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Abstract

Supraglacial channel networks link time varying solar forcing and melt water routing on
temperate glaciers. We present measurements of supraglacial channel spacing and
network properties on the Juneau Icefield, subsurface water table height, and time
variation of hydraulic characteristics including diurnal variability in water temperature.
We combine these data with modeling of porous flow in weathered ice to infer near-
surface permeability. Estimates are based on an observed phase lag between diurnal
water temperature variations and discharge, and independently on measurement of
water table surface elevation away from a stream. Both methods predict ice permeabil-
ity on a 1-10 m scale in the range of 107"°-107"" m?. These estimates are considerably
smaller than common parameterizations of surface water flow on bare ice in the liter-
ature, as well as smaller than estimates of snowpack permeability. For supraglacial
environments in which porosity/permeability creation in the subsurface is balanced by
porous flow of melt water, our methods provide an estimate of microscale hydraulic
properties from macroscale, remote observations of supraglacial channel spacing.

1 Introduction

In the ablation zone of glaciers and ice sheets, surface melt water channelizes and ther-
mally erodes the icy substrate. This flowing melt water localizes to form supraglacial
streams if melt production exceeds the transport capacity of near-surface ice, firn or
snowpack. Supraglacial melt transport links surface melt to subglacial hydrologic sys-
tems through englacial drainage (Fountain and Walder, 1998), so temporal variations
in the rate and volume of supraglacial melt water production has the potential to influ-
ence the basal environment and hence bulk ice movement (Bartholomaus et al., 2008;
Colgan et al., 2011). Large amplitude englacial drainage events (Das et al., 2008) as
well as diurnal (Shepherd et al., 2009) and seasonal (Palmer et al., 2011) variability in
surface melting all influence large scale motion of ice masses.
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A critical parameter to both developing and sustaining streams is the permeability of
near-surface ice that controls transport of meltwater into channels. Over bare and im-
permeable ice or in channels, flow timescales are commonly parameterized according
to an effective friction parameter (Manning’s equation, e.g., Arnold et al., 1998). How-
ever, in some settings there is also a layer of fractured, partially melted or otherwise
weathered bare ice in the near surface through which porous flow of melt may occur.
Because channelized flow moves quite rapidly (typical velocities ~ 1m s ), subsurface
porous flow if present will be the limiting factor for propagation of diurnal signals into the
glacier. Permeability varies as a function of depth because melting attenuates with the
decay of solar radiation in the subsurface and percolating melt water can refreeze (Pf-
effer et al., 1991). It will also vary with altitude and season as surface snow transitions
to bare ice down glacier (Braithwaite et al., 1994).

Ice permeability sets the transport efficiency of the supraglacial system, a quan-
tity of interest in large-scale and short-time water budgets for glaciers and ice sheets
(Rennermalm et al., 2013). Measurements of firn and weathered ice permeability have
been conducted on 0.1—-1 m scale samples (e.g., Fountain, 1989; Albert et al., 2000).
But because permeability is often a scale-dependent material property (e.g., Schulze-
Makuch et al., 1999), larger scale measurements may provide better characterization
of hydraulic transport relevant to supraglacial channels. Such measurements may also
be more relevant for connecting permeability to porosity measurements taken on larger
(100-1000 m) scale (e.g., Morris and Wingham, 2011; Brown et al., 2012). Intermedi-
ate (1-100m) scale permeability relevant for supraglacial stream channel formation
and spacing (e.g., Marston, 1983) is not well constrained.

Here we present measurements of supraglacial stream channel networks high in
the ablation zone of the Llewellyn glacier on the Juneau Icefield, British Columbia,
over four days in August 2010. These measurements reveal how near-surface perme-
ability is expressed in the distribution and time variation of melt transport. We measure
time-varying discharge, water temperature and geometrical properties of a supraglacial
drainage basin including channel aspect ratio, channel spacing and the height of the
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subsurface water table away from channels. We develop two methods to infer near-
surface permeability, on a length scale of 1—10 m that is relevant to channel develop-
ment. One method is based on modeling the elevation of the subsurface water table
that extends perpendicular to channels, while the other uses a phase shift observed
between stream water temperature and discharge to infer a subsurface transport lag.
Both methods result in similar estimates for permeability of near-surface ice. We end
by illustrating how these methods could be extended via remote sensing observations
to large scale supraglacial drainage networks such as those on the West Greenland
Ice Sheet.

