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Abstract

In situ observations of soil water state variables under natural boundary conditions are
often used to estimate field-scale soil hydraulic properties. However, many contribu-
tions to the soil hydrological literature have demonstrated that the information content
of such data is insufficient to reliably estimate all the soil hydraulic parameters. In5

this case study, we tested whether prior information about the soil hydraulic properties
could help improve the identifiability of the van Genuchten-Mualem (VGM) parameters.
Three different prior distributions with increasing complexity were formulated using the
ROSETTA pedotransfer function (PTF) with input data that constitutes basic soil infor-
mation and is readily available in most vadose zone studies. The inverse problem was10

posed in a formal Bayesian framework and solved using Markov chain Monte Carlo
(MCMC) simulation with the DiffeRential Evolution Adaptive Metropolis (DREAM) al-
gorithm. Synthetic and real-world soil water content data were used to illustrate our
approach. The results of this study corroborate and explicate findings previously re-
ported in the literature. Indeed, soil water content data alone contained insufficient in-15

formation to reasonably constrain all VGM parameters. The identifiability of these soil
hydraulic parameters was substantially improved when an informative prior distribution
was used with detailed knowledge of the correlation structure among the respective
VGM parameters. A biased prior did not distort the results, which inspires confidence
in the robustness and effectiveness of the presented method. The Bayesian framework20

presented in this study can be applied to a wide range of vadose zone studies and pro-
vides a blueprint for the use of prior information in inverse modelling of soil hydraulic
properties at various spatial scales.

1 Introduction

Simulation of soil water dynamics under transient conditions typically requires knowl-25

edge of the soil hydraulic properties, that is, the water retention function and the
hydraulic conductivity function. A broad array of methods exists to determine these
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two constitutive relationships from laboratory or field experiments. An overview of these
methods together with a discussion of their strengths and limitations can be found in
Durner and Lipsius (2005), amongst others. With the ever increasing pace of compu-
tational power, availability of accurate and stable numerical solution schemes of the
governing flow equations, and effective and efficient parameter optimization methods,5

the use of inverse modelling to determine soil hydraulic properties has become increas-
ingly popular in the last few decades. A review of Vrugt et al. (2008a) discusses recent
progress in inverse modelling of soil hydraulic properties.

Laboratory methods such as the multistep outflow method (van Dam et al., 1994)
have the advantage of being comparatively quick and precise. This allows the pro-10

cessing of a large number of samples, which opens up the possibility to study the
spatial variability of the soil hydraulic properties. However, soil hydraulic properties
derived from laboratory experiments on small soil cores are typically inadequate to
simulate soil water dynamics at larger spatial scales (Ritter et al., 2003; Mertens et al.,
2005; Guber et al., 2006; Wöhling et al., 2008; Baroni et al., 2010). There are mul-15

tiple reasons for this discrepancy, most notably that the sample volume analysed in
the laboratory is not a representative elementary volume (e.g., Mallants et al., 1997)
or that the experimental conditions dictated in the laboratory are not representative for
field conditions (e.g., Basile et al., 2003). Arguably, field methods such as the internal
drainage method (Zhang et al., 2003) provide estimates of the soil hydraulic properties20

that are more representative for in situ soil water dynamics. However, such methods
place a high demand on equipment and time and are labour intensive. Moreover, con-
siderable difficulties arise when these local scale soil hydraulic properties are used to
infer the effective retention and hydraulic conductivity function that characterize soil
water dynamics at larger spatial scales (e.g., Smith and Diekkrüger, 1996; Zhu and25

Mohanty, 2002). Effective properties are defined here as the soil hydraulic properties
of an equivalent homogeneous domain that produces the same response as the actual
heterogeneous domain under some upscaled boundary conditions (Vereecken et al.,
2007).
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As alternative to laboratory or field experiments, soil hydraulic properties can also
be derived from field measurements of soil water state variables under naturally oc-
curring boundary conditions (Vereecken et al., 2008). One main advantage of this
approach is that it allows for estimating effective soil hydraulic properties at larger spa-
tial scales given observations at multiple locations within the considered soil domain.5

An example of this can be found in Jacques et al. (2002) who estimated the soil hy-
draulic properties of a four-layer soil profile using pressure head and water content
data collected at 12 different locations and 5 depths along a 5.5 m long trench. To
reduce problems with parameter uncertainty and limit the dimensionality of the inverse
problem, they used a stepwise parameter estimation procedure that sequentially es-10

timates the soil hydraulic functions for each individual soil layer. Another study by
Ritter et al. (2003) used soil water content measured at 6 locations and 3 depths within
a 4800 m2 plot to infer the soil hydraulic properties of a three-layer soil profile. They
also reported problems in finding well-defined values of the soil hydraulic parameters.
These findings inspired Ritter et al. to fix some of the soil hydraulic parameters at15

values derived from laboratory experiments. Mertens et al. (2004) estimated effec-
tive soil hydraulic properties for a two-layer profile using water content observations
from 25 locations and 3 depths within a 80×20 m hillslope plot. They adopted an
informal Bayesian approach using the Generalized Likelihood Uncertainty Estimation
(GLUE) method (Beven and Binley, 1992; Beven, 2006) and investigated whether prior20

information derived from laboratory and field experiments improves the identifiability
of the soil hydraulic properties. Indeed, explicit use of prior knowledge of the reten-
tion and hydraulic conductivity functions improved the compliance of model predictions
and data. Wöhling et al. (2008) derived soil hydraulic properties of a three-layer soil
profile using pressure head observations from 9 tensiometers installed at 3 different25

depths. They compared the efficiency of three multiobjective search algorithms in find-
ing Pareto solutions of soil hydraulic parameters that characterize the trade-off in the
fitting of pressure head data at different depths. Steenpass et al. (2011) estimated
soil hydraulic properties of a two-layer profile from observed soil surface temperature
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data and measurements of spatially distributed soil water content at 36 locations and
2 depths within a 6×6 m plot. They implemented a formal Bayesian approach using
Markov chain Monte Carlo (MCMC) simulation with the DiffeRential Evolution Adap-
tive Metropolis (DREAM) algorithm (Vrugt et al., 2008b, 2009) and report considerable
uncertainty in the estimated soil hydraulic parameters. Particularly, some of the pa-5

rameters attained physically unrealistic values, which Steenpass et al. attributed to
a lack of information in the wet range of the soil hydraulic functions. Finally, Wöhling
and Vrugt (2011) explored whether the use of two different measurement types of the
soil water state could help constrain the soil hydraulic parameters. Indeed, the poste-
rior distribution derived with DREAM demonstrated that joint use of in situ soil moisture10

content and pressure head data significantly improved the reliability of the soil hydraulic
properties.

