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Abstract. SL-AV (Semi-Lagranginan Absolute Vorticity) is a global atmospheric model. Its latest version SL-AV20 provides

global operational medium-range weather forecast with 20km resolution over Russia. The lower resolution configurations of

SL-AV20 are being tested for seasonal prediction and climate modeling.

The article presents the model dynamical core. Its main features are vorticity-divergence formulation at the unstaggered grid,

high-order finite-difference approximations, semi-Lagrangian semi-implicit discretization and the reduced latitude-longitude5

grid with variable resolution in latitude.

The accuracy of SL-AV20 numerical solutions using reduced lat-lon grid and the variable resolution in latitude is tested with

two idealized testcases. The results agree well with other published model solutions. It is shown that the use of the reduced

grid having up to 25% less grid points than the regular grid does not significantly affect the accuracy. Variable resolution in

latitude allows to improve the accuracy of solution in the region of interest.10

1 Introduction

Atmospheric General Circulation Models (AGCM) are basic tools for weather forecasting from several days to seasons. Also,

such models are essential building blocks of Earth system models used for climate simulations. AGCM consists of dynamical

core responsible for solution of dynamics equations of resolvable flow component and the package representing sub-grid scale

processes (often in parameterized way).15

SL-AV20 is the latest version of hydrostatic AGCM developed at the Institute of Numerical Mathematics, Russian Academy

of Sciences (INM RAS) in cooperation with the Hydrometeorological centre of Russia (HMCR). SL-AV is the model acronym

(semi-Lagrangian, based on Absolute-Vorticity equation), 20 indicates the targeted horizontal resolution over the territory of

Russia. The SL-AV20 dynamical core is developed by the coauthors, while the most part of subgrid-scale parameterizations is

adopted from ALADIN/LACE model (Geleyn et al., 1994; Gerard et al., 2009).20

SL-AV20 is accepted as a basic method for operational medium-range weather forecast in HMCR in 2015. The lower

resolution version of this model will likely be applied in HMCR long-range forecasting system. Also, SL-AV20 is considered

as a starting point for developing the new atmospheric component of INM climate model (INMCM, Volodin et al., 2010).

Among the papers that discuss SL-AV model numerics e.g. Tolstykh (2002), Tolstykh (2003), Tolstykh and Shashkin (2012),
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Shashkin and Tolstykh (2014), there is no one that would put all the developments together. This article describes the present

state of the SL-AV20 dynamical core.

While developing a dynamical core, we want it to have a given accuracy with respect to test solutions combined with a

given wall-clock time and minimum number of processors necessary to calculate these solutions. We call this computational

efficiency. Furthermore, as the dynamical core can be used at a range of horizontal and vertical resolutions typical for numerical5

weather prediction and climate simulations, it is desirable to maintain dynamical core computational efficiency at maximum

possible range of resolutions. This is somewhat contradictory requirement. Indeed, using a global dynamical core at maximum

possible resolution of first kilometers ultimately requires dynamical core to use efficiently up to tens of thousand cores. This is

not so easy to achieve if a semi-implicit time integration scheme is used.

Given typical applications of SL-AV20 model mentioned above but also limited computer resources available, our approach10

to the dynamical core design is based on the following choices. We use semi-implicit (SI) time stepping scheme (Robert

et al., 1985) and semi-Lagrangian (SL) treatment of advection (a review – Staniforth and Côté, 1991). This combination

allows to circumvent Courant-Friedrichs-Lewy stability limitation for both wind speed and inertia-gravity wave phase speed.

Practically, this means that the time-step is much larger than with the Eulerian treatment of advection and/or explicit time-

stepping scheme, however, at the cost of solving Helmholtz equation at each time-step and having larger communication15

pattern in parallel implementation. The unstaggered grid is used, i.e. scalar and vector variables are stored at the same grid

points. Therefore, only one set of upstream trajectories needs to be computed for SL advection scheme (C-grid requires 3 sets).

Also, this improves trajectory computation accuracy, since the velocity components are stored at arrival points and no spatial

interpolation or averaging is needed to compute the displacement terms at arrival point.

Following the results of Randall (1994), the vertical component of relative vorticity and the horizontal divergence are used as20

prognostic variables to achieve good inertia-gravity and Rossby wave dispersion properties at the unstaggered grid. However,

the reconstruction of wind velocity from vorticity and divergence is needed at each time-step. We use the direct inversion

of relative vorticity and divergence finite-difference formulae avoiding solution of Poisson problems for stream function and

velocity potential. This leads to the accurate and efficient solver Tolstykh and Shashkin (2012).

Fourth-order finite-difference formulae are used to compute gradient, divergence, and vorticity operators. Compact finite-25

differences were used in early versions of the SