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Abstract

A spatial probability distribution of the variables in a parametric snow depletion curve
(SDC) is tailored to the assimilation of satellite snow cover data into a gridded hydro-
logical model. The assimilation is based on Bayes’ theorem, in which the proposed
distribution represents the a priori information about the SDC variables. From the prior5

gridded maps of snow storage and accumulated melt depth, the elevation gradients
and the degree-day factor are separated out, creating elevation-normalised surfaces
of snow storage and degree-day sum. Because the small-scale variability linked to el-
evation is removed, these surfaces can be described by prior distribution models with
a strong spatial dependency structure. This reduction of spatial uniqueness in the10

prior distribution greatly increases the informational value of the remotely sensed snow
coverage data.

The assimilation is evaluated in a 2400 km2 mountainous region in central Norway
(61◦ N, 9◦ E), based on two Landsat 7 ETM+ images evaluated at 1 km2 scale. An
image acquired on 11 May, a week before the peak flood, removes 78% of the variance15

in the remaining snow storage. Even an image from 4 May, less than a week after the
melt onset, reduces this variance by 53%. Including observed discharge in the updating
information improves the 4 May results, but has weak effect on 11 May. Estimated
elevation gradients are shown to be sensitive to informational deficits occurring at high
altitude, where snowmelt has not yet started. Caution is therefore required when using20

early images.

1. Introduction

The utilization of water resources in mountainous regions is often in lack of precise
measurements, due to harsh climate and remote situation. This also applies to the es-
timation of a seasonal snow pack. The potential of remote sensing to collect spatially25

distributed information of the snow storage is therefore of great interest for water supply
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or hydropower production planning, as well as flood forecasting. Satellite based mea-
surements of snow water equivalent (SWE) is limited to coarse spatial scales, and with
considerable restrictions on snow conditions. At 25 km resolution, passive microwave
measurements from SSM/I are able to represent dry snow SWE fairly well in flat, low-
lying regions, but show large deviations in mountainous areas (Brubaker et al., 2000).5

Research is currently progressing on the use of interferometric techniques on active
microwave (radar) data, reporting an accuracy of 100 mm for 10×10 km resolution es-
timates, also restricted to dry snow (Engen et al., 2004). Further progress is expected,
in particular with radar sensors planned for the near future.

In contrast, the snow covered area (SCA) can be retrieved with good accuracy at10

a range of scales. Both optical sensors and active microwave instruments have been
used to map SCA, the latter with the advantage to measure independently of cloud
coverage. Obviously, SWE and SCA are related, and using this relation to extract SWE
information from SCA images represents an alternative to direct SWE observation.
The simplest possible relationship is based on a binary classification of the presence15

of snow, which can be combined with heuristic rules for how to adjust the SWE (Rodell
and Houser, 2004), to validate the simulations of a hydrological model (Sheffield et
al., 2003), or to support the interpolation of SWE from point measurements (Ranzi
el al., 1999; Molotch et al., 2004). These types of relationship are particularly useful
in large-scale operational hydrological models, or for land surface schemes used in20

atmospheric models.
Multispectral techniques have proved effective in mapping sub-pixel SCA. Rosenthal

and Dozier (1996) report a regression tree-based estimation of SCA from Landsat TM
images, calculating fractional SCA within 30-m grid cells with a general accuracy of
around 7%. Salomonsson and Appel (2004) extract fractional SCA at 500 m resolution25

with an accuracy of 10% using the NDSI index from MODIS data. Thus in alpine
regions with deep, heterogeneous snow packs, sub-pixel SCA can be observed at
scales where the SWE-SCA relation is strong, enabling monitoring and updating of the
snow cover mass balance during the melt season. The main difficulty for utilising this
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relation is that it depends on several variables within a spatial observation unit, whereas
the SCA information is a single number. Thus, the estimation of model state suffers
from a large information deficit, and the adjustment required to achieve the measured
SCA is not uniquely defined.

The main aim of the current paper is to overcome the information deficit by identifying5

processes leading to similarity among grid cells, thus reducing the effective number of
independent state variables to be updated. The development builds upon the Bayesian
method presented by Kolberg and Gottschalk (2005), and introduces spatially invariant
and spatially connected variables in the prior distribution. The assimilation is presented
in an updating context, but also addresses variables normally considered as calibration10

constants rather than dynamically simulated states. The analysis is not tied to any
specific hydrological model, but assumes the existence of a general, grid distributed
model, which in each grid cell maintains the snow cover mass balance by a snow
depletion curve (SDC) relating the mass balance to the snow covered area.

2. Assimilation by Bayesian updating15

Bayes’ theorem expresses how measured data D change a statistical distribution of a
parameter vector θ , which may include any unknown or uncertain variable related to D.
The prior knowledge about θ is expressed as a joint distribution of parameters p(θ ),
and the relation between the parameters and the observed data is also given in terms of
a statistical distribution p(D|θ ), expressing the probability of the measured data given20

the parameters. Considered as a function in θ with D as parameters, this is called
the likelihood function, and its multiplication with the prior p(θ ) gives the posterior
distribution p(θ |D):

p(θ |D) ∝ p(θ ) · p(D|θ ). (1)

The proportionality symbol indicates the absence of the normalisation constant, which25

must be found by integrating the right hand side of Eq. (1). Properly normalised, the
1188
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posterior distribution contains our knowledge of θ conditioned on D, and is the basis
for estimating elements of θ , typically by expectation (minimum squared error), mode
(maximum likelihood), or median (minimum absolute error).