2 Site summary and methods

The Llewellyn glacier drains the Juneau Icefield, on the Eastern side of the North
American Continental Divide (Fig. 1a). Because of the local rain shadow and rela-
tively high elevation (1300 m), the primary input to the supraglacial hydrologic net-
work at this site is locally produced meltwater rather than rain. Average yearly rain-
fall in Atlin, BC (60km East and 450 m lower that the Lewellyn site) is 0.192 myr'1
(http://www.theweathernetwork.com). Our study site is a drainage basin near the Equi-
librium Line Altitude near a medial moraine (Fig. 1b), exhibiting supraglacial channels
that draw water from a layer of weathered, partially melted surface ice. Localization
of melt water and thermal erosion causes supraglacial channels to form (Fig. 1c)
where the gradient is low. Because of rapid glacier surface melting (several cm day'1)
channels in this environment form and become abandoned on day- to several day
timescales, creating a hummocky glacier surface topography in the upper parts of
the drainage basin that reflects competition between localized erosion by streams and
large scale surface lowering.

We observed supraglacial streams during four consecutive days in August 2010.
During this time we monitored one stream continuously, measuring water temperature,
stream discharge and meteorological data. Surveying of stream network properties and
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glacier features such as fractures was accomplished with a combination of measuring
tape and laser range finder (TruPulse 200B) with ~ 1 cm accuracy. Stream profiles were
conducted using a Trimble R3 geodetic GPS unit (L1 band) in kinematic survey mode.
Kinematic survey positions are accurate to 1 cm in the horizontal and 2 cm vertically.

Stream discharge was obtained using a Sontek Flowtracker handheld Acoustic
Doppler Velocimeter to measure mean velocity (errors on these measurements typi-
cally ~ 0.1 ms_1), and measuring tape for mean width and depth. All streams surveyed
in this study were > 0.05m deep at peak discharge. Melt rate at both sites was mea-
sured by observing bulk ice lowering around ice screws inserted perpendicular to the
glacier surface. Water temperatures were monitored with HOBO loggers at both sites,
although the ~ 0.5 °C resolution of these loggers is too coarse for sub-degree variation,
and it was found that solar radiation highly biased even loggers covered with a reflective
coating.

For more precise temperature measurements, we installed a Distributed Tempera-
ture Sensor (DTS) to obtain time series of stream water temperature. The DTS instru-
ment is a cable thermometer that operates by firing short laser pulses down a length
of fiber optic cable with a sensor measuring and integrating the spectrum of backscat-
tered light. Light scattered by electrons in low-energy states returns to the detector
slightly redshifted (Stokes scattering), while light scattered by electrons in high-energy
states returns slightly blueshifted (anti-Stokes scattering). The temperature of a partic-
ular length of cable can be inferred from the amplitude ratio of the Stokes/anti-Stokes
signals (Tyler et al., 2009) integrated over a specified time period.

Attenuation mechanisms within the cable itself are generally frequency dependent,
so laser pulses are sent through the cable in both directions to allow the effects of differ-
ential attenuation to be measured and corrected for. To reduce the effects of instrument
drift during a long deployment, calibration was performed continuously by comparing
temperature measurements of an icewater bath (mixed by a motorized fish tank pro-
peller) using both the DTS and a PT100 thermistor. 10 m of cable was placed in the ice
bath. The instrument settings used allow temperature, location, and time to be resolved
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within 0.05°C, 1 m, and 30 min respectively. Here we average measurements over the
length of submerged (white colored) cable to get mean stream water temperature as
a function of time. We ensure that during the day the cable is submerged in several cen-
timeters of water to control for the effect of radiative cable heating by solar radiation. At
night some cable is exposed, but the effects of radiation are then at a minimum, and it
is easy to distinguish sections of cable exposed to the air by their higher temperatures.

