade do modelo de Hamilton e Crosser (HC) no 
caso dos nanofluidos. Atualmente, os nanofluidos são usados para trocar calor, pois verificaram-se que 
excedem o potencial dos refrigerantes convencionais; no entanto, o cálculo de propriedades térmicas ainda não 
oferece valores definitivos.  

Palavras-chave: condutividade térmica, difusividade térmica, modelo Hamilton e Crosser, nanofluidos. 

ABSTRACT 

Nanofluids have become nowadays of special importance because of their different uses in industry, 
therefore, to propose methods to calculate their thermal properties would be useful. In this work, a new variant 
for the calculation of thermal conductivity and diffusivity of nanofluids is proposed; the possibilities and 
limitations of this non-stationary method, which uses light radiation as the heat source, are studied. Here, the 
light is homogenously incident on one of the end surfaces of a cylinder that has a thermally insulated side 
surface, setting the temperature at the other end to a constant value, then the temperature distribution is 
obtained as a function of the coordinate and time; adjusting the theoretical model, parabolic heat diffusion 
equation, to the experimental data obtained. The conditions of validity of the method to measure thermal 
diffusivity and thermal conductivity of fluids are analyzed; as well as, the way in which it could be used to verify 
the validity of the Hamilton and Crosser (HC) model in the case of nanofluids. Currently, nanofluids are used to 
exchange heat, as they have been found to exceed the potential of conventional refrigerants; however, the 
calculation of thermal properties still does not offer definitive values. 
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INTRODUCTION 

At present, several methods are known to 
determine the thermal conductivity and diffusivity 
of materials (Fox and McMaster, 1975; Ficker, 
1996; Hurley et al., 2015; Keblinski et al., 2002; 
Xue and Xu, 2005; Gregorová, 2014; Xuan and 
Li, 2000; Putnam et al., 2006), (González et al. 
2014; Warrier et al. 2015; Martínez et al. 2015; 
Cobirzan et al. 2016). Therefore, choosing the 
appropriate method in each particular situation is 
of great importance. To do this it is necessary to 
take into account several factors. 

1) If high precision is not required, then very
sophisticated methods are unnecessary. 

2) Stationary methods are usually time
consuming and therefore not suitable for 
measuring large numbers of samples. 

3) If it is not possible to prepare specimens of
defined geometry, methods using point and linear 
sources should be preferred. 

All the methods used to measure thermal 
properties can be divided into two fundamental 
groups: I) methods that use heat sources and II) 
those that do not. In the latter group the 
temperature T of the medium is modulated by 
contact with an infinite heat exchanger, while in 
the first the heat source acts on the inside of the 
sample or on its surface. 

Methods that do not use heat sources can 
be divided into stationary and non-stationary. For 
their part, methods that use heat sources are also 
divided into stationary and non-stationary; But in 
this case other classification factors become 
more important, namely: a) the geometry of the 
source (punctual, linear, superficial or 
volumetric), b) the temporal dependence of the 
power source (pulse rate or continuous) and c) 
the configuration of the sample being measured 
(eg plane-parallel, cylindrical or spherical). Since 
each experimental setup can employ several 
combinations of the three groups a) - c) there are 
a large number of modifications, each of which 
requires its particular solution T (x, y, z, t) of the 
Heat diffusion equation (Ficker, 1996). 

The present work aims to study the 
possibilities and limitations of a non-stationary 
method, which uses light radiation as a source of 
heat. In this method, which is a new proposed 
variant, the light is homogeneously placed on one 
of the end surfaces of a cylinder, which, under 
vacuum, would not have convective heat transfer. 

In a non-stationary state the temperature hardly 
varies due to radiation either; keeping the 
temperature constant at the other end. 

There are several theoretical models such 
as Hamilton and Crosser (HC) that predict the 
behavior of the thermal conductivity of the 
compounds and mixtures according to the 
proportion of the components that form it 
(Maxwell, 1881). However, in spite of the fact that 
they have successfully withstood multiple 
experimental tests, in the last years a great 
discussion has arisen as to their validity when it 
comes to nanofluids (Hurley et al., 2015; 
Keblinski et al., 2002; Xue and Xu, 2005; 
Gregorová, 2014; Xuan and Li, 2000; Shemeena, 
2012). 

The controversy, as yet unresolved, about 
the validity of the HC model, as well as of other 
equivalents (Xue and Xu, 2005;), arises because 
the measurements of thermal conductivity that 
have been realized on these systems reveal 
values that far surpass those that predict said 
Models (Keblinski et al., 2002; Xue and Xu, 2005; 
Gregorová, 2014). To date, there is an insufficient 
amount of experimental data and the vast 
majority of it has been obtained using a single 
method, the hot wire method (Putnam et al., 
2006; Eastman et al., 2001; Choi et al., 2001; Xie 
et al., 2002; Klingenberg and Venerus, 2006). In 
turn, other measurements obtained using 
different methods yield conflicting results with 
those reported initially (Zhang et al., 2006). 

In conclusion, it can be inferred that either 
a new theory needs to be developed or the 
thermal conductivity values reported do not 
reflect reality. The latter may be due to several 
factors that have not been taken into account 
when taking and interpreting the measurements. 

MATERIALS AND METHODS 

The proposed experimental method 
consists of the following (Figure 1a and 1b): If the 
material to be studied is a homogeneous and 
transversely isotropic metallic solid, then a 
cylindrical rod must be prepared of it. This rod is 
placed inside a vacuum chamber for the purpose 
of preventing heat exchange, by conduction and 
convection, through its front and side surfaces. 
The back surface of the bar is fixed to the wall of 
the chamber so that, on that surface, the 
temperature remains constant. This can be 
achieved with a large base preferably of copper. 
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If the sample is a fluid, a cylindrical vessel 
must be prepared, at the front end of which, in 
direct contact with the sample, a sheet of 
aluminum or other solid material with good heat 
transfer is attached where the light strikes. The 
other end of said container will be attached, as in 
the case of solid samples, to the wall of the 
vacuum chamber, which in this case will have an 
aperture to allow the fluid to enter.  

Figure 1a. The figure represents a scheme of the 
device that is proposed to measure the thermal 

conductivity and diffusivity of solids. 1. Front 
surface. 2. Thermocouple. 3. O-Ring. 4. Screws. 
5. Vacuum inlet. 6. Sample. 7. Glass window. 8.

Light (not modulated) 

Figure 1b. The figure represents a scheme of the 
device that is proposed to measure thermal 

conductivity and diffusivity of fluids. 1. Al sheet. 2. 
Thermocouple. 3. O-Ring. 4. Screws. 5. Vacuum 
inlet. 6. Showcase. 7. Sample. 8. Glass window. 

9. Light (not modulated). 10. Opening to enter the
sample. 

2.1. Theoretical model 

2.1.1 Problem Statement 

Heat always propagates from areas of 
greater to lower temperatures. Three forms of 
heat propagation are distinguished: conduction, 
convection and radiation. 

As in the model (Figure 2), a solid 
homogeneous cylindrical rod with the length l, the 
area of its cross-section A, the lateral surfaces x 
= L through which it is impossible to exchange 
heat by conduction or convection, the back 
surface x = 0 and is maintained at a constant 
temperature Ω0, which coincides with the initial 
temperature of the entire rod, is made. It is 
assumed that the power of the heat source q is 
distributed homogeneously on the front surface, 
above which the light radiation is incident, and 
that the heat loss by radiation is negligible. Under 
these conditions we can consider that we are in 
the presence of a one-dimensional problem and, 
therefore, the heat diffusion equation is in one 
direction.  