In summary, the current state of knowledge is that in situ measurements of soil water
dynamics contain insufficient information to warrant a reliable estimation of the soil hy-
draulic properties. One possible solution to this problem is to simultaneously consider15

multiple soil water state variables. Indeed, the soil hydraulic functions become much
better identified when moisture content and pressure head data are jointly used for
statistical inference of the soil hydraulic parameters (Wöhling and Vrugt, 2011). Unfor-
tunately, this places a heavier demand on measurement resources, and this approach
is therefore less appealing to implement in practice. In this paper, we therefore seek20

an alternative solution and explore whether prior information could help reduce the
uncertainty of the soil hydraulic functions. Prior information obtained from pedotrans-
fer functions (PTFs) that predict the soil hydraulic parameters from basic soil data is
readily available in most field studies and could hence be used more explicitly than is
currently done during inverse modelling of in situ soil water dynamics. This prior in-25

formation can be used to formulate a informative prior distribution of the soil hydraulic
parameters, which might prove useful in constraining parameter uncertainty. The cur-
rent practice is to use a uniform prior distribution of the soil hydraulic parameters and
let the observational data speak and determine parameter and predictive uncertainty.
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Another option to alleviate problems with parameter nonidentifiability is to reduce the
dimensionality of the model calibration problem and fix some of the soil hydraulic pa-
rameters at some appropriate value (e.g., Jacques et al., 2002; Ritter et al., 2003). This
approach is practical but may impair the ability of the soil hydraulic model to accurately
describe the experimental data, particularly if parameters are fixed at nonoptimal val-5

ues. Due to parameter correlation, this fixing may corrupt the estimates of the other soil
hydraulic parameters. Moreover, the decision which parameter to fix is usually rather
arbitrary, without consideration of the actual information content of the data. For in-
stance, we could end up fixing a parameter whose value is actually well defined by the
calibration data. An example of this is the L parameter in the van Genuchten-Mualem10

(VGM) model (van Genuchten, 1980). The literature indicates that it is most productive
to fix this parameter to a value of L= 0.5 (Mualem, 1976) or L=−1 (Schaap and Leij,
2000), whereas it might prove more effective to estimate L directly from the data. If
we still decide to fix some of the soil hydraulic parameters, it remains typically difficult
to choose appropriate values. This is particularly true for θr, θs, and Ks in the VGM15

model. These parameters are generally poorly defined by direct measurements and
should therefore considered as fitting parameters (e.g., van Genuchten and Nielsen,
1985). The Bayesian inverse modelling approach presented in this study avoids many
of the problems associated with fixing parameters and provides a general-purpose
approach to estimating the probability distribution of the soil hydraulic properties by20

merging prior knowledge with experimental data.
In this study, we tested the usefulness and applicability of prior information for im-

proving the identifiability of soil hydraulic properties at the field scale. We used spatially
distributed observations of soil water content in a 50×50 m bare soil plot exposed to
natural boundary conditions. The ROSETTA computer program (Schaap et al., 2001)25

was used to predict the soil hydraulic parameters of the VGM model from percentages
of sand silt, and clay measured at the experimental site. To appropriately consider pa-
rameter correlation, we ran ROSETTA multiple times with a set of input data randomly
sampled in the vicinity of the actual measured percentages of sand silt, and clay. This
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prior information was used to formulate a joint probability density function (pdf) of the
VGM parameters. A Bayesian framework was then used to combine this prior pdf with
the information contained in the observational data. The resulting posterior distribution
was explored by MCMC simulation using DREAM. The sample of the posterior pdf ob-
tained this way combines prior information from ROSETTA with information contained5

in the observational data. This distribution contains all information about parameter
uncertainty and correlation, both of which affect parameter identifiability. Our results
are grouped around three central questions: (i) What is the effect of prior information
on the identifiability of the VGM parameters? (ii) How much prior information is needed
to get well-defined soil hydraulic parameters? (iii) Is the Bayesian approach sufficiently10

robust in case of a biased prior distribution?

2 Methods

2.1 Soil water content measurements

The measurement site was located in the lower part of a gently sloping agricultural
field at Selhausen near Jülich, Germany (50◦ 52′ 9.4′′ N, 6◦ 27′ 0.5′′ E, FLOWatch test15

site). The soil was classified as a Stagnic Luvisol and has a silt loam texture. The
fine earth fraction of the topsoil (0 to 30 cm) is composed of 14% sand, 70% silt, and
16% clay (percent by weight). Due to clay accumulation, the subsoil has a slightly
higher percentage of clay, with 14% sand, 66% silt, and 20% clay. The soil was kept
bare during the measurement campaign. Accumulation of weeds was prevented by20

occasional application of herbicides and manual removal.
We measured soil water content at 61 different locations distributed evenly within

a 50×50 m plot at the experimental site. Soil water content was measured using time
domain reflectometry (TDR) with two-rod probes (25 cm rod length, 2.3 cm rod spac-
ing). The TDR probes were installed horizontally at a depth of 6 cm below the soil25

surface. The waveforms were recorded manually using a TDR100 device (Campbell
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Scientific, Logan, UT, USA) and analysed using the algorithm described in Heimovaara
and Bouten (1990). We used the empirical relationship of Topp et al. (1980) to convert
the apparent dielectric permittivity to soil water content. Measurements were taken on
29 days between 19 March and 14 October 2009, comprising a measurement cam-
paign of 210 days. The observed soil water content data did not show any significant5

spatial trend and could be well described with a normal distribution at any given mea-
surement day. Because our interest is to estimate effective soil hydraulic properties,
we arithmetically averaged the soil moisture data from the different measurement loca-
tions of the 50×50 m plot. We used this time series of soil water content data in our
analysis.10

2.2 Model description

2.2.1 Governing flow equation

Vertical flow of water in the one-dimensional, variably saturated soil profile was de-
scribed using the Richards equation:

∂θ
∂t

=
∂
∂z

(
K (h)

(
∂h
∂z

+1
))

(1)15

where θ (cm3 cm−3) denotes the soil water content, K (cm h−1) represents the soil
hydraulic conductivity, h (cm) signifies the pressure head, t is time (hour), and z de-
fines the vertical coordinate (cm, positive upward). We used the HYDRUS-1D model
(Šimůnek et al., 2008) to solve the Richards equation for given initial and boundary
conditions.20

2.2.2 Soil hydraulic properties

The water retention function, θ(h), and hydraulic conductivity function, K (h), were
parameterized using the VGM model (van Genuchten, 1980). The water retention
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function, expressed in terms of effective saturation S (dimensionless), is given by:

S(h)=
θ(h)−θr

θs−θr
=
{(

1+ |αh|n
)−m

for h≤0
1 for h>0

(2)

where θr and θs (cm3 cm−3) represent the residual and saturated water content, re-
spectively, and α (cm−1), n and m (both dimensionless) are shape parameters. Using
the capillary model of Mualem (1976) van Genuchten derived the following closed-form5

equation for the hydraulic conductivity function:

K (h)=KsS(h)L
(

1−
(

1−S(h)1/m
)m)2

(3)

where Ks (cm h−1) is the saturated hydraulic conductivity, L (dimensionless) is a shape
parameter, and m= 1−1/n. In total, the VGM model contains six adjustable parame-
ters: θr, θs, α, n, Ks, and L.10

2.2.3 Model domain

Soil water dynamics was simulated in a 100 cm vertical profile. We assume a homo-
geneous soil and explicitly ignore spatial variability of the hydraulic properties. This
simplifies the analysis and is commensurate with the information content of the data.
The single observational depth of the soil moisture content contain insufficient informa-15

tion to warrant investigation of spatially varying hydraulic properties.
The model domain was discretised into 81 nonequidistant nodes. Nodal distance

was shortest adjacent to the soil surface and gradually increased with depth, with a dis-
tance of 0.05 cm at the upper and 3.5 cm at the lower boundary. This spatial discretiza-
tion was deemed adequate to appropriately model the large gradients in pressure head20

typically found close to the surface in response to atmospheric forcing. In general, if
nodal spacing is too large, the numerical solution of the Richards equation becomes
inaccurate due to linearization errors of the pressure head and averaging errors of the

2027

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2019/2011/hessd-8-2019-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2019/2011/hessd-8-2019-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2019–2063, 2011

Bayesian inverse
modelling of in situ
soil water dynamics

B. Scharnagl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

hydraulic conductivity (van Dam and Feddes, 2000). In the present case, a further
increase in the number of nodes did not significantly alter our simulation results, from
which we concluded that the spatial discretization of the soil profile was adequate.

2.2.4 Initial and boundary conditions

The water flux at the soil surface is controlled by potential evaporation Epot (cm h−1),5

precipitation P (cm h−1), and surface runoff R (cm h−1). The numerical solution of the
Richards equation was obtained by limiting the actual water flux as follows:

−K (h)
(
∂h
∂z

+1
)
≤Epot(t)−P (t) for hmin

UB ≤h(t)≤hmax
UB at z=0 cm (4)

where hmin
UB and hmax

UB denote the minimum and maximum values of the pressure head
allowed at the upper boundary, respectively. If the simulated pressure head reaches ei-10

ther of these two limits, the HYDRUS-1D model switches to a pressure head boundary
condition to calculate the actual water flux:

h(t)=hmin
UB or h(t)=hmax

UB at z=0 cm (5)

The limits were set to hmin
UB =−100000 cm and hmax

UB = 2 cm. This last value allows for
a small amount of ponded water at the soil surface, which we occasionally observed15

after heavy rainfall events. No surface runoff was simulated during any of our model
runs. This is also consistent with our field expertise.

Precipitation and other standard meteorological variables were observed at a mete-
orological station next to the measurement site. Potential evaporation was estimated
using the FAO method (Allen et al., 1998). The FAO method consists of two steps.20

First, the potential evapotranspiration from a grass reference surface, ETref, is calcu-
lated using a modified Penman-Monteith equation (Allen et al., 1998, p. 74). We used
air temperature, relative humidity, wind speed, incoming shortwave radiation, and at-
mospheric pressure as input variables. In a second step, the reference evapotranspira-
tion is scaled with an empirical coefficient, Epot = 1.15ETref (Allen et al., 1998, p. 263).25
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This value reflects the increased evaporation potential from bare soils (as compared to
the reference grass surface) due to a lower albedo of wet soils.

In the absence of detailed information about the bottom boundary of the considered
soil domain, we tested different lower boundary conditions in HYDRUS-1D. From an
inverse modelling point of view, a zero gradient pressure head is most appealing be-5

cause it does not require explicit information about soil water state variables or fluxes
at the lower boundary. Readings from a nearby piezometer suggested that the ground
water table was at about 300 cm below the soil surface, that is, about 200 cm below
the lower boundary of the considered soil domain. Simulations with the zero gradient
boundary condition indicated that a substantial amount of water was lost from the pro-10

file due to drainage, resulting in simulated water contents that considerably underesti-
mated the actual observed soil water content data. Repeated model runs with different
realizations of the VGM parameters demonstrated that this difference was persistent
and could not be explained by a wrong selection of the soil hydraulic parameters. We
therefore used a prescribed constant pressure head hLB as the lower boundary condi-15

tion:

h(t)=hLB at z=−100 cm (6)

Unfortunately, no measurements of pressure head or soil moisture content were made
at the bottom of the simulation domain from which an appropriate value of hLB could
be inferred. We therefore treated hLB as an unknown parameter whose value was20

estimated jointly with the VGM parameters.
All our numerical simulations with HYDRUS-1D started from a uniform initial pressure

head throughout the considered soil domain equal to the pressure head at the lower
boundary condition hLB. A 75 day spin-up period was used to allow for the relaxation
from the initial pressure head profile and to reduce sensitivity of simulation results to25

soil water state initialization.

2029

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/2019/2011/hessd-8-2019-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/2019/2011/hessd-8-2019-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
8, 2019–2063, 2011

Bayesian inverse
modelling of in situ
soil water dynamics

B. Scharnagl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2.3 Inverse modelling

To explicate the inverse approach utilized herein, we conveniently stored the lower
boundary condition in x1 = [hLB] and the VGM parameters in x2 = [θr θs α n Ks L]. The
difference between the HYDRUS-1D predicted soil water content values, y(x1,x2), and
respective observations, ŷ, was computed using the following residual vector:5

ε(x1,x2,ŷ)= ŷ−y(x1,x2) (7)

It is particularly difficult to directly interpret this N-dimensional vector of model residuals
and find the appropriate parameter values that provide the best fit to the experimental
data. A common approach is therefore to aggregate ε(x1,x2,ŷ) into a single mea-
sure of model performance and, depending on its definition, minimize or maximize this10

criterion during model calibration.
To formulate a probabilistic measure of ε(x1,x2,ŷ) that can be used to draw statisti-

cally meaningful inference about the parameters, we need to make some assumptions
about the statistical distribution of the model residuals. This probabilistic measure is
called the likelihood function p(ŷ|x1,x2). It gives the probability of observing the data ŷ15

conditional on the parameter estimates x1 and x2. Under the assumption of indepen-
dent, identically and normally distributed residuals, ε∼N (0,σ2

ε), the likelihood function
can be defined as (e.g., Box and Tiao, 1992):

p(ŷ|x1,x2)∝
(

N∑
i=1

εi (x1,x2,ŷ)2

)−N
2

(8)

Bayesian inference provides a formal way of combining information from observa-20

tions with prior knowledge of the system. This is achieved through Bayes’ theorem:

p(x1,x2|ŷ)∝p(x1)p(x2)p(ŷ|x1,x2) (9)

where p(x1) and p(x2) denote the prior probabilities of the lower boundary condition
and VGM parameters, respectively, and p(x1,x2|ŷ) represent the posterior probabilities
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after assimilating the observational data. This posterior distribution summarizes what
we know about the parameters. It can be used to derive descriptive statistics such as
measures of central tendency, dispersion, or association of the estimated parameters.
In addition, we can infer predictive uncertainty by propagating each realization of the
posterior distribution through the HYDRUS-1D model.5

Now that we have available an explicit mathematical formulation of the likelihood
function, we are left with a definition of the prior distribution of the various parameters.
In practice, the prior distribution is often assumed to be uniform (noninformative). This
includes most of our own work. Yet, the main thrust of the current paper is to show
that we can do better than this and formulate informative prior distributions that are10

specified from soft data. We now discuss the different prior distributions considered
herein.

Unfortunately, it is not easy to specify informative prior distributions for each individ-
ual parameter. For instance, we have rather limited knowledge of the pressure head at
the lower boundary condition. We therefore specify a uniform prior distribution for hLB,15

and mathematically define this distribution as p(x1)∼U(ax1
,bx1

), where the variables
ax1

and bx1
denote the lower and upper bounds of hLB, respectively. In all our calcu-

lations reported herein, we assume hLB to lie between −250 and −50 cm. In practice,
p(x1) needs not to be evaluated because it is uniform and can therefore be omitted
from Eq. (9).20

Fortunately, it is easier to specify a prior distribution for the remaining VGM parame-
ters. PTFs can be used to derive estimates of these parameters from basic soil data.
This will be discussed later. We consider two different statistical distributions. The first
is a multivariate uniform distribution, p(x2)∼U(ax2

,bx2
). This is our reference scenario

and represents the case where no explicit prior knowledge of the soil hydraulic pa-25

rameters is used. Indeed, uniform prior distributions are most often used in Bayesian
studies. The second prior distribution is multivariate normal, p(x2)∼N (µx2

,Σx2
), and
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can be written as:

p(x2)∝exp
(
−1

2
(x2−µx2

)Σ−1
x2

(x2−µx2
)T
)

(10)

The various prior distributions p(x2) used in this study are defined in Sect. 2.4.
Not only does Bayesian analysis allow for explicit use of prior information about

the system of interest, it also provides access to the entire probability distribution of5

the estimated parameters, p(x1,x2|ŷ). Unfortunately, for nonlinear models such as
HYDRUS-1D, the posterior distribution cannot be obtained by analytical means or an-
alytical approximations. We therefore resort to iterative methods that approximate the
posterior pdf by generating a large sample from this distribution. The most general of
such methods is MCMC simulation (e.g., Brooks, 1998). The basis of such methods is10

a Markov chain that generates a random walk through the parameter space with stable
frequency stemming from a fixed probability distribution. The basic building block of
most MCMC schemes is the Metropolis-Hastings algorithm (Hastings, 1970). To sim-
plify notation, we merge the two parameter vectors x1 and x2 into a single vector x.
The Metropolis-Hastings algorithm generates a Markov chain, which has the property15

that the next position of the chain x
i+1 only depends on its current position x

i . The
Markov chain is generated by alternating between two basic steps: First, a proposal x?

is generated by sampling from a proposal distribution q(x?|xi ). The candidate point is
then accepted with probability:

A(x?,xi )=min

(
p(x?|ŷ)q(xi |x?)

p(xi |ŷ)q(x?|xi )
,1

)
(11)20

If the proposal is accepted, the Markov chain moves to the proposal position, xi+1 =x
?.

Otherwise, the current position is retained, xi+1 =x
i .

To generate samples from the posterior distribution, we used the DREAM framework
of Vrugt et al. (2008b, 2009). This MCMC scheme runs multiple chains simultaneously
for global exploration of the parameter space and automatically tunes the scale and25
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orientation of the proposal distribution during the evolution to the posterior target dis-
tribution. This scheme is an adaptation of the Shuffled Complex Evolution Metropolis
optimization algorithm (Vrugt et al., 2003b) and has the advantage of maintaining de-
tailed balance and ergodicity while showing excellent efficiencies on complex, highly
nonlinear, and multi-modal target distributions. Jumps in each chain are created using5

a fixed multiple of the difference of the states of different chain pairs. The use of multiple
different chains protects against premature convergence and opens up a wide array of
statistical tests to diagnose whether a limiting distribution has been found. We used the
most recent variant of DREAM that uses sampling from an archive of past states and
a mix of parallel direction and snooker updates to generate candidate points in each10

individual Markov chain. This algorithm, entitled DREAM(ZS), has several desirable ad-
vantages. Sampling from the past circumvents the requirement of using a relatively
large number of chains for posterior exploration Vrugt et al. (2011). Just a few chains
will suffice. This will speed up convergence to a limiting distribution, especially for high-
dimensional problems. Second, outlier chains do not need explicit consideration. By15

sampling historical states, aberrant trajectories can jump directly to the modal region at
any time during the simulation. The various chains simulated with DREAM(ZS) therefore
maintain detailed balance at every single step in the chain. Finally, the transition kernel
defining the jumps in each of the chains does not require information about the current
states of the chains. This is of great advantage in a multi-processor environment where20

the various candidate points can be generated simultaneously so that each chain can
evolve most efficiently on a different processor Vrugt et al. (2011). To increase the
diversity of jumps beyond parallel direction sampling, DREAM(ZS) includes a snooker
updater with adaptive step size. The snooker axis runs through the states of two differ-
ent chains, and its algorithmic implementation within the context of DE-MC has been25

described in ter Braak and Vrugt (2008). A detailed description of DREAM(ZS) appears
in Vrugt et al. (2011) and so will not be repeated herein. We used three parallel chains
to explore the parameter space and approximate the posterior distribution of the VGM
parameters and the unknown pressure head at the lower boundary. The diagnostic of
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Brooks and Gelman (1998) was used to check when convergence to a limiting distribu-
tion had been achieved. After convergence was officially satisfied, we continued to run
DREAM(ZS) and produce an additional 50 000 samples, which were used to summarize
the posterior distribution.

2.4 Prior information on soil hydraulic properties5

2.4.1 Predicting the soil hydraulic parameters

The ROSETTA program (Schaap et al., 2001) implements five hierarchical PTFs to
estimate the VGM parameters from a varying degree of basic soil data, such as textural
class, texture, bulk density, and soil water content at specific pressure head values. We
estimate the soil hydraulic parameters from measured sand, silt, and clay percentages10

of the topsoil layer at the experimental site. This constitutes rather basic soil data,
and is readily available in most case studies. The corresponding PTF is labelled with
H2-C2 (Schaap et al., 2001). This PTF actually consists of an ensemble of artificial
neural network models that were each calibrated to a different data set. These data
sets were generated from the ROSETTA database using the bootstrap method (Efron,15

1979). The use of multiple calibration data sets provides a simple way to explicitly
address uncertainty in the predicted soil hydraulic parameters. Each artificial neural
network model provides slightly different estimates of the VGM parameters, and the
ensemble mean p=

[
p1 ... p6

]
and standard deviation u=

[
u1 ... u6

]
(both size 1×

6) constitute the outputs of ROSETTA. These two measures of central tendency and20

dispersion provide detailed information about the statistical properties of the predicted
VGM parameters and can readily be used to specify an informative prior distribution.

ROSETTA uses log10-transformed values of α, n, and Ks. This transformation works
well in practice and induces an approximate normal distribution for each of the VGM
parameters (Schaap et al., 2001). A normal distribution is computationally easy to25

implement, and we therefore use log10- transformed parameter values in our prior
distribution.
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2.4.2 Deriving the covariance matrix of predicted soil hydraulic parameters

The information provided by ROSETTA can readily be used to formulate an informative
multivariate normal prior distribution with mean p and covariance matrix, Σf consisting
of u2 on the diagonal entries and off-diagonal terms of zero. This approach, however, is
rather simplistic in that it ignores the correlation that is typically found between the soil5

hydraulic parameters. Parameter correlation is evident from first-order approximations
of the parameter covariance matrix (e.g., Kool and Parker, 1988), objective function
contour plots (e.g., Toormann et al., 1992), or scatter plots of the posterior sample
(Vrugt et al., 2003a). Given these findings, it seems productive to include this correla-
tion of the soil hydraulic parameters in the prior pdf. If we ignore parameter correlation,10

we assign too high prior probabilities to physically unrealistic values of the soil hydraulic
parameters.