Samples for stable isotopes of water 580 and 6°H were collected at each site to
characterize the bulk composition of stream water vs. glacier ice (taken in the stream
headwaters near a bank). Care was taken during sampling to ensure no headspace air.
Samples were analyzed with an isotope ratio mass spectrometer, with results reported
in the conventional delta notation as per mil deviations from V-SMOW. Instrumental
error in measurements is ~ 0.1 %o for O and ~ 0.5 %. for H isotopes.

Subsurface water table measurements were conducted through coring of near sur-
face ice. Several 20-25cm deep cores were taken in a straight line perpendicular to
a stream at midday on a cloudless day, using a ~ 5cm diameter pipe with a serrated
end to facilitate coring.

Finally, we installed an eKo meteorological station that measured continuous time-
series of wind speed and direction, net solar radiation, air temperature and relative hu-
midity in the drainage basin. Meteorological measurements were carried out every 30 s
for ~ 2 days, although instrument malfunction during the time period of DTS temper-
ature measurements prevented complete overlap in datasets. We use daily averages
of these data in what follows. For the period of our observation we take representative
temperature of 7.8 °C, relative humidity 78 %, and wind speed 8.8 ms™'.

3 Results

Coarse surveg/ of the study supraglacial drainage basin (Fig. 1b, approximate area
0.07-0.08 km®) reveals ubiquitous small streams with average daytime discharge of
~0.1m3s™'. A close coupling of melting to solar forcing (e.g., Marston, 1983) means
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that discharge at this site is strongly diurnal. Channel density decreases downstream
(Fig. 2a), and streams high in the catchment exhibit close, regular spacing. Channel
width to depth remains roughly constant throughout the drainage basin (Fig. 2b), con-
sistent with the observation that the range in discharge is small. Hydraulic geometry of
supraglacial streams does seem to vary as a function of discharge in general (Knighton,
1981). Abandoned channels are more common towards the top of the catchment com-
pared to the bottom (Fig. 2c), indicative of active channel rearrangement. Streams
combine downstream, and all eventually empty into a small number of fractures and
moulins near a medial morraine that bounds our site. The underlying ice is relatively
fracture free, so streams do not exhibit structural control. Discharge thus increases with
distance downstream except where water drains into moulins.

We survey one stream in detail, choosing a reach with slope of 0.05 and of typical
size for the area and performing a kinematic GPS survey along one bank of the stream
(profile in Fig. 3a). Daily peak discharge of this stream is 0.13m>s™", characteristic
channel width was 20—-30 cm with depth of 5-8 cm. The upstream end of this channel
is near the onset of channelization, and many small rivulets diverge upstream of this
reach. The downstream end is an abrupt slope break near a medial moraine. Sinuosity
(along-stream distance divided by straight line distance) for this stretch is 1.32, and
local increases in slope appear to correlate with local increases in sinuosity (Ferguson,
1973).

The spectrum of sinuosity in this channel may be further quantified by expressing
the GPS profile in terms of along-stream coordinates (8, d) where 8 is an angle from
horizontal and d is a downstream distance increment (set by the number of points in
each GPS survey — roughly 1 m for the stream in question). We then apply a wavelet
transform to this channel profile using a Morlet mother wavelet (Mallat, 1999) (code
courtesy of J. Taylor Perron). The results are shown in Fig. 3b, where solid contours
are the periods that appear significant at the 95% level compared to red noise. The
black contour is the cone of influence for the transform. Anything below this line should
be disregarded as insignificant.
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We see that lengthscales in the range of 4-16 m characterize the majority of the
Llewellyn channel analyzed, with some suggestion of a (bimodal) longer wavelength
superimposed, perhaps reflecting bed topography. The smaller wavelengths corre-
spond to spacing between channels as shown by our coarse channel network sur-
vey (Fig. 2), reflecting a network dominated by the creation and abandonment of
channels with no exogenic structural influence. Wavelengths measured here are also
consistent with general scaling between meandering and channel width (meander
wavelength = 8.014 £ 0.517 x channel width over three orders of magnitude in chan-
nel width; Karlstrom et al., 2013). This observation is also consistent with the inference
by Karlstrom et al. (2013) that endogenic stream sinuosity occurs via a competition
between localized thermal erosion in channels and broad scale lowering of the glacier
surface.