Figure 2. Solid cylindrical bar with adiabatic 
lateral walls 
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(Eq. 1) 

In (1) α is the thermal diffusivity, given by 

a
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  where ρ is density, c specific heat, F (x,

t) considers the internal heat sources and is
equal to 

c

txQ
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),(
),(  , where Q (x, t) is the 

density of internal heat sources. In this model, no 
internal sources of heat are contemplated, since 
it is generated homogeneously on the surface. 
Therefore, the equation (1) to be solved is 
reduced to: 

 2

2

( , ) ( , )x t x ta
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  (Eq. 2) 

whose initial conditions and frontiers are as 
follows: 
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,  0<x<l, t>0  (Eq. 3) 

where: q
Q

A
 , and q is the heat flux through the 

front surface of the sample, which is considered 
constant (q depends directly on the intensity of 
light coming from the source of illumination), χ is 

the thermal conductivity and A, the cross-sectional 
area of the sample. The solution of this problem is 
proposed as: 

( , ) ( , ) ( )x t v x t p x   (Eq. 4) 

Substituting (4) into the equation (2) gives the 
following expression: 

2 2

2 2
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       (Eq. 5) 

This leads us to two new equations, the first for 
p(x) and the second for v(x, t). 
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 (Eq. 6) 

border conditions: 
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(Eq. 7) 

Equation (6) is an ordinary differential equation 
with constant coefficients, the solution of which 
can be obtained in the form: 

0( )p x Qx  (Eq. 8) 

For  ),( txv  we have: 
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border conditions: 
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(Eq. 10) 

By the method of separating variables, in partial 
derivatives, we look for the solution of this 
equation in the form: 

( , ) ( ) ( ) 0v x t U t X x            (Eq. 11) 

( )
( ) 0

dU t
U t

dt
     (Eq. 11.1) 

Equation (11.1) is an ordinary differential 
equation and its solution is: 

teCtU  )( (Eq. 11.2) 

where: C is an arbitrary constant. For the spatial 
part we obtain: 
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2
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d X
X x
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          (Eq. 11.3) 

whose initial and boundary conditions are: 

(0) 0

( ) 0
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X
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l
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X x







,  0<x<l    (Eq. 11.4) 

The general solution of this problem is: 

   xcosBxDsenxX   )(          (Eq. 11.5) 

Imposing that (11.5) satisfies (11.4), we will have: 

B = 0 and the eigenvalues: 
2

2
)12( 
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n = 0, 1, 2, 3… Therefore, the solution of 

Equation (11.3) will be: 
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(Eq. 11.6) 

where: D is an arbitrary constant, hence the 
general solution of equation (9) without 
considering the initial conditions can be written 
as: 
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   (Eq. 12) 

The constant Cn is determined by imposing on 

the function (12) the fulfillment of the initial 
condition: 
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wherein: 
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Substituting (14) into (12) we obtain: 
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(Eq. 15) 

Introducing the notation: 
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(Eq. 16) 

The solution if equation (15) is: 

 dtxGtxv

l

)(),,(),(
0

        (Eq. 17) 

The function (16) is the Green function of the 
problem. If we integrate, there is: 
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(Eq. 18)                                                   

Considering (4) we finally arrived at: 
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(Eq. 19) 

This expression can be written as: 
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(Eq. 20) 

where: 

es

ql
T

A
 (Eq. 21) 

is the temperature corresponding to the steady 
state at the position x = 1, while: 
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 (Eq. 22) 

is the time during which the temperature T (x, t) 
reaches the value: 
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(Eq. 23) 

Expression (20) represents the increase in 
temperature relative to the initial temperature 
while generating heat at the surface of the 
sample. 

2.2. Applicability of the fluid model 

Although the heat diffusion equation (1), in 
general, is not valid for the case of fluids, it can 
be applied to these when the phenomenon of 
convection inside them is negligible. 

On the other hand, the fluids must be 
contained in some container, which in our case is 
the sample holder. This causes the thermal 
diffusivity and conductivity values in expression 
(20) and, which can be measured in the 
experiment, to be actually the effective values of 
the system composed of the sample holder plus 
the fluid. That is, they are magnitudes that take 
into account the characteristics of both of them. 
Thus, for the effective thermal conductivity and 
diffusivity, we have the following expressions 
(Hamilton and Crosser, 1962): 

 1ef f p        

 

 

1

1

f p

ef

f pc c

   


   

   


   
      (Eq. 24) 

where: μ is the cross-sectional area ratio, which 

includes the sample holder in the system,  is the 
density of each material and the subscripts f and 

p represent the fluid and the sample holder 

respectively. 
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2.3. Temporal variation of temperature 

Figure 3 graphically shows the 
temperature behavior on the front surface of a 
liquid sample, as indicated in Figure 1b, of 
distilled water. In this graph we can observe that 
while the light falls on the sample, the 
temperature rises to reach a constant value. 
From the moment a steady state is entered, the 
temperature no longer increases, reaching the 
value given by (21); hence we see that the 
saturation temperature Te depends on the power 

of the heat source at the surface, the length of 
the sample, its cross-section area and the 
thermal conductivity thereof. 

In Figure 3 it is observed that the 
saturation temperature of the sample reaches a 
value of about 28 oC. In practice it is necessary to 
limit the rise in temperature since on the one 
hand the thermal properties of the sample would 
vary during the measurements, and on the other, 
the heat loss caused by the radiation mechanism 
would be important. This would imply that the real 
behavior of the system does not correspond to 
what the theoretical model predicts. For this 
reason, depending on the thermal conductivity 
values of the sample, it is necessary to choose 
the values of the other three quantities involved in 
the expression adequately (21). This choice must 
be made considering that the time during which it 
is measured should be enough to obtain a 
number of experimental points which would allow 
the subsequent determination of the magnitudes 
sought. 

Figure 3. Temporal dependence of temperature 
on the frontal surface (x = l), for values of, q = 0.1 

W, l = 0.02 m, A = 1,131x10
-4

 m
2
, χ = 0.599 W/m 

o
C, α 

= 1.430x10
-7

 m
2
/s, corresponding to a liquid sample 

of distilled water. 

RESULTS AND DISCUSSION 

3.1. Resolution of the method 

Figure 4 shows, graphically, the 
temperature difference as a function of time ΔT (t) 

when the thermal conductivity value varies by 
5%. While in figure 5, it is shown how the 
temperature T (t) varies as a function of time for 

two samples whose thermal conductivities differ 
from each other by 5%. 

For a given variation of the thermal 
conductivity, more time and greater temperature 
differences are needed. That is, as the resolution 
of the method increases, it will be possible to 
detect smaller differences in thermal conductivity 
using the same temperature sensor. 

Figure 4. Temperature difference as a function of 
time for values of, q = 0.1 W, l = 0.02m, A = 

1,131x10
-4 

m
2
, χ = 0.599 W/m 

o
C, α = 1,430x10

-7
 m

2
/s, 

and differs in thermal conductivity by 5% from the 
value of 0.599 W/m 

o
C. 

Figure 5. Temporal dependence of the 
temperature on the frontal surface (x = l) for two 

samples, whose thermal conductivities differ from 
each other by 5%. Theoretical data. 
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However, it depends on the value of the 
temperature Tes and the time during which it is 

possible to measure, considering that the 
temperature of the sample for the reasons given 
above should not exceed by more than a few 
degrees (5 - 10 oC) the initial temperature and, on 
the other hand, must be measured for a longer 
time than is necessary for the temperature 
difference to exceed that which can be detected 
with the available temperature sensor. Therefore, 
the limits of the useful time interval for the 
measurement, and thus the resolution of the 
method, are determined by the resolution of the 
temperature sensor itself and by the value of Tes. 

It follows that: the choice of the 
temperature sensor as well as the magnitudes 
involved in expression (21) depend on the 
minimum differences in thermal conductivity or 
diffusivity to be detected. 

3.2. Hamilton and Crosser´s Model 

The model of Hamilton and Crosser 
(Hamilton and Crosser, 1962), like that of 
Maxwell (Maxwell, 1881) and others, predicts the 
value of effective thermal conductivity of a 
medium in whose sine can be found particles 
scattered in a random and homogeneous way, 
which are sufficiently away from each other so 
that it is possible to neglect the interactions 
between them. According to this model, the 
effective thermal conductivity is expressed by: 

     

   

1 1 1

1 1
f fb

    
 

   

       
        