In the current application, D contains the satellite information, and possibly some
observations of runoff. The vector θ contains the variables describing the SDC in each5

grid cell in the region. The prior distribution p(θ ) has a joint expectation E [θ ], typically
consisting of the simulated values in the hydrological model. Similarly, the expectation
E [θ |D] of the posterior p(θ |D) represents updated estimates with which we can re-
initialize the hydrological model. The prior V ar [θ ] and posterior V ar [θ |D] variance
describe the uncertainty before and after updating, respectively, and from these we10

can compute the fractional reduction of variance, indicating the informational value of
D.

The regarding of hydrological model parameters as stochastic variables, with dis-
tributions subject to updating by conditioning on measurements, was introduced by
Binley and Beven (1991). Their GLUE technique (Generalized Likelihood Uncertainty15

Estimation), follows a Bayesian approach, but relaxes the formal rigour of likelihood
construction. A principal discussion of such relaxations appears in Beven and Young
(2003) and Gupta et al. (2003). Engeland and Gottschalk (2002) apply Bayes’ the-
orem to the determination of parameters in a regional model, based on streamflow
observed in several catchments within the region. Recently, methods for combined pa-20

rameter and state estimation by data assimilation have been presented by Moradkhani
et al. (2005) and Vrugt et al. (2005).

By their spatial nature, satellite data are particularly valuable for calibration and vali-
dation of distributed models. Blöschl et al. (1991) used observed snow cover patterns
to evaluate model performance, by comparing simulated and observed maps. By re-25

lating the patterns to process-governing terrain features, they were able to link quali-
tatively the observation errors to specific process representations in the model. Kirn-
bauer et al. (1994) concluded that spatial observations of snow cover patterns were
clearly able to reveal poor model assumptions, to which the measured streamflow time

1189

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1185/hessd-2-1185_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1185/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1185–1219, 2005

Bayesian
assimilation of snow

cover data

S. Kolberg et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

series was insensitive. The current approach can be used to extend such inference to
quantitative estimates of errors and uncertainty, and to express the severity of ill-posed
assumptions in terms of likelihood of observations.

3. Approach and method

The snow depletion curve (SDC) concept is extensively discussed by Liston (1999,5

2004), Luce et al. (1999), and Luce and Tarboton (2004). Applied to a spatial unit with
heterogeneous snow storage, the SDC describes how the snow covered area (SCA)
changes with the progress of melt. Assuming melt rate to be sub-grid homogeneous,
the SDC is also equivalent to the sub-grid cumulative spatial distribution of point snow
storage at the start of the melt season (Liston, 1999; Luce et al., 1999). In the SDC10

formulation, most of the variables are static descriptors of the end-of-winter snow pack,
with the accumulated melt depth (termed λ) as the only necessary dynamic variable.
As argument to the SDC, λ defines the bare ground fraction y , the accumulated melt
runoff Q, and the remaining snow storage SWE (Fig. 1).

Luce and Tarboton (2004) analyse nine years’ empirical SDC for a wind-swept, low-15

vegetation mountainous area, and conclude that normalised SDCs are remarkably sta-
ble between years, and that the choice of a parametric model is less important than the
estimation of a coefficient of variation. Both of these results are important for applying
a SDC model to each grid cell in a large region, because even an extensive survey
will only cover a small fraction of the cells. It is thus necessary to use a parsimo-20

nious statistical model for the SDC. Several parametric models have been proposed,
for instance 2-parameter Lognormal (Essery et al., 1999; Liston, 2004), 3-parameter
Lognormal (Donald et al., 1995), 3-parameter Beta (Brubaker and Menoes, 2001), or
3–5-parameter weighted combinations of Normal and/or Lognormal distributions (Bru-
land et al., 2001; Marchand and Killingtveit, 2004).25

In this study, a 3-parameter mixed distribution is selected to describe the SDC in
each grid cell. The parameter y0=prob(x=0) gives the fractional area of bare ground
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in the cell at the time of melt onset. In the remaining, snow covered part of the cell, the
distribution of SWE is described by a 2-parameter Gamma model. This Gamma model
is parameterized by the mean value m and coefficient of variation cv , both characteriz-
ing the snow pack at the end of the accumulation season. This choice makes it easier
to specify prior distributions, both because m and cv more directly reflect the typically5

available prior information, and because the spatial distributions of the traditional shape
and scale parameters are shown to be strongly dependent (Kolberg, 2001). The snow
depletion curve gives the bare-ground fraction y as a function of the accumulated melt
depth λ:

y = SDC
(
λ|m,cv, y0

)
= y0 + (1 − y0) y ′ (5)10

y ′ =

λ∫
0

f (x;m,cv)dx = γ
(

1

cv2
,

λ
m · cv2

)
(6)

Here, γ (·, ·) is the incomplete gamma function, expressing the cumulative Gamma dis-
tribution with shape cv−2 and scale m−1cv−2, evaluated in λ. It is worth noting that the
main mass balance governing variables m and λ appear only as a ratio, and thus that
an observation of the bare-ground fraction y only provides information on the relative15

magnitude of the two.

4. The spatial prior distribution

Kolberg and Gottschalk (2005) presented a Bayesian method for updating the state
of a snow cover model formulated as above, applied separately to each grid cell in a
region. The results in terms of variance reduction were moderate, and in particular20

the mass balance components variables λ andm did not achieved substantial increase
of precision. Introducing spatial dependency was identified as one possible route to
increase the value of the observations (Kolberg and Gottschalk, 2005). The current
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paper presents a spatial model for the mass balance variables, transforming the ac-
cumulated melt depth λ and the end-of-winter snow storage m into new variables for
which the spatial surfaces are smoother.

4.1. Identification of spatially constant variables

Removal of trends, periodicities and other deterministic features from a surface prior5

to fitting a spatial dependency structure is common in geostatistics. For the average
snow storage m we identify an elevation gradient gm, which is considered global, that
is, having no spatial variance. Expressed in relative increase per unit elevation, this
gradient may be approximated by the similar gradient in precipitation, neglecting pre-
spring melt events and different accumulation periods. Removing the effect of gm from10

m results in an elevation-normalized expected snow storage m∗. The transformation
from m to m∗is:

m = m∗ (1 + gm)(h−h
∗) ; gm =

1
m
∂m
∂h

(7)

Here, h is elevation, and the asterisk denotes a reference altitude; typically the eleva-
tion which is best represented by measurements. As is common for the precipitation15

lapse rate, the elevation gradient in m is expressed in relative terms, and thus the el-
evation normalization must be multiplicative to ensure consistency and independence
of the reference altitude.

Regarding the accumulated melt depth, λ is first decomposed into a degree-day
factor Cx and a sum of positive temperatures z. The degree-day sum z is further de-20

composed into an elevation gradient gz and an elevation-normalized degree-day sum
z∗. The chosen decomposition does not require the hydrological model to be based on
these concepts, although this will frequently be the case. Formally, the transformations
from λ to z∗ are:

λ = Cx · z ; z = MAX (0, z∗ + gz (h − h∗)) ; gz =
∂z
∂h

(8)25
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Again, h is elevation, the asterisk indicates a reference altitude, while Cx is the degree-
day factor and z the local degree-day sum. The elevation gradient gz applies to the
aggregated sum of positive degree-days, not to momentary temperature values, and
consequently it is a dynamic variable. Its formulation as a linear trend is an approxima-
tion, not a result of its connection to the temperature lapse rate. The calculation of z5

may include commonly applied nonlinearities like a zero-melt threshold temperature, a
refreezing efficiency factor, or a maximum cold content in the snow pack.

Over a region of n grid cells, the prior distribution now consists of 4n+3 variables;
namely the four gridded maps of m∗, z∗, cv , and y0, and the three global variables gm,
gz, and Cx. The global variables are constant in space, but they are still stochastic vari-10

ables, specified by distributions and subject to Bayesian updating. A priori, we assign
Normal distributions to each of the two elevation gradients, and a Gamma distribution
to the temperature index. The sub-grid coefficient of variation cv and the initial bare
ground fraction y0 are neither transformed nor given any spatial connectivity in their
distributions. A Gamma prior distribution is applied to to cv in each grid cell, and y015

is similarly given local Lognormal priors. It remains to specify the spatially connected
prior distributions for m∗ and z∗.

4.2. Constructing spatial distributions of m∗ and z∗

With the elevation gradients removed, the spatial surfaces of z∗ and m∗ naturally con-
tain less variance than the corresponding surfaces of λ and m. More important, the20

variance components removed with the global effects mainly follow the spatial scale of
the terrain, which is small compared to the spatial scale of the reference-altitude sur-
faces. Thus, the transformed surfaces not only have reduced variance, they are also
smoother than the original. Spatial data sets with this property are ideal for modelling
by spatially connected distributions.25

A convenient class of spatial models is the Gaussian Markov Random Field (GMRF).
Contrary to a full multi-normal distribution, which in a region of n grid cells would have
a n×n covariance matrix, the Markov property states that all spatial dependency is
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described by a limited neighbourhood (Rue and Tjelmeland, 2002). Hence, spatially
connected prior distributions can be specified in terms of conditional moments, each
cell depending only on its neighbours. In this case the neighbourhood is set to contain
the four directly adjacent cells, and for z∗, the conditional moments are given as:

E
[
z∗i |z

∗
{j}

]
= E

[
z∗i
]
+
σi
nj

nj∑
j=1

z∗j − E
[
z∗j
]

σj

 ; V ar
[
z∗i |z

∗
{j}

]
= σ

2
i
/
nj (9)

5

Here, index i denotes the local cell, {j} denotes its nj neighbours, and σ2
i denotes the

marginal variance in grid cell i. Formally, this is a first order Intrinsic GMRF applied
to the standardized variable, standardisation being necessary because both marginal
moments vary over space. The full stochastic model for λi is then given by:

λi = Cx · zi (10)10

Cx∼Gamma
(

E2 [Cx]
V AR [Cx]

,
E [Cx]
V AR [Cx]

)
, (by method of moments) (11)

zi = MAX
{
0 , z∗i + gz (hi − h∗)

}
(12)

∂z
∂h

∼N (E [gz] , V AR [gz]) (13)

z∗i |z
∗
{j}∼N

E [z∗i ] + σi
nj

∑
j

z∗j − E
[
z∗j
]

σj

 , σ2
i
/
nj

 (14)

The conditional moments of m∗ are defined identically as for z∗, and the full stochastic15

model for m is developed similarly to that for λ, except that the Cx term is excluded,
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the lapse rate is in relative terms (and thus multiplicative), and the MAX function is
obsolete.

The introduction of spatial connectivity not only reduces the effective number of vari-
ables to be estimated, but also aids in moving information between cells. This is im-
portant because the information content of an observation varies with both the prior5

and the observed conditions (Kolberg and Gottschalk, 2005). A grid cell with prior E [λ]
close to 0 receives little or no mass balance information if the observed y is close to
y0. But if grid cells within the range of spatial influence have larger λ due to a lower
elevation, or a higher cv giving higher y for the same λ, these cells do receive such
information, affecting the first cell by the spatial dependence. A special effect of this is10

that updating may take place also in grid cells with missing observations. Optical satel-
lite images are notoriously sensitive to cloud coverage, and the value of an updating
routine greatly increases with the usefulness of partially cloudy scenes.

4.3. Estimating the prior distributions

Estimating the prior moments of the transformed variables in an actual situation, the15

prior E [z] is provided either from degree-day model simulations of λ with a known Cx,
or from interpolating time-aggregated air temperature data. The prior E [gz] is then esti-
mated from the map of E [z], using only grid cells with substantially positive z. Similarly,
prior E [m] may be taken either from the hydrological mass balance simulations or from
a geostatistical analysis of point precipitation and/or snow survey data; and E [gm] is20

estimated from the prior E [m] map. Estimates of prior marginal variance of m∗ and z∗

are provided by geostatistical analysis, or can be assessed subjectively if these vari-
ables are taken from the hydrological simulations. The conditional variances are then
the marginal scaled down by a factor nj (Eq. 9).

Prior moments for cv are assessed from published and unpublished data from his-25

torical snow surveys in Norwegian mountains (Kolberg, 2001). For y0, the assessment
is largely subjective (Kolberg and Gottschalk, 2005). Provided that these parameters
exhibit some regularity in their inter-annual variation, information accumulated from a
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large number of images would otherwise provide a good basis for estimating the local
prior distributions of cv and y0. For the three global variables, the prior variance is
also assessed and set subjectively in the current analysis, but could be supported by
multi-altitude measurements, or Monte Carlo-based calibration by methods presented
by Binley and Beven (1991) or Vrugt et al. (2003).5

5. The likelihood function and the observations

5.1. SCA-based likelihood

Having specified the prior, the second term on the right hand side of Bayes’ theorem is
the likelihood of the parameters, given the observations. For a single observed bare-
ground fraction yobs in grid cell i and the image acquired on date t, a Beta distribution10

is selected to represent the likelihood:

P
(
yobsit |m∗

i , gm, z
∗
i t, gzt, Cx, cvi , y0i

)
=

Γ (ϕi t + ψi t)
Γ (ϕi t)Γ (ψi t)

(
yobsit

)ϕi t−1 (
1 − yobsit

)ψi t−1
(15)

Its parameters are determined by the method of moments:

ϕi t=E [yi t]

E [yi t] (1−E [yi t])

V ar
[
yobsit

] −1

 ; ψi t= (1−E [yi t])

E [yi t] (1−E [yi t])

V ar
[
yobsit

] −1

 (16)

The likelihood expectation E [yi l ] is the simulated y value given all SDC parameters:15

E
[
yi t |m∗

i , gm, z
∗
i t, gzt, Cx, cvi , y0i

]
=

y0i+ (1−y0i ) · γ
(

1

cv2
,
Cx ·MAX

{
0, z∗i t + gzt∆h

}
cv2 ·m∗

i (1+gm)∆h

)
(17)
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The variance V ar [yi t] is the estimated observation variance from the satellite image
analysis.

Since all the y values for a single cell over n observations are considered condition-
ally independent, the multi-observation likelihood for a single cell is simply given by
the product of the single-event likelihoods. Correspondingly, since the observations in5

different cells are also considered conditionally independent, the likelihood for the total
set of observations is the product of all the single-cell likelihoods.

5.2. Discharge-based likelihood

The transition of the assimilation task from a cell-by-cell independent routine to a spa-
tial problem with both global and spatially connected variables, increases the relevance10

of any runoff measurements in the region. Engeland and Gottschalk (2002) have used
measured discharge time series in Bayesian inference, and developed likelihood mod-
els including autoregressive terms. In this paper, however, only the accumulated runoff
Qacc to date is used. The difference between catchment runoff and outlet discharge,
corresponding to the change in the internal water storage St, is modelled by a simple15

linear tank. The tank content is assumed to be zero at the melt onset, and estimated
from the measured discharge on the actual day.

The storage term is assumed to be the major source of uncertainty in the catchment
runoff as estimated from measured discharge, and is subjectively assigned a stan-
dard deviation of half its size. The relative uncertainty in the measured accumulated20

discharge is, again subjectively, assessed to 5%. The uncertainty contributions are
rescaled to variance and added together:

σ2
qs = V ar [Qacc + St] = V ar [Qacc] + V ar [St] = (Qacc · 0.05)2 + (St · 0.5)2 (18)

Similarly to the SCA-based likelihood, the discharge-based likelihood expectation is
given from the SDC parameter values, and the variance from the observations. The25

discharge-based likelihood is assumed to follow a Normal model, and with observed
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accumulated runoff Qacc and storage St estimated from actual-day discharge Qt, the
likelihood for the sum Qacc+St is:

P
(
Qacc + St |Q̄t

)
=

1
√

2πσqs
exp

[
− 1

σ2
qs

(
Qacc+St−Q̄t

)2]
; Q̄t=

1
n

n∑
i=1

Qi (θi ,t) (19)

where Qi (θi ,t) is accumulated runoff at cell i and to date t, given the local SDC pa-
rameter set θi ,t. Whether or not the discharge-based likelihood term is included, the5

posterior distribution is analytically intractable, and is sampled by Markov Chain Monte
Carlo techniques using the Metropolis-Hastings algorithm (Chib and Greenberg, 1995).

6. Site and data

The assimilation of observed snow covered area into spatially distributed snow de-
pletion curves is evaluated over a 60×40 km rectangular region covering the Vinstra10

and Sjoa catchments in Jotunheimen, central Norway, at 61.4◦ N, 8.6◦ E. The elevation
ranges from 710 m a.s.l. to 2240 m a.s.l measured at grid scale. Sparse forest and
lakes each cover about 10% of the area, small glaciers are present at high altitudes.
The accumulation season usually starts in November, and snowmelt in late April or
May, depending on elevation.15

From two Landsat 7 ETM+ images acquired during the 2000 melt season, gridded
maps of fractional bare ground y and its standard error are estimated at 30 m scale,
using the decision tree algorithm of Rosenthal and Dozier (1996). Minor adjustments
are made to adapt the Landsat 5 TM-based routine to the Landsat 7 ETM+ sensor,
which has a different sensitivity in some of the bands. Cloud and lake masks were20

applied at the same scale, discarding the corresponding 1 km cell if occupying more
than 20% of its area.

Runoff observations exist in 6 catchments, which total area covering approximately
half the total region. Five of these are nested, heavily regulated subcatchments in
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the Vinstra drainage area, with a total area of 744 km2; whereas Sjoa is 473 km2 and
unregulated. Naturalized flow series from regulated catchments are known to be of
reduced quality on daily and sub-catchment scale, but accumulated over a larger period
and area, the uncertainty in the discharge observations from the naturalized series
approaches the unregulated.5

For the 2000 melt season, 9 updating experiments are run; with satellite data sets
from 4 and 11 May used separately and combined; and runoff information either not
included, aggregated from the whole gauged part of the region, or from the Sjoa and
Vinstra catchments separately. Simulated melt depths suggest a melting front at ap-
proximately 1500 m a.s.l. on 4 May, and at approx. 1800 m a.s.l. on 11 May.10

7. Results

7.1. Direct comparison of prior and observed bare-ground fraction y

Before starting to analyse the results of the Bayesian updating, Figs. 2 and 3 both
compare the observations to the simulated, a priori snow state. Figure 2 shows that on
both dates, the observed bare-ground fraction yobs is underestimated by prior E [y ] both15

at high and low elevation, but is approximately correct around 1100 m a.s.l. Figure 3
displays the spatial histogram of prior cumulative probabilities of the observed value on
11 May. A slight over-representation of cumulative probabilities above 0.8 reflects the
tendency to underestimate yobs, but the striking feature of Fig. 3 is the large frequency
at the right tail. The prior distribution is obviously too restrictive towards the multi-20

dimensional tail corresponding to high y values. The tendency at the left tail is opposite,
but weaker. Bearing in mind that the prior is subjectively specified with emphasis on
marginal moments, the quantitative posterior estimates should be assessed with care
in grid cells where the observation is unlikely high.
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7.2. Changes to the end of winter snow storage E [m]

In the following, all graphical illustrations are based on the updating experiment us-
ing the 11 May image, and not using any runoff-based likelihood term. Figures 4a–4d
shows how the expected pre-melt snow storage E [m] and its reference-elevation coun-
terpart E [m∗] are updated. Comparing the prior and posterior E [m] maps (top row), it5

is evident that the posterior elevation gradient gm is stronger than the prior. In addition,
there are local changes to the reference-altitude E [m∗] in the eastern part of the region
(bottom row). Note the smoothness of the E [m∗] maps compared to those of E [m]. The
changes to E [m] and E [m∗] agree with the similar changes on 4 May with correlation
coefficients of 0.87 and 0.81, respectively.10

For the snow storage gradient gm, the prior and posterior expectations and stan-
dard deviations are given in Table 1. The increased elevation dependency seen in
Fig. 4 is confirmed by the 11 May gm increasing from approx. 2.6%/100 m to more than
4%/100 m. Even more dramatic, the 4 May image results in a posterior E [gm] of more
than three times the prior; far out on the prior distribution tail. The use of both images15

yields an intermediate E [gm], but closer to the moderate increase of 11 May. Includ-
ing observed discharge in the likelihood produces a slight reduction in posterior E [gm],
most notably for the 4 May image.

7.3. Changes to the accumulated melt depth E[λ]

Figure 5 shows the updating of E [λ]. Here, the elevation dependency is attenuated,20

with melt extending to a greater altitude in the posterior than in the prior case. Again,
there are local changes as well, for instance in the south-eastern part of the area, but
the gradient driven changes dominate. The changes to the dynamic E [λ] and E [z∗] on
11 May agree with the changes to these variables on 4 May with correlation coefficients
of 0.85 and 0.89, respectively.25

Table 2 shows the updating of the degree-day factor Cx and the degree-day sum
gradient gz, for the actual date. For E [gz], all experiments result in a large increase,

1200

http://www.copernicus.org/EGU/hess/hessd.htm
http://www.copernicus.org/EGU/hess/hessd/2/1185/hessd-2-1185_p.pdf
http://www.copernicus.org/EGU/hess/hessd/2/1185/comments.php
http://www.copernicus.org/EGU/EGU.html


HESSD
2, 1185–1219, 2005

Bayesian
assimilation of snow

cover data

S. Kolberg et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

EGU

i.e. an attenuation of the negative gradient, the 4 May image more than on 11 May.
Observe that the two updates address different gz, since the degree-day sum z is
dynamic. Using both images strengthens the 4 May E [gz], but further attenuates the
11 May E [gz], compared to the single-image posterior estimates. Adding discharge
information has only marginal effect. For Cx, only moderate adjustments are made,5

and posterior E [Cx] is well within the prior uncertainty.
Figure 6 shows the prior and posterior E [cv ], quantifying the sub-grid heterogeneity

of snow storage and determining the shape of the Gamma model used for the SDC.
The main effect of updating is an increase in the small-scale variability, evident as more
scatter in the image. Also for this variable, there are instances of local neighbourhoods10

showing a common response. Since the cv prior has no spatial structure, this is either
a direct result of the observations, or a result of posterior dependencies between cv
and m∗ or z∗, which do have spatial priors. For E [cv ], the correlation between 4 May
and 11 May updates is 0.68.

The prior and posterior y0 maps provide little valuable spatial information, and are15

omitted. E [y0] changes are generally small, and negative in the majority of the cells.
However, the 11 May update cause an increase in E [y0] of more than 0.15 in approx-
imately 50 grid cells, and the maximum posterior value is as high as 0.72. On 4 May,
only 11 pixels have E [y0] increased by more than 0.15, with 0.46 as the maximum pos-
terior value. The correlation coefficient between the 4 May and the 11 May updates is20

0.57.

7.4. Uncertainty reduction

A comparison of prior and posterior uncertainty is useful to quantify the information
content in the SCA observations, with respect to the SDC parameters and the derived
snow states. Table 3 shows that the 11 May image provides more information on the25

mass balance governing m and λ. The earlier 4 May image provides more information
on the variables cv and y0, which mainly affect the sub-grid snow distribution. The
two images used together generally reduce variance more than any of them alone,
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except for y0 from the 4 May image and λ from the 11 May image. The inclusion of
likelihood terms from discharge measurements provide little or no extra information for
the 11 May and the 4 and 11 May updates, but significantly improves the mass balance
precision on 4 May.

8. Discussion5

Evaluating the relative variance reductions (Table 3), substantial improvement is
achieved for all variables. Even with the 4 May image, less than a week after melt
onset, the variance in remaining snow storage SWE is reduced by more than 50%
on average. On 11 May, the average variance reduction is more than 75%, i.e. the
posterior variance is less than a quarter of the prior. The similar method used with10

independent priors in each grid cell (Kolberg and Gottschalk 2005) reduced the prior
variance in SWE on 4 May and 11 May by only 12% and 15%, respectively. Obvi-
ously, the spatial prior largely compensates the information deficit apparent for each
individual cell, at the cost of some spatial detail.

8.1. Gradient estimation difficulties15

For the 4 May image, the posterior snow storage gradient E [gm] of nearly 10%/100 m
(Table 1) is beyond credibility. The poor variance reduction in snow storagem on 4 May
(Table 3) is due to this large value, because gm is in relative terms and thus increases
the m uncertainty at high altitude. Also the posterior degree-day sum gradient gz
(Table 2) is extreme. Noticing that the observed changes in E [gm] and E [gz] affect20

E [y ] in opposite directions, the two gradients appear to attain unrealistic values while
compensating each others effect on the posterior y . Recalling that the likelihood only
relates y to the mass balance through the λ/m ratio (Eq. 6), changes in λ and m
easily compensate. With elevation as a major source of variability in both λ and m, this
compensation could transfer to the two gradients. In the posterior distribution, gm and25
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gz are indeed positively dependent with an R2 of 0.30 on 4 May, 0.40 on 11 May. This
dependency is noticeable, but cannot alone explain the extreme values, in particular
noticing the low posterior variance.

More than a problem of weak identification due to mutual dependency, the unlikely
gradients on 4 May is a problem of extrapolation. Above the melting front, y is insen-5

sitive both to m and to any realistic change in λ, leaving the SCA observations almost
non-informative. Figure 2 indicates that the elevation dependency of y is a priori under-
estimated below 1100 m a.s.l., and overestimated between 1100 m and 1400 m, while
above 1400 m, y is close to y0. With no restrictions from high-altitude information, gm
and gz adapt freely to the situation below 1400 m a.s.l., and combine to mimic the ob-10

served gradient both below and above 1100 m. Even below 1400 m, there are plenty
of cells contributing to the likelihood, ensuring the low posterior variance. In contrast,
the poor two observations in the runoff likelihood only suffice to slight moderations in
the posteriors which they strongly contradict.

8.2. Comparing the updates to measurements15

In Table 4, the posterior end of winter snow storage E [m] and runoff to date Q produced
by the different updating experiments are averaged for the two measured catchments,
and compared to their prior expectations as well as observed values. Average snow
storage is compared to the accumulated runoff at the end of the melt season, corrected
for precipitation during the snow melt period. E [m] is underestimated in the prior state,20

and increased by all updating experiments, in particular through a higher gradient. For
the 4 May image, the high gradient discussed above yields an over-correction of E [m];
and in Sjoa, the posterior absolute error is even larger than the prior except when two
observed runoff series are used.

Concerning accumulated runoff to date Q, all the updating experiments result in25

increased estimates. For the Vinstra catchment, the posterior E [Q] is largely confirmed
by the observed values, again with the changes on 4 May slightly too large. For Sjoa,
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however, observed runoff on both dates corresponded well to the prior E [Q], whereas
the 4 May update produces a three-fold increase in both runoff and melt depth. Less
dramatic, but still too large, is the runoff increase produced by the 11 May update.
These changes are mainly caused by the attenuation of the gz gradient discussed
above. The situation improves slightly by including runoff observation in the likelihood,5

for the 4 May case also by using both images.
A temperature station at 1600 m a.s.l. is not used in the prior estimation, and com-

bined with one at 850 m a.s.l. it provides an independent evaluation of the posterior
gz estimates. Calculated gradients gz are −7.73 and −13.67 degree-days/100 m on 4
May and 11 May, respectively. The prior distributions of gz capture these observations10

within +/−1 standard deviation on both dates (Table 2), but the posteriors fail to do so,
both by larger errors and by smaller standard deviations.

8.3. Small-scale variability and the role of y0

The spatial restrictions onm and λ prevent these variables from being too hardly altered
by unexpected observations in isolated cells. Consequently, the local variables cv and15

y0 are more likely to respond to small-scale variability, even if this may be caused by
local m or λ effects like a net transport loss of snow, or an increased melt due to sun
exposure. This may be the reason why y0 is poorer defined by the use of both images,
than by the 4 May image only (Table 4). Figure 7 shows how y0 is the responding
posterior dimension when extremely high y values are observed. No other variable is20

changed this far out of normal range by extreme observations. Neither does any single
variable respond similarly to low y observations, which are more easily captured by a
moderate changes in all the parameters.

Recognising that y0 does not contribute to any relationship between snow coverage
and melt depth, one might consider removing this parameter or fixing its value close25

to 0. For predictive purposes, observations beyond reasonable prior credibility could
be simply disregarded, leaving the actual grid cells to neighbourhood updating. For
investigative purposes, the increase in observed y between the two dates at high alti-
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tude, with no elevation dependency above 1700 m a.s.l. (Fig. 2), suggests that neither
the “initial” property of y0, nor the degree-day model consequence of a distinct melting
front, are well justified.

9. Conclusions

Identifying processes that operate similarly on many grid cells, is a powerful way to5

increase the informational value of remotely sensed snow coverage data. In this study,
the isolation of two elevation gradients and a temperature melt index as spatially con-
stant variables enabled a strong spatial dependence to be built into the prior distribu-
tion of the mean snow storage m and the accumulated melt depth λ. The transformed,
spatial prior distribution produced largely better results than a non-spatial prior model10

previously reported.
The information content of a snow coverage observation depends on the situation

it images. Early observations contain more information about the snow cover het-
erogeneity, in this case the sub-grid coefficient of variation cv and the pre-melt bare
ground fraction y0. In particular, observations prior to the melt onset are close to non-15

informative except for y0. However, the spatial prior enables mass balance information
gained in some grid cells, to be transferred to neighbouring or similar-altitude grid cells
where the SCA observation was less informative.

The inability of a local SCA observation to contain mass balance information beyond
relative terms, is to some extent reflected in the spatial data as compensation between20

the elevation gradients. In this case an early image leads to some unrealistic results,
largely because the two gradients combine to adapt to a non-linear feature within a
limited elevation interval. In the common situation with meteorological measurements
concentrated at low altitude, an early image lacking effective information at high-altitude
is likely to produce estimates sensitive to extrapolation.25

Combination of two images usually provides a greater reduction of variance than any
of the images alone. The inclusion of observed runoff in the likelihood, however, gen-
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erally supplies weak explanatory power, compared to the satellite image. This is due
to the discharge being observed in only two catchments, whereas the SCA likelihood
variance is greatly reduced by multiplying more than 2000 single-cell likelihood distri-
butions. However, in the 4 May case, where the mass balance information of the image
is smallest, the runoff observation is able to reduce some of the error in the gradient5

estimation, as well as the posterior variance in the mass balance variables.

References

Beven, K. J. and Young, P.: Comment on “Bayesian recursive parameter estimation for hy-
drologic models” by Thiemann, M., Trosset, M., Gupta, H., and Soorooshian S., Water Re-
sources Research, 39, 5, doi:10.1029/2001WR001183, 2003.10

Binley, A. M. and Beven, K. J.: Physically-based modelling of catchment hydrology: A likelihood
approach to reducing predictive uncertainty, in: Computer modelling in the environmental
sciences, edited by: Farmer, D. G. and Rycroft, M. J., Clarendon, Oxford, 1991.
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Table 1. Changes in expectation and standard deviation for the E [SWE ] elevation gradient, re-
sulting from different combinations of images and discharge data in the likelihood. The gradient
is in % per 100 m.

A priori 4 May posterior 11 May posterior 4+11 May posterior
# discharge series: 0 1 2 0 1 2 0 1 2

E [gm] 2.58 9.93 9.39 8.58 4.39 4.29 4.03 5.41 5.12 4.53
sd [gm] 1.5 0.73 0.71 0.66 0.64 0.61 0.60 0.51 0.57 0.55
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Table 2. Changes in expectation and standard deviation for Cx and gz, resulting from different
combinations of images and discharge data. Two gauged subcatchments in the region are
used separately or in sum. The gradient is in ◦C×d/100 m, Cx is the degree-day melt index.
Observed gz between 850 and 1600 m a.s.l. is −7.7 degree-days/100 m on 4 May and −13.7
degree-days/100 m on 11 May, respectively.

A priori 4 May posterior 11 May posterior 4+11 May posterior
# discharge series: 0 1 2 0 1 2 0 1 2

E [Cx] 3.00 3.51 3.49 3.46 2.88 2.87 2.86 3.03 3.02 2.98
sd [Cx] 0.75 0.06 0.06 0.06 0.04 0.05 0.04 0.04 0.04 0.04
4 May E [gz] −9.32 −3.84 −3.90 −4.02 −4.10 −4.20 −4.23
4 May sd [gz] 2.15 0.2 0.2 0.1 0.13 0.13 0.12
11 May E [gz] −12.12 −7.11 −7.15 −7.25 −6.11 −6.26 −6.40
11 May sd [gz] 2.80 0.22 0.20 0.21 0.20 0.22 0.19
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Table 3. Fractional reduction of variance from prior to posterior state; map averages.

Fractional variance 4 May update 11 May update 4+11 May update
reduction (%) # discharge series # discharge series # discharge series
(Map averages) 0 1 2 0 1 2 0 1 2

Cv 55.0 54.8 54.2 45.7 45.8 45.7 63.4 63.4 63.3
M 10.4 16.9 26.7 45.1 48.0 48.4 48.2 49.8 50.8
Y0 67.7 67.2 66.2 33.1 33.3 32.1 63.1 63.3 62.6
4 May λ 47.1 50.0 56.1 65.3 66.3 68.6
4 May y 73.4 72.8 72.9 75.5 75.5 76.0
4 May swe 52.9 56.4 61.7 75.5 75.7 76.9
4 May Q 61.7 63.1 65.8 76.3 76.8 78.0
11 May λ 94.7 95.0 95.1 94.5 94.6 94.9
11 May y 82.6 83.0 83.0 88.0 87.8 88.0
11 May swe 77.9 78.5 79.1 82.6 82.7 83.5
11 May Q 86.4 86.6 86.5 89.5 89.8 90.1
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Table 4. Prior and posterior mass balance of the Vinstra and Sjoa catchments, with the ob-
served values estimated from the discharge series. Posterior columns identify the nine experi-
ments defined by images used (4 May, 11 May, both) and number of discharge series used in
the likelihood.

Mass balance (mm) 4 May posterior 11 May posterior 4+11 May posterior
# discharge series # discharge series # discharge series

Prior Obs 0 1 2 0 1 2 0 1 2

Vinstra
E [m] 378 474 514 503 483 421 420 415 441 436 423
4 May E [Q] 55 95 106 104 100 99 98 95
11 May E [Q] 125 157 150 150 149 165 163 159

Sjoa
E [m] 443 550 683 663 623 484 481 473 514 504 481
4 May E [Q] 30 35 99 97 89 85 85 79
11 May E [Q] 83 83 127 126 124 140 138 130
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Fig. 1. Principle of the SDC concept. Three static parameters define the SDC characterizing
the distribution of point snow storage x at the melt season onset; the average storage m, the
sub-grid spatial coefficient of variation cv , and the initial bare round fraction y0. The accumu-
lated melt depth l is the only dynamically simulated variable, defining the bare-ground area
fraction y , and the mass balance components Q and SWE .
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Fig. 2. Observed and a priori expected bare ground area y on 4 May and 11 May, averaged
over elevation intervals of 100 m.
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Fig. 3. Spatial histogram of a priori cumulative probability of the observation. A uniform his-
togram indicates that the prior distribution is well estimated, according to the observations.
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Fig. 4. Expected end of winter snow storage m and its reference-elevation component m∗,
through transformation and updating. The elevation gradient is increased, and there are some
changes to m∗ in the eastern part of the region. Notice the smoothness of the m∗ maps com-
pared to the similar maps of m. Subcatchment boundaries are shown, with Sjoa (473 km2) in
the North, and the location of three precipitation gauges are indicated.
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Fig. 5. Expected accumulated melt depth λ; prior (left) and posterior (right). The elevation
gradient is considerably less steep, with melt extending to greater elevation, and lower melt
depths in the valley to the Northeast.
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Fig. 6. Expected sub-grid SWE coefficient of variation cv ; a priori (left) and a posteriori (right).
The prior expectancy is linked to elevation, assuming that stronger winds at high altitude pro-
duce more re-distribution of snow. The posterior expectancy show more small-scale variability,
but have approximately similar elevation dependency.
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Fig. 7. Expectation changes for y0 versus the prior cumulative probability of the observed y
value. Large increases in y0 are invariably linked to extreme y observations, but the general
connection is weak over most of the probability interval.
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