To formulate prior pdfs that explicitly consider parameter correlation, we need de-
tailed information about the correlation structure of the predicted soil hydraulic param-
eters. This information is not readily provided by ROSETTA but can be derived using15

the following approach:

Step 1: Draw a random sample of input variables. Let the measured percentages of sand, silt,
and clay be denoted by f = [14 70 16] (size 1×3). In a first step, we generated a random sample
F (size 1000×3) from a multivariate normal distribution, N (µf ,Σf ), centred around the sand,
silt, and clay percentages:20

N :µf = f ,Σf =

 0.250 −0.125 −0.125
−0.125 0.250 −0.125
−0.125 −0.125 0.250

→F (12)

The diagonal entries (variances) were assigned an arbitrary small value of 0.25%, which was
shown to work well in practice. The negative values of the off-diagonal terms (covariances)
were chosen such that (i) they are consistent with the compositional nature of soil texture,
and that (ii) Σf is positive semidefinite. Using this covariance matrix, the sum of the sampled25

percentages F remained in close vicinity of 100%, with error deviation of 1%, which is the error
tolerance of ROSETTA.
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Step 2: Predict the soil hydraulic parameters. In a second step, we predicted the soil hydraulic
parameters P (size 1000×6) for each realization of the input variables:

ROSETTA : F→P (13)

To help implement our prior distributions, we fitted a multivariate normal distribution through
the sample of 1000 VGM parameter combinations. This closed-form mathematical distribution5

is easy to implement and sample from. Quantile-quantile plots and pairwise scatter plots have
shown that this normal distribution adequately describes the ROSETTA derived sample of soil
hydraulic parameters.

Step 3: Derive the covariance matrix of the estimated parameters. We then calculated the co-
variance matrix C and the matrix of Pearson correlation coefficients R (both size 6×6) of the10

parameter sample P. The correlation matrix R is defined as:

ri ,j =
ci ,j√
ci ,i cj,j

for i ,j =1,...,6 (14)

This correlation matrix contains all required information to estimate the covariance matrix of the
soil hydraulic parameters, Σp. We derive this matrix by scaling R with the respective ROSETTA
predicted standard deviations u:15

Σpi ,j
= ri ,j ui uj for i ,j =1,...,6 (15)

This scaling ensures that the diagonal entries of Σp correspond to the standard deviations of
the predicted parameters while the off-diagonal terms reflect the covariance among the soil
hydraulic parameters.

2.4.3 Defining the prior distributions of soil hydraulic parameters20

In this case study, we tested three different formulations of the prior distribution for
Bayesian inverse modelling of in situ soil water dynamics. These prior distributions
incorporate to different extends the information derived from ROSETTA predicted soil
hydraulic parameters. We now discuss the three different priors.
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Prior 1: Multivariate uniform distribution. In the first case, we assumed a multivariate uniform
distribution, p(x2)∼U(ax2

,bx2
) with lower and upper bounds ax2

and bx2
, respectively, that

jointly define the feasible parameter space. This type of noninformative prior distribution is
quite popular because it only requires knowledge of the minimum and maximum values of the
soil hydraulic parameters. We calculated the bounds as p±4u (Table 1).5

Prior 2: Multivariate normal distribution without correlation among the soil hydraulic parameters.
In the second case, a multivariate normal distribution, p(x2)∼N (µx2

,Σx2
), was used. In this

case, the vector of mean values equals the predicted parameters, µx2
=p (Table 1), and the

covariance matrix is diagonal, Σx2
=diag(u2

1,...,u
2
6) with off-diagonal terms (covariances) set to

zero. This prior neglects parameter correlation.10

Prior 3: Multivariate normal distribution with correlation among the soil hydraulic parameters.
The third and last prior builds on the previous distribution but explicitly considers correlation
among the soil hydraulic parameters, Σx2

=Σp. This prior is most informative in that it conveys
the mean, standard deviation, and covariance among the predicted soil hydraulic parameters.

Previous studies (e.g., Carsel and Parrish, 1988; Vrugt et al., 2003a) have shown that15

the correlation structure of the soil hydraulic parameters varies considerably between
the various textural classes. We therefore do not attempt to interpret the correlation
matrix or correlation coefficients listed in Table 1. Instead, what we look at is how the
prior distributions affect the prior uncertainty of the retention and hydraulic conductivity
functions. The results of this analysis are presented in Fig. 1, which plots the 95% con-20

fidence intervals of the soil hydraulic functions for each of the three prior distributions.
The largest spread of the soil hydraulic functions is observed when using a uniform
prior distribution (Prior 1, red line). The hydraulic functions within this confidence inter-
val are deemed equally likely a priori before any soil moisture data is processed. This
uncertainty is unequivocally large and places a premium on the soil moisture data to25

constrain the VGM parameters. When using an informative prior (Prior 2, blue line),
the uncertainty of the soil hydraulic functions is substantially reduced. Even though
parameter correlation is ignored the VGM parameters are much better constrained.
Even better results are obtained when parameter correlation is explicitly considered
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in the prior distribution (Prior 3, grey area). The confidence interval around the in-
flection point of the water retention function symmetrically shrinks, but the uncertainty
in the wet and dry ends is hardly affected. Qualitatively similar results are found for
the hydraulic conductivity function, but the uncertainty intervals are somewhat larger,
particularly in the dry range.5

2.5 Generation of synthetic data

To test the effectiveness and robustness of the Bayesian approach, we start with two
different synthetic data sets. In this case the true values of the soil hydraulic param-
eter values are known and we avoid uncertainty originating from boundary condition
errors and model structural inadequacies. We created a time series of observed soil10

water contents using the HYDRUS-1D model with hLB =−150 cm and values of the
soil hydraulic parameters derived from ROSETTA. The upper boundary conditions as
well as the measurement dates of the synthetic data set were the same as for the
real data set. A normally distributed error was added to the simulated soil moisture
contents to represent the combined effect of model structural, boundary condition, and15

observational data error. The magnitude of this random error was similar to the root
mean square error of the best HYDRUS-1D fit to the observed in situ water content
data (Sect. 3.2). This artificial data set was then used with the three different prior
distributions to inversely estimate the VGM parameters and hLB.

To test the robustness of our approach, we considered an alternative case in which20

we have a biased prior distribution of the VGM parameters. This constitutes a diffi-
cult test to establish whether our inverse modelling approach can correct the corrupted
initial information and infer the appropriate values of the respective soil hydraulic pa-
rameters. There are essentially two ways in which we can generate a biased prior
distribution. We can maintain the synthetic time series of soil water content obser-25

vations and corrupt the three different prior pdfs. A simpler approach followed herein
is to leave the prior pdfs untouched, but to create a new synthetic time series of soil
moisture observations with soil hydraulic parameters that differ substantially from their
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values derived with ROSETTA and used to create the prior pdfs. The VGM parameters
of this run were selected by drawing a large sample from Prior 3 and then purposely
picking a realization with very low prior probability. The synthetic data generated in
this way is inconsistent with the information contained in the three prior distributions.
We then estimated the VGM parameters using these three biased prior distributions.5

Upper boundary conditions and hLB were the same as before.

3 Results

3.1 Synthetic data

The results for the synthetic soil water content data with an unbiased prior are depicted
in Fig. 2. This plot shows the cumulative probability function of the estimated parame-10

ters corresponding to each of the three prior distributions. When using a uniform prior
(Prior 1, Fig. 2a), the water retention parameters θr, θs, α, and n were not identifi-
able, with posterior distributions that extend over the entire prior defined ranges. The
posterior distribution of the two additional soil hydraulic parameters Ks and L on the
contrary differed markedly from their prior distribution. Seemingly, the observational15

data contained sufficient information to constrain these two parameters. Unfortunately,
the pressure head at the lower boundary (hLB) was not warranted by calibration against
the synthetic soil moisture data. Very similar findings were observed with an informative
prior that does not explicitly consider correlation among the VGM parameters (Prior 2,
Fig. 2b). Note that hLB was somewhat better constrained but still demonstrates consid-20

erable uncertainty. This is a nice illustration of parameter interaction. Even though the
prior of hLB was the same for the three different prior distributions tested, this param-
eter became better identifiable if the VGM parameters were more constrained in their
prior pdf. An informative prior distribution with explicit consideration of the parameter
correlation (Prior 3, Fig. 2c) substantially improved the results. All the soil hydraulic25

parameters suddenly became well identified by calibration against the in situ soil water
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content measurements. Note that the modes of the posterior distribution did not nec-
essarily coincide with the actual parameter values used to generate the synthetic data.
This is a direct consequence of the random error used to corrupt the synthetic data.
Nevertheless, the true values of the VGM parameters and hLB remained within the
95% confidence interval of the posterior distribution. Altogether these results advocate5

the use of prior information in the fitting of field scale soil hydraulic functions. Indeed,
whereas field scale measurements of moisture dynamics contained insufficient infor-
mation to warrant a reliable identification of the soil hydraulic functions, prior information
derived from PTFs considerably reduced the uncertainty of the retention and hydraulic
conductivity functions. This finding is rather exciting, but it remains to be investigated10

how robust these conclusions are. For instance, would we obtain similar results if our
prior distribution is corrupt and inconsistent with the actual information content of the
soil moisture data? We therefore repeated the analysis but now with a biased prior
distribution.

The results for the biased priors are shown in Fig. 3. Perhaps rather surprisingly, but15

the results were qualitatively similar to those observed previously for the unbiased prior.
Prior distributions that did not explicitly consider correlation among the soil hydraulic
parameters performed rather poorly. Indeed, Prior 1 and Prior 2 did a rather poor job in
constraining the VGM parameters and did not yield reasonable estimates of the water
retention parameters. On the contrary, Prior 3 significantly improved the results and20

illustrates a reliable and robust identification of all the soil hydraulic parameters. This is
illustrated in more detail in Fig. 4, which presents pairwise scatter plots of the sampled
posterior parameter values and associated 95% confidence ellipses of the prior (blue
line) and posterior (red line) distribution. These ellipses were calculated based on
the assumption of a bivariate normal distribution of the respective parameters. The25

true parameter values are indicated in each individual plot using the square symbol.
Although the prior distribution of the VGM parameters was corrupt and assigns very low
probability to the true soil hydraulic properties, the 95% posterior confidence ellipses
encompassed the actual parameter values used to generate the synthetic time series
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of soil moisture dynamics. This finding inspires confidence in the effectiveness and
robustness of the Bayesian methodology. The likelihood function considered herein
was powerful enough to correct the biased prior information and converged upon the
appropriate values of the VGM parameters. Note that this required explicit knowledge
of the correlation structure of the soil hydraulic parameters.5

3.2 Real data

We now present the results for the actual soil moisture data set collected in the field.
In this case, we do not know the true values of the soil hydraulic parameters, and we
resort to our Bayesian inference scheme to provide posterior pdfs of the VGM parame-
ters and hLB. The results of this analysis are illustrated in Fig. 5. We draw very similar10

conclusions. Again, the use of a uniform prior (Prior 1, Fig. 5a) and multivariate normal
prior without correlation among the VGM parameters (Prior 2, Fig. 5b) did not warrant
a reliable identification of the soil hydraulic functions. Explicit consideration of param-
eter correlation in the prior pdf (Prior 3, Fig. 5c) substantially improved the results. To
verify whether the prior distribution of the parameters is consist with the information15

from the soil moisture data, please consider Fig. 6 which compares the 95% confi-
dence intervals of the prior distribution with the respective ellipses derived from the
posterior samples. The posterior samples are plotted separately with grey dots. Note
that hLB is drawn from a uniform distribution, and we therefore do not plot prior con-
fidence intervals for this particular parameter. This figure highlights several important20

observations. In the first place, notice that the prior uncertainty was generally larger
than the posterior uncertainty. The 95% confidence ellipses of the prior distribution
are much larger than their respective counterparts of the posterior distribution. In the
second place, notice that the prior distribution was unbiased and consistent with the
posterior samples. The VGM parameters predicted with ROSETTA matched closely25

with the soil hydraulic properties observed in the field. Finally, notice that the prior and
posterior distributions exhibited a very similar correlation structure, particularly for the
highly correlated parameters.
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Summary statistics of the prior and posterior distributions are listed in Table 2. We
also included the best values of the parameters by locating the point in the MCMC sam-
ple for which the posterior density was maximized. This solution is in close agreement
with the mean values of the VGM parameters separately derived with ROSETTA and
used to create the three different prior distributions. This again illustrates that our prior5

distribution was relatively unbiased, a testament to the ability of ROSETTA to generate
accurate predictions of the soil hydraulic functions from basic soil data. Yet, an unbi-
ased prior is not a requirement for the statistical inference to work well in practice. As
demonstrated earlier, the inference is sufficiently robust against biased prior informa-
tion as long as the correlation structure of the VGM is appropriately represented. Note10

also that the posterior uncertainty of hLB is quite large. In part, this may also reflect
the uncertainty in the underlying assumption of a constant pressure head at the lower
boundary.