(Eq. 25) 

where: 
n

fb







 is the relationship between the 

thermal conductivities of the particles and the 

medium respectively, λ is the volume fraction 

occupied by the particles in the fluid, υ is a form 

factor, which takes into account the geometry of 

the particles. The subscripts n and fb represent the 

particles and the medium respectively. 
Considering the equation (25) and that the 

effective specific heat capacity is expressed by: 

(1 )f fb nc c c         (Eq. 26) 

It is set for thermal diffusivity, the following 
relation: 

     
   

1 1 1

1 1

(1 )
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f
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        (Eq. 27) 

If the medium in which the particles are 
found is a fluid, then the expressions for thermal 
conductivity and diffusivity in (20) are as follows: 

If the medium in which the particles are 
found is a fluid, then the expressions for thermal 
conductivity and diffusivity in (20) are as follows: 
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(29) 

where the subscript p represents the 
sample holder. 

Figures 6, 7, 8 and 9 show the relative 
variations of thermal conductivity and diffusivity 
as a function of the volumetric fraction according 
to (28) and (29) respectively. 

Figure 6. Increasing the thermal conductivity vs. 
volumetric fraction. 



PERIÓDICO TCHÊ QUÍMICA • www.periodico.tchequimica.com • Vol. 15 N. 29. 
• ISSN 1806-0374 (impresso) • ISSN 1806-9827 (CD-ROM) • ISSN 2179-0302 (meio eletrônico)

© 2010. Porto Alegre, RS. Brasil 264

Figure 7. Increasing the thermal diffusivity vs. 
volumetric fraction. 

Figure 8. Temperature difference as a function of 
time, for an increase of the volumetric fraction by 

1%. 

Figure 9. Temperature as a function of time. If 
we have as sample water with aluminum particles 
immersed in it and that the material of the sample 

holder is glass. 

Figure 8 shows the temperature difference 
as a function of time ΔT (t) when the volume 
fraction of aluminum in water varies by 1%, 
assuming that we have, as a sample, aluminum 

nanoparticles immersed in distilled water in a 
glass holder.  

For them the values of thermal 
conductivity and specific heat capacity are as 

follows: χn = 211.015W 
o
C

-1
m

-1
, χfb = 0.599W 

o
C

-

1
m

-1
, χp = 0.837W 

o
C

-1
m

-1
, ρcn = 2.453x106 J 

o
C

-

1
m

-3
, ρcfb = 2.187x106 J 

o
C

-1
m

-3
, ρcp = 1.998x106

J 
o
C

-1
m

-3
. Figure 9 represents, for a similar

sample, the behavior of the temperature as the 
time T(t) elapses. 

To verify the validity or not of the HC 
model, it is enough to measure the thermal 
diffusivity values of several samples that differ 
only in the value of their volumetric fraction and 
then verify that the expression (29) fits sufficiently 
well with the experimental points resulting from 
the measurements. If one wishes to study the 
behavior of a nanofluid, then proceed as above. 
To perform this type of study using the proposed 
method, it is necessary to choose the 
temperature sensor properly, because the 
resolution of the temperature must be in 
accordance with the minimum differences in 
thermal conductivity or diffusivity that need to be 
detected. 

CONCLUSIONS: 

The heat diffusion equation was solved for 
the conditions of the proposed method, obtaining 
an expression from which it is possible to 
determine both thermal conductivity and 
diffusivity values. The choice of the temperature 
sensor as well as the magnitudes involved in 
expression (21) depends on the minimum 
differences between conductivities and thermal 
diffusivity to be detected, as illustrated in figures 
4 and 5. In this case, a sensor with a precision of 
up to one hundredth of a second is required. If it 
were less precise, it would be necessary to 
measure it for a longer time (about one hour). 
This would increase the temperature in the 
sample considerably, giving rise to the 
phenomenon of conduction of heat by radiation, 
which is not desired. 

To measure in solid materials, it is 
necessary to use a material that can be prepared 
into rods, cylindrical or of another geometry. The 
method allows to check the HC model, provided 
that it has a temperature gauge with a resolution 
that allows it to differentiate up to the hundredth 
of a degree centigrade. 
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