[Home ] [Archive]    
:: Main :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Home::
Journal Information::
Articles archive::
Indexing Sources::
For Authors::
Publication ethics::
Registration::
Contact us::
Site Facilities::
::
Creative Commons License
AWT IMAGE

This Journal under a

Creative Commons Attribution-NonCommercial 4.0 International License.

..
Open Access Policy

AWT IMAGE

..
cope

AWT IMAGE

..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 8, Issue 2 (Apr-Jun 2021) ::
Nutr Food Sci Res 2021, 8(2): 43-49 Back to browse issues page
In Situ Biosynthesis of Natural Fruity Flavors in Whey and Whey Permeate during Fermentation Using Lipase
Maryam Shojaei Zinjanab , Mohammad Taghi Golmakani , Mohammad Hadi Eskandari , Mahmoud Aminlari
Shiraz University , golmakani@shirazu.ac.ir
Abstract:   (1572 Views)
Background and Objectives: Chemical synthesis and extraction of flavorings from natural sources include disadvantages. However, biotechnology is a preferred method for biosynthesis of flavorings. The objective of this study was to synthesize natural esters with fruity flavors in whey using lipase of Palatase in combination with ethanol fermentation.
Materials and Methods: Lactobacillus fermentum ATCC 14931, Lactobacillus reuteri DSM 17938, and Lactobacillus buchneri NCIMB 40788 were used as in situ ethanol producers. Ultra-high temperature (UHT) cream (30% fat) was added to the fermentation media as a fat source, which was esterified with produced ethanol by Palatase. Viable cell counts and pH were monitored at 0, 24 (Palatase addition), and 48 h (end of fermentation). Free fatty acids of up to 12 carbon chain and their ethyl esters were analyzed using gas chromatography/mass spectrometry.
Results: Palatase did not affect the viable cell counts of Lactobacillus reuteri and Lactobacillus buchneri, but increased the viable cell counts of Lactobacillus fermentum. Ethyl ester and free fatty acid levels of the samples increased after Palatase addition. Lactobacillus fermentum produced higher ester levels in ultrafiltration whey permeate whereas other lactobacilli produced higher ester levels in traditional whey. Lactobacillus buchneri included the lowest ester levels and Lactobacillus reuteri included the lowest free fatty acid levels between the lactobacilli. The ester levels of Lactobacillus reuteri samples were the highest in most cases. Free fatty acid levels were higher in traditional whey than ultrafiltration whey permeate.
Conclusions: This method can be recommended as an alternative to artificial flavorings with the advantage of labeling products as natural.
Keywords: Fermentation, Flavor ester, Lactobacillus, Lipase, Whey
Full-Text [PDF 512 kb]   (730 Downloads)    
Article type: Research | Subject: Food Science
Received: 2020/05/17 | Accepted: 2021/01/18 | Published: 2021/04/7
References
1. Jun M, Jeong W, Ho C. Health promoting properties of natural flavor substances. Food Sci Biotechnol 2006; 15(3): 329-338.
2. Abdulmumeen HA, Risikat AN, Sururah AR. Food: Its preservatives, additives and applications. Int J Chem Biomol Sci 2012; 1: 36-47.
3. Longo MA, Sanromán MA. Production of food aroma compounds: microbial and enzymatic methodologies. Food Technol Biotechnol 2006; 44(3): 335-53.
4. Vandamme EJ, Soetaert W. Bioflavours and fragrances via fermentation and biocatalysis. J Chem Technol Biotechnol 2002; 77(12): 1323-32. [DOI:10.1002/jctb.722]
5. Schwab W, Davidovich-Rikanati R, Lewinsohn E. Biosynthesis of plant-derived flavor compounds. Plant J 2008; 54(4): 712-32. [DOI:10.1111/j.1365-313X.2008.03446.x]
6. Liu SQ, Holland R, Crow VL. Esters and their biosynthesis in fermented dairy products: a review. Int Dairy J 2004; 14(11): 923-45. [DOI:10.1016/j.idairyj.2004.02.010]
7. Liu SQ, Lee HY, Yu B, Curran P, Sun J. Bioproduction of natural isoamyl esters from coconut cream as catalysed by lipases. J Food Res 2013; 2(2):157. [DOI:10.5539/jfr.v2n2p157]
8. Liu SQ, Holland R, Crow V. Synthesis of ethyl butanoate by a commercial lipase in aqueous media under conditions relevant to cheese ripening. J Dairy Res 2003; 70(3): 359-63. [DOI:10.1017/S0022029903006290]
9. Sun J, Lim Y, Liu SQ. Biosynthesis of flavor esters in coconut cream through coupling fermentation and lipase-catalyzed biocatalysis. Eur J Lipid Sci Technol 2013; 115(10): 1107-14. [DOI:10.1002/ejlt.201300144]
10. Zhang XM, Ai NS, Wang J, Tong LJ, Zheng FP, Sun BG. Lipase-catalyzed modification of the flavor profiles in recombined skim milk products by enriching the volatile components. J Dairy Sci 2016; 99(11): 8665-79. [DOI:10.3168/jds.2015-10773]
11. Liu SQ, Crow VL, Holland R. Production of natural fruity flavour in dairy foods. Nutr Food Sci 2009; 39: 483-9. [DOI:10.1108/00346650910992132]
12. Jafari SM, Masoudi S, Bahrami A. A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3. Dry Technol 2019; 37(16): 2059-71. [DOI:10.1080/07373937.2018.1552598]