3.1 Permeability of near-surface ice, Method 1

To estimate near-surface permeability, we utilize two indirect methods. The first method
uses measurements of water table elevation in near surface ice perpendicular to
a stream high in the drainage basin to infer transport. Porous subsurface ice is a thin
unconfined aquifer above a less permeable ice layer, in which melt water flows down hy-
draulic gradients to streams. Because production of melt is strongly diurnal, the height
of the aquifer varies in time and we use water table measurements along with a model
of melt forcing to infer ice permeability. We assume that sublimation and evaporation
are negligible compared with infiltration.

Picking a drainage divide between two channels that is roughly 2m in length, in
a transect away from one stream we take multiple cores to expose the water table
(Fig. 4a). In the hole left behind from each core, the position of the water table is
recorded in terms of its depth below the glacial surface. Cores revealed dry, porous
ice (grain size 1-2 cm) near to the surface and fully saturated ice near the bottom (the
water table). A wetting front extends ~ 1-2 cm above the water table, which exhibits an
elevation of ~ 5cm over a meter above the base stream level.
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Permeability may be estimated from these measurements by assuming spatially ho-
mogenous subsurface properties, then solving the equations for flow in an unconfined
aquifer in 1-D. We solve the Boussinesq equation, obtained by combining Darcy’s Law
for porous flow with continuity of water, forced by influx due to melting N that is as-
sumed constant over the domain x but time variable:

8h  3°n* N(t)
TR T "

where k = kgp/ug with k the permeability, o water density, i water viscosity, g gravity
and ¢ the porosity.

For two streams at the same elevation separated by a divide of length 2B (Fig. 4b), if
N is constant in time the exact solution to Eq. (1) for water table height h is the Dupuit—
Forchheimer ellipse (Bear, 1972)

N(2B - 1/2
h= [hev"' ﬂ]

: (2)

where h,, is the (assumed equal) depth of the streams. The maximum elevation of the

water table above the stream is H, = \/h2 + NB2 /.

Ice screws inserted in the glacier surface provide estimates of melt rate during peak
solar forcing of ~ 1cm h~"', which we might use as an estimate of N in Eq. (2). However,
these influx rates are comparable to spatial subsurface water table changes from the
stream, implying that the water surface height should not be considered steady in time.
Measured water table elevations are small compared to the available porous layer in the
ice (estimated to be 0.25—-0.5m in thickness) so a linearized version of the Boussinesq
equation is appropriate, with h' < hy:

/ 2,7
% = Khoa_h + w (3)

ot ox2 @
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We take N in the form
N(t) — noe_(t_nint(t))z/az, (4)

where t is simulation time in days (measured in days here for N(t)), nint refers to “next
integer” and o = 6 h, to model diurnal forcing with dominant 12 h melting period. We
then solve this equation numerically with a Crank—Nicolson method, subject to bound-
ary conditions that h’ = h,, the stream depth, at the channel outlet x =0 and that
dh' /0x =0 at x = B, taken to be 1 m from our measurements. h,, ~ 5cm in the channel
nearest our measurements, hy = 0.25m, and porosity we estimate as 10 % similar to
some firn studies (Fountain, 1989). We estimate ny ~ 1cm h™! although we consider
this to be the most uncertain of parameter estimates. Other functional forms for melt
rate Eq. (4) over a 12 h cycle (e.g., a sinusoid) do not affect the results.

Numerical results (Fig. 4c) show that water surface height varies diurnally. Because
our measurements were taken near peak melting (1 p.m.LT), we use the maximum
calculated water table height and perform a Newton—Raphson iteration to find the
permeability that minimizes the difference between modeled and measured water ta-
ble in a least squares sense (solid line in Fig. 4a), assuming h, =0.05m, B=1m,
hy =0.25m. For our measured ny ~1cm h™" on the Llewellyn glacier we estimate
k~1x10"""m? with H, — hy ~ 5 cm the water table height above the stream, similar to
estimates based on the static solution Eq. (2) with peak melting rate. In general there is
a linear trade off between melt rate ny and permeability for this model (illustrated with
the exact solution Eq. (2) in Fig. 7a).

3.2 Permeability of near-surface ice, Method 2

Our second method for estimating permeability uses time series measurements of
stream flow and water temperature, in a section of stream ~ 100 m lower in the drainage
basin than that surveying in Method 1. If surface ice is at the melting point, solar radi-
ation during daylight hours will induce melting (and isotopic fractionation, reflected by
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shift of melt water composition between stream water and ice in Table 1). Once melting
has occurred, additional solar radiation will heat water above the melting tempera-
ture. Thus we might expect diurnal variations of melt water temperature for sufficient
solar heating, lagged by the thermal diffusion time for channels. For small streams
of depth D~ 1cm this timescale is D2/Kd ~ 11 min for water thermal diffusivity of
Kg=15x 10" ms™2. This is much shorter than the period of diurnal heating, so some
temperature variability is to be expected in supraglacial streams. Solar heating of melt
water will be thus an indirect tracer of melting surrounding ice, which also closely tracks
downward radiation (Marston, 1983). We expect that slower porous transport of freshly
melted ice to streams will then cause a lag between increases in water temperature
and stream discharge that may be used to infer permeability of the porous flow region.

DTS Temperature measurements in the surveyed Llewellyn stream show differences
in water temperature day to night. Raw DTS traces (Fig. 5a) resolve lengths of cable
running over ice and cable submerged in water, with marked temperature differences
between the two that decrease during nighttime when solar radiation does not heat
the cable exposed directly to air. Because discharge varies diurnally, the length of
cable submerged in the small channel varies as a function of time, with a fraction
of the cable exposed to the air at night when discharge is low. This exposed cable
is clearly distinguished in the temperature signal (grey vs. black curves at different
times of day in Fig. 5a) and may be removed during post processing via thresholding.
We therefore focus only on lengths of cable submerged in water, averaging over total
submerged length to get a time series of average stream water temperature. A 24 h
time series of DTS measurements during a cloudless day on the surveyed stream
(peak discharge of 0.13 m3 3'1) show a smoothly varying water temperature between
~0°C and 0.3°C (Fig. 5b), consistent with other measurements of supraglacial stream
water temperature (Isenko et al., 2005).

While we do not measure discharge with the same time resolution as temperature,
the length of cable submerged in the channel is a proxy for relative discharge because
the instrumented reach has consistent (straight) geometry and the cable is well fixed
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in place with ice screws. We observe the expected lag between peak temperature
and discharge (Fig. 6a). This lag as discussed above likely corresponds to the pore
pressure diffusion timescale of supraglacial channels, if we assume that peak water
temperature corresponds to peak melting (ice is at the melting point). By fitting sinu-
soids with a 24 h period to these timeseries, we determine a best fit lag of 7=2.63h
between peak temperature and peak discharge. We can use the observed lag between
peak discharge and water temperature (Fig. 6a) to infer a permeability from our solu-
tion to Eq. (3), which also exhibits a lag between forcing and discharge (proportional to
dh' /dx, Fig. 6b).

Using model parameters as with Method 1, a value of k ~ 0.5x10" "' m? produces the
observed phase lag between melting and discharge at the stream. However because
this channel is lower in the drainage basin than that for which we measure the water
table, the distance between channels is larger (Fig. 2b), and therefore the recharge
distance B is likely larger when solving Eq. (3). Calculated lag times are insensitive to
the magnitude of melt influx n, because we are only concerned with the relative peak
in discharge and ny is spatially homogeneous in our model. Fixing ny = 1cm h™' but
varying B, all other parameters as used in the previous calculation, we find a range
of permeabilities as a function of B that fits the observed time phase lag of 2.63h
(Fig. 7b). If we take B = 10 m as representative for the integrated upstream channels,
we find k =8 x 107" m?.

4 Discussion and conclusions

We have estimated permeability of near-surface ice high in the ablation zone of the
Llewellyn glacier, using two independent methods that link observed drainage network
properties to near-surface glacial hydrology. Permeability inferred by measuring water
table elevation away from a stream (Method 1) is consistent within an order of mag-
nitude to permeability estimated from lag times between peak temperature and peak
discharge (Method 2, Fig. 7). The permeability inferred from Method 2 is slightly larger,
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suggesting perhaps some scale dependence of permeability based the larger length
scales of the estimate (~ 10 m vs. ~ 1 m based on channel spacing differences within
the drainage basin, Fig. 2). Scale dependence in near-surface permeability is common
(e.g., Schulze-Makuch et al., 1999), although our current data do not allow for further
investigation of this matter. Larger permeability on a 10 m scale than a 1 m scale would
occur if, for example, fractures began to exert an influence on infiltration at the larger
scale.

The permeabilities inferred by our measurements are 1-2 orders of magnitude
smaller than permeabilities of near surface snow and firn (e.g., Courville et al., 2010),
values often employed for Darcy flow at the base of a snowpack or firn layer in the
upper ablation zone (Arnold et al., 1998). Our measurements are, however, similar to
~ 0.1-0.3m scale near-surface permeability measurements of sea ice at temperate
latitudes (Kawamura et al., 2006).

The seasonal development of supraglacial stream networks reflects competition be-
tween surface melting, endogenic channelization instabilities and external control by
underlying glacier structure. Supraglacial hydrology directly couples surface processes
to solar forcing, so characterizing this system is important for understanding the re-
sponse of glaciers and ice sheets to evolving surface energy balance. As the accu-
mulation and retention of meltwater has considerable variability in large scale systems
such as the Greenland ice sheet (e.g. Braithwaite et al., 1994; Rennermalm et al.,
2013), field scale estimates of near-surface permeability may better inform models for
surface runoff and energy balance (e.g., Bougamont and Bamber, 2005; Banwell et al.,
2012a).

Many such models assume that friction-limited surface flow sets the transport rate of
surface meltwater, for example into supraglacial lakes and moulins that then connect to
the subglacial hydrological system. If flow is instead dominated by porous flow in weath-
ered near-surface ice, these models will significantly under estimate the timescales of
surface melt routing. Because the regime of supraglacial melt water transport may vary
spatially and in time, it may be important to model the development and seasonal evo-
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lution of channel networks and supraglacial drainage basins to predict the large scale
response of large ice masses to surface melting (Palmer et al., 2011).

As an illustration, we apply our methods to data from a study of West Greenland
supraglacial drainage in August 2009 made by McGrath et al. (2010). These authors
provide a survey of channels comprising one drainage basin, and measure a phase
lag between daily maximum melt production averaged over the basin and stream dis-
charge measured at a moulin that drains the basin. Typical stream velocities are 0.25—
0.5ms™', ~ 5 orders of magnitude greater than likely Darcy velocities in the subsurface.
Therefore, any phase lag between discharge and melting should be limited by trans-
port of melt to streams. This will occur either through subsurface porous flow or via
surface flow if the transport capacity of the subsurface is exceeded. We digitally mea-
sure via pixel counting the distance between 35 stream segments in Fig. 1 of McGrath
et al. (2010), which yields a channel spacing of 18.0 £ 6.7 m high in the drainage basin.
Taking half this distance as the typical recharge lengthscale B in our model estimates
(Fig. 4), we can use the measured phase lag of 2.8 £ 4.2 h to estimate permeability of
ice in this region as k ~ 7 x 107" m?. This is considerably smaller than permeabilities
used in current models (Arnold et al., 1998), although we advocate caution and site
specific calibration before directly applying our measurements on the Juneau Icefield
to West Greenland.

Not all supraglacial environments exhibit a porous near-surface region that accom-
modates significant subsurface porous flow, particularly if melt rates or external water
input rates are high. A near-surface aquifer of melt water is to be expected only where
the creation of porosity/permeability (by melting or sublimation) is not outpaced by in-
flux of melt water from surroundings. Still, a surface layer of porous and/or fractured
ice is common, and in these settings the water table height will depend on a balance
between time varying porosity creation and porous flow.

If macro scale characteristics of supraglacial drainage such as channel spacing gen-
erally reflect transport efficacy, our study provides a basis for remotely estimating per-
meability with models calibrated by field data. It suggests dependencies on the char-
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acteristic length scales of channels to complement other remote sensing techniques
(e.g., Brown et al., 2012). By establishing a connection between near-surface ice per-
meability and channel spacing, we can connect microscale hydraulic characteristics of
ablation zone surface ice to macroscale features that are observable in satellite im-
agery (e.g., Yang and Smith, 2013).

If calibrated and tested by field measurements, the models presented here could
have application in the remote study of seasonal melt water routing evolution on
large scales that are otherwise inaccessible to direct observation. In West Greenland,
supraglacial lake occurrence, longevity and size covary with melt intensity (Liang et al.,
2012). Similarly, controls on supraglacial stream occurrence and spacing such as near-
surface permeability may be expected to vary seasonally and year to year. Because
surface flow sets the timescale for supraglacial lake filling and subsequent draining
(Hoffman et al., 2011; Banwell et al., 2012a, b), better constraints on field scale, near-
surface permeability should help to better link surface mass balance with glacier and
ice sheet movements in general.
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Fig. 1. (a) Regional map of Juneau Icefield, showing the Llewellyn glacier study site (solid
red circle). Image courtesy Paul llisley. (b) The supraglacial drainage basin studied here,
photo taken from medial morraine. Note hummocky topography and closely spaced channels
high in the basin, with more linear and widely spaced channels lower down. (c) Inception of
a supraglacial channel high in the upper study drainage basin, with porous icy substrate sur-
rounding.
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Fig. 2. Network characteristics of the Llewellyn drainage basin shown in Fig. 1b, higher num-
bers moving upstream. (a) Mean channel spacing (inverse of channel density) with standard
deviation error bars. (b) Mean width to depth of active channels, with standard deviation. (c)
Ratio of active to non-active (abandoned) channels.
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Fig. 3. (a) Kinematic GPS profile in map view of individual streams on the Llewellyn glacier.
Stream flow is from right to left, and average slope is ~ 0.05. (b) Wavelet power spectra of the
profile in (a), with 95 % significance contours with respect to red noise (solid red lines) and the
Morlet wavelet cone of influence for each survey. More details in text.
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Fig. 5. (a) Unfiltered DTS temperature trace at 11 a.m. (black curve) and 3a.m. (grey curve).
The cable runs from the sensor to a water bath (not plotted), over glacier ice to the stream. The
point of cable entry into the stream and end of cable (these are double-ended measurements,
so trace is symmetric about midpoint) are labeled. (b) DTS timeseries over 24 h on a clear day,
filtered spatially and averaged for water temperature. Each point is the average temperature
along the submerged length of the cable.
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Fig. 6. (a) Lag between normalized timeseries of DTS temperature and fraction of cable in water
(Fig. 5) with nonlinear fits of daily-periodic sinusoids. (b) Modeled time lag between discharge Full Screen / Esc
at channel outlet and melt input (assumed constant over the domain). Length of recharge is
B =10m, all other parameters as in Fig. 4.
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Fig. 7. Summary of permeability estimates from the two methods presented in the text. (a)
Predicted permeability as a function of melt influx rate N from Eqn. (2)—(4) and Llewellyn glacier
water table measurements. (b) Permeability estimated from matching the phase lag between
discharge at stream and melt input (Fig. 6a) as a function of recharge lengthscale B. Estimates
for melt rate (a) and recharge length (b) are shown with grey bars.
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