Our analysis thus far has focused on analysing the prior and posterior distribution
without recourse to considering the actual HYDRUS-1D model predictions and soil15

moisture data. Figure 7 compares the observed and simulated soil moisture dynamics.
The dark grey region represents the 95% prediction uncertainty intervals associated
with the posterior parameter uncertainty, whereas the light grey region depicts the to-
tal predictive uncertainty. Details on how to compute these uncertainty intervals can
be found in Schoups and Vrugt (2010) and so will not be repeated herein. The in20

situ observations are denoted with circles. For completeness, the top panel plots the
observed rainfall hyetograph (blue) and potential evaporation (red). The HYDRUS-1D
model matched the data quite well, with a corresponding root mean square error of
0.009 and model efficiency (Nash and Sutcliffe, 1970) of 0.87. The soil moisture ob-
servations at day of year 190 and 238 fall outside the prediction uncertainty bounds25

and cannot be fitted with the HYDRUS-1D model. Unfortunately, it is not particularly
clear what exactly caused this discrepancy. This mismatch can be attributed to poten-
tial errors in the boundary condition, model structural inadequacies, or measurement
errors. Additional research is needed to explain the deviation of the model prediction
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from these data points.
Figure 8 plots the 95% prediction uncertainty ranges of the soil hydraulic functions

corresponding to the prior and posterior distributions. We also plotted the observed
soil water content data. Note that the in situ data exhibit relatively small variability
and cover only a limited range of soil water states. Seemingly, the naturally occur-5

ring boundary conditions display insufficient variability to make the soil water content
at this observational depth cover the entire water retention function and warrant a re-
liable identification of the soil hydraulic functions. This explains, at least in part, why
in situ observations of soil water dynamics contain insufficient information to reliably
estimate all VGM parameters. Indeed, prior information was needed to help constrain10

the posterior distribution of the soil hydraulic properties.
The likelihood function used herein was based on assumptions of uncorrelated, ho-

moscedastic, and normally distributed residuals. If any of these assumptions has been
violated then our parameter distributions and corresponding HYDRUS-1D model pre-
dictions are subject to considerable error and should be revisited. Good statistical15

practice therefore constitutes checking whether the underlying assumptions of the like-
lihood function have been met (e.g., Schoups and Vrugt, 2010). Three different diag-
nostic tests have been conducted, and the results of this are plotted in Fig. 9. Each
panel considers a different statistical test. The top panel measures the correlation
among the residuals by plotting the autocorrelation function. The blue lines denote20

theoretical upper and lower 95% significance intervals of a time series of white residu-
als (no correlation). The circles (partial autocorrelation at given lag) remain within the
interval of the blue lines, and we therefore conclude that the residuals are uncorrelated.
The first assumption was met. The middle panel tests whether the size of the resid-
ual depends on the magnitude of the soil moisture observation. There is no apparent25

statistical trend. The residuals appear homoscedastic and independent on the magni-
tude of the calibration data. Assumption two was also met. Finally, the bottom panel
presents a quantile-quantile plot and explores whether the residuals follow a normal
distribution (blue line). The circles (percentiles) nicely coincide with the blue line. We
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therefore conclude that all assumptions of the likelihood function were met and that the
parameter distributions and predictive uncertainty estimates are adequate.

4 Discussion

The results presented in this paper indicate that in situ observations of soil water con-
tent in bare soil under natural boundary conditions do not contain sufficient information5

to warrant a reliable estimation of the soil hydraulic parameters. This finding is not new
but has been reported in many other studies. Naturally occurring boundary conditions
display insufficient variability to results in a wide range of soil moisture states, a pre-
requisite to successfully estimating the VGM parameters (Vrugt et al., 2001, 2002).
The information for some of the soil hydraulic parameters simply appears beyond the10

range of the actual soil moisture observations, and these parameters are therefore in-
sensitive and very difficult to constrain. There is different ways in which the information
content of our data could have been increased. The simplest approach is to increase
measurement frequency and measure directly after rainfall events (Fig. 7). This would
have resulted in a larger range of observed soil water states and likely reduced the15

uncertainty of θs and Ks (Fig. 8). The presence of vegetation, and hence uptake of
water by plant roots, would have extended the range of observed soil water states to
the dry end. This gain of information, however, comes at a cost. The simulation of
root water uptake as a function of time and depth requires specification of additional
root water uptake parameters, which would need to be estimated simultaneously with20

all the other parameters, introducing additional parameter and model uncertainty (e.g.,
Ines and Mohanty, 2008; Wollschläger et al., 2009).

As a consequence of the limited amount of information contained in the observa-
tional data, estimates of the soil hydraulic parameters were subject to substantial un-
certainty (Figs. 2 and 5). Our results indicate that this seems to be especially true25

for the retention parameters. To better understand these findings, please refer to the
results presented in Vrugt et al. (2001, 2002). They used numerical experiments and
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recursive MCMC simulation to explain why most studies demonstrate problems with
soil hydraulic parameter inference. Vrugt et al. conclusively demonstrate that a wide
range of soil moisture states is required to reliably constrain the soil hydraulic functions.
For instance, they found that most information on θs and θr is contained in the wet and
dry range of the water retention curve, respectively. In addition, Vrugt et al. found that5

most information on α is contained in soil water content observations just beyond the
air entry value of the soil, and that most information on n is contained in the observa-
tion well beyond the inflection point of the water retention function. Obviously, the data
set considered herein covered a rather limited range of soil moisture values (Fig. 8),
which explains why a uniform prior distribution (Prior 1) or multivariate normal prior that10

neglects correlation (Prior 2) are not strong enough to reduce parameter uncertainty.
The reason why Prior 3 works well in practice is because parameter correlation among
the VGM parameters exerts a strong influence on the possible soil hydraulic functions.

The parameters L and Ks that define the hydraulic conductivity function were some-
what better identified than the retention parameters (Figs. 2 and 5). Seemingly, the15

observed soil water content data, albeit covering a small range of soil water states, still
contained valuable information about L and Ks. This reinforces our argument that the
information content of the data should dictate which parameters are being fixed, rather
than common practice. Indeed, L is often fixed at some nominal value because it is
deemed unimportant or insensitive (e.g., Abbaspour et al., 2000; Wollschläger et al.,20

2009).
The usefulness of the Bayesian approach considered herein essentially relies on the

availability of information about the correlation among the soil hydraulic parameters.
This correlation structure differs between soils, and we therefore need general ap-
proaches that can help build such informative prior distributions. In this study, we used25

the ROSETTA PTF to obtain prior information about the VGM parameters and their cor-
relation structure. PTFs are easy to use in practice and require only limited soil data
that is readily available in most studies. Mertens et al. (2004) used a more elaborated
approach and created prior distributions by combing information from laboratory and
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field experiments. This approach works well in practice but requires more experimen-
tation, resources, and time. PFTs therefore exhibit desirable advantages.

A recent review by Vereecken et al. (2010) discusses the strengths and limitations of
existing PTFs to make accurate and reliable predictions of the parameters in the VGM
model. They make also suggestions on how to improve the predictive capabilities of5

future PTFs. We like to add to their suggestions to include information on parameter
correlation in the output of future PTFs. This information is useful in Bayesian inverse
modelling, as shown in this study, but also in other applications such as stochastic
modelling of soil hydraulic properties and soil water flow (e.g., Mishra and Parker, 1989;
Mallants et al., 1996).10

5 Summary and conclusions

Many contributions to the soil hydrological literature have demonstrated the limited in-
formation content of in situ measurements of soil water state variables to estimate the
soil hydraulic properties. One approach that helps to improve the inverse identifia-
bility of the soil hydraulic parameters and reduce the uncertainty in the soil hydraulic15

functions is to use observations of different soil water state variables. This approach
works in practice but places a heavier demand on measurement resources. Another
approach that has yet received very little attention is to formulate an informative prior
distribution of the soil hydraulic parameters and combine this distribution with the in
situ observations using Bayes’ theorem. The prior distribution reflects knowledge of20

the soil hydraulic parameters before any measurements of the soil water state have
been taken and processed.

In this paper, we tested whether prior information on the soil hydraulic parameters
can help improve the identifiability of the soil hydraulic parameters in inverse modelling
of in situ soil water dynamics. Basic soil data (percentages of sand, silt, and clay)25

was used to formulate three different prior distributions using ROSETTA. This com-
puter program uses an ensemble of PTFs to predict the VGM parameters from different
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hierarchical levels of input data. We purposely used soil textural information because
this information is readily available in most vadose zone studies. We illustrated our ap-
proach using synthetic and real-world observations of soil water content. The results
demonstrated that prior information on the VGM parameters significantly reduced the
uncertainty in the soil hydraulic functions during Bayesian inverse modelling of in situ5

soil water dynamics. Analysis with synthetic data elucidated that this approach was
effective and robust, even in the case of a biased prior distribution. To be effective and
robust, however, we needed an informative prior distribution that explicitly incorporated
knowledge of the correlation structure of the soil hydraulic parameters. The Bayesian
framework presented in this study can be applied to a wide range of vadose zone stud-10

ies and provides a blueprint for the use of prior information in inverse modelling of in
situ soil water dynamics at various spatial scales.
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Table 1. Mean values, standard deviations, and Pearson correlation coefficients of the
ROSETTA (Schaap et al., 2001) predicted soil hydraulic parameters used to define the three
different prior distributions. In addition, the lower and upper bounds of the soil hydraulic param-
eters are listed.

standard Pearson correlation coefficients lower upper
parameter unit mean deviation θr θs log10(α) log10(n) log10(Ks) L bound bound

θr cm3 cm−3 0.067 0.006 1.00 0.043 0.091
θs cm3 cm−3 0.445 0.009 0.18 1.00 0.409 0.481
log10(α) cm−1 −2.31 0.060 0.81 0.71 1.00 −2.55 −2.07
log10(n) – 0.223 0.011 −1.00 −0.24 −0.85 1.00 0.179 0.267
log10(Ks) cm h−1 −1.16 0.270 −0.40 0.83 0.21 0.33 1.00 −2.24 −0.08
L – 0.39 1.47 −1.00 −0.17 −0.81 1.00 0.40 1.00 −5.49 6.27
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Table 2. Summary statistics of the prior and posterior distributions using real soil water content
data and the prior distribution that accounts for correlation among the soil hydraulic parame-
ters (Prior 3). Instead of the mean values, the parameters with maximum posterior density
(MPD) are given for the posterior distribution. In addition, the lower and upper bounds of the
parameters are listed.

prior distribution posterior distribution lower upper
parameter unit 2.5% mean 97.5% 2.5% MPD 97.5% bound bound

θr cm3 cm−3 0.055 0.067 0.079 0.062 0.066 0.068 0.043 0.091
θs cm3 cm−3 0.427 0.445 0.463 0.432 0.445 0.454 0.409 0.481
α cm−1 0.0037 0.0049 0.0064 0.0043 0.0048 0.0051 0.0028 0.0085
n – 1.59 1.67 1.76 1.66 1.68 1.70 1.51 1.85
Ks cm h−1 0.021 0.069 0.234 0.032 0.074 0.146 0.006 0.832
L – -2.49 0.39 3.27 0.11 0.63 1.53 −5.49 6.27
hLB cm – – – −170 −128 −106 −250 −50
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Fig. 1. 95% prior uncertainty bounds of (a) the water retention function and (b) the hydraulic
conductivity function corresponding to the three prior probability distributions of the soil hy-
draulic parameters: multivariate uniform distribution (Prior 1), multivariate normal distribution
without correlation among the soil hydraulic parameters (Prior 2), and multivariate normal dis-
tribution with correlation among the soil hydraulic parameters (Prior 3).
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Fig. 2. Cumulative posterior probability distributions using synthetic soil water content data
and three different unbiased prior probability distributions: (a) multivariate uniform distribution
(Prior 1), (b) multivariate normal distribution without correlation among the soil hydraulic param-
eters (Prior 2), and (c) multivariate normal distribution with correlation among the soil hydraulic
parameters (Prior 3). The blue lines represent the prior distributions. The red circles denote
the 2.5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 97.5% quantiles of the posterior distributions,
respectively. The grey lines mark the parameter values used to generate the data. The x-axes
cover the feasible space of the parameters.
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Fig. 3. Cumulative posterior probability distributions using synthetic soil water content data
and three different biased prior probability distributions: (a) multivariate uniform distribution
(Prior 1), (b) multivariate normal distribution without correlation among the soil hydraulic param-
eters (Prior 2), and (c) multivariate normal distribution with correlation among the soil hydraulic
parameters (Prior 3). The blue lines represent the prior distributions. The red circles denote
the 2.5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 97.5% quantiles of the posterior distributions,
respectively. The grey lines mark the parameter values used to generate the data. The x-axes
cover the feasible space of the parameters.
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Fig. 4. Pairwise scatter plots of the posterior sample and corresponding 95% confidence el-
lipses using synthetic soil water content data and the biased prior probability distribution with
correlation among the soil hydraulic parameters (Prior 3). The axes cover the feasible space of
the parameters.
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Fig. 5. Cumulative posterior probability distributions using real soil water content data and three
different prior probability distributions: (a) multivariate uniform distribution (Prior 1), (b) multi-
variate normal distribution without correlation among the soil hydraulic parameters (Prior 2),
and (c) multivariate normal distribution with correlation among the soil hydraulic parameters
(Prior 3). The blue lines represent the prior distributions. The red circles denote the 2.5, 10, 20,
30, 40, 50, 60, 70, 80, 90, and 97.5% quantiles of the posterior distributions, respectively. The
grey lines mark the parameter values used to generate the data. The x-axes cover the feasible
space of the parameters.
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Fig. 6. Pairwise scatter plots of the posterior sample and corresponding 95% confidence el-
lipses using real soil water content data and the prior probability distribution with correlation
among the soil hydraulic parameters (Prior 3). The axes cover the feasible space of the param-
eters.
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Fig. 7. 95% predictive uncertainty bounds using real soil water content data: (a) meteorological
forcing and (b) observed and predicted soil water content. The dark grey region represents the
predictive uncertainty due to uncertainty in the estimated parameters. The light grey region
denotes the predictive uncertainty due to the combined effect of parameter, model, boundary
condition and calibration data uncertainty.
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Fig. 8. 95% prior and posterior uncertainty bounds of (a) the water retention function and (b)
the hydraulic conductivity function using real soil water content data and the prior probability
distribution with correlation among the soil hydraulic parameters (Prior 3). Additionally, the
observed soil water contents are plotted.
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Fig. 9. Diagnostic plots of the model residuals using real soil water content data: (a) partial
autocorrelation function with theoretical upper and lower 95% significance intervals of a time
series of white residuals, (b) residuals as a function of the simulated soil water content, and (c)
quantile-quantile plot.
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