13. Amaro TM, Rosa D, Comi G, Iacumin L. Prospects for the use of whey for polyhydroxyalkanoate (PHA) production. Front Microbiol 2019; 10: 992. [DOI:10.3389/fmicb.2019.00992]
14. Pedersen TB, Ristagno D, McSweeney PL, Vogensen FK, Ardö Y. Potential impact on cheese flavour of heterofermentative bacteria from starter cultures. Int Dairy J 2013; 33(2): 112-9. [DOI:10.1016/j.idairyj.2013.03.003]
15. Pedersen TB, Vogensen FK, Ardö Y. Effect of heterofermentative lactic acid bacteria of DL-starters in initial ripening of semi-hard cheese. Int Dairy J 2016; 57: 72-9. [DOI:10.1016/j.idairyj.2016.02.041]
16. Widyastuti Y, Febrisiantosa A. The role of lactic acid bacteria in milk fermentation. FNS 2014; 5(4): 720-726. [DOI:10.4236/fns.2014.54051]
17. Toh M, Liu SQ. Impact of coculturing Bifidobacterium animalis subsp. lactis HN 019 with yeasts on microbial viability and metabolite formation. J appl microbiol 2017; 123(4): 956-68. [DOI:10.1111/jam.13571]
18. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl microbiol biotechnol 2010; 85(6): 1629-42. [DOI:10.1007/s00253-009-2355-3]
19. Kohler T, Weidenmaier C, Peschel A. Wall teichoic acid protects Staphylococcus aureus against antimicrobial fatty acids from human skin. J bacteriol 2009; 191(13): 4482-4. [DOI:10.1128/JB.00221-09]
20. Kurtovic I, Marshall SN, Miller MR, Zhao X. Flavour development in dairy cream using fish digestive lipases from Chinook salmon (Oncorhynchus tshawytscha) and New Zealand hoki (Macruronus novaezealandiae). Food Chem 2011; 127(4): 1562-8. [DOI:10.1016/j.foodchem.2011.02.018]
21. Annan NT, Poll L, Sefa-Dedeh S, Plahar WA, Jakobsen M. Volatile compounds produced by Lactobacillus fermentum, Saccharomyces cerevisiae and Candida krusei in single starter culture fermentations of Ghanaian maize dough. J Appl Microbiol 2003; 94(3): 462-74. [DOI:10.1046/j.1365-2672.2003.01852.x]
22. Quigley L, O'Sullivan O, Stanton C, Beresford TP, Ross RP, Fitzgerald GF, et al. The complex microbiota of raw milk. FEMS Microbiol Rev 2013; 37(5): 664-98. [DOI:10.1111/1574-6976.12030]
23. Martinez FA, Balciunas EM, Salgado JM, González JM, Converti A, de Souza Oliveira RP. Lactic acid properties, applications and production: a review. Trends Food Sci Technol 2013; 30(1): 70-83. [DOI:10.1016/j.tifs.2012.11.007]
24. Sun J, Liu SQ. Ester synthesis in aqueous media by lipase: alcoholysis, esterification and substrate hydrophobicity. J Food Biochem 2015; 39(1): 11-8. [DOI:10.1111/jfbc.12104]
25. Ugur Nigiz F, Durmaz Hilmioglu N. Green solvent synthesis from biomass based source by biocatalytic membrane reactor. Int J Energy Res 2016; 40(1): 71-80. [DOI:10.1002/er.3319]
26. Delgado P, Sanz MT, Beltrán S, Núñez LA. Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation. Chem Eng J 2010; 165(2): 693-700. [DOI:10.1016/j.cej.2010.10.009]
27. Sun J, Jiang Y, Zhou L, Gao J. Optimization and kinetic study of immobilized lipase-catalyzed synthesis of ethyl lactate. Biocatal Biotransform 2010; 28(4): 279-87. [DOI:10.3109/10242422.2010.501893]
28. Leclercq-Perlat MN, Corrieu G, Spinnler HE. Controlled production of Camembert-type cheeses: part III role of the ripening microflora on free fatty acid concentrations. J Dairy Res 2007; 74(2): 218-25. [DOI:10.1017/S0022029906002329]
29. Coşkun H, Ondül E. Free fatty acid accumulation by mesophilic lactic acid bacteria in cold-stored milk. J Microbiol 2004; 42(2): 133-8.
30. Holland R, Liu SQ, Crow VL, Delabre ML, Lubbers M, Bennett M, et al. Esterases of lactic acid bacteria and cheese flavour: Milk fat hydrolysis, alcoholysis and esterification. Int Dairy J 2005; 15(6-9): 711-8. [DOI:10.1016/j.idairyj.2004.09.012]
31. Gupta R, Gupta N, Rathi P. Bacterial lipases: an overview of production, purification and biochemical properties. Appl microbiol biotechnol 2004; 64(6): 763-81. [DOI:10.1007/s00253-004-1568-8]
32. Hirose M, Ando T, Shofiqur R, Umeda K, Kodama Y, Van Nguyen S, Goto T, Shimada M, Nagaoka S. Anti-obesity activity of hen egg anti-lipase immunoglobulin yolk, a novel pancreatic lipase inhibitor. Nutr metab 2013; 10(1): 70-5. [DOI:10.1186/1743-7075-10-70]
Send email to the article author

Add your comments about this article
Your username or Email:

CAPTCHA



XML     Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shojaei Zinjanab M, Golmakani M T, Eskandari M H, Aminlari M. In Situ Biosynthesis of Natural Fruity Flavors in Whey and Whey Permeate during Fermentation Using Lipase. Nutr Food Sci Res 2021; 8 (2) :43-49
URL: http://nfsr.sbmu.ac.ir/article-1-409-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 8, Issue 2 (Apr-Jun 2021) Back to browse issues page
Nutrition and Food Sciences Research
Persian site map - English site map - Created in 0.07 seconds with 45 queries by YEKTAWEB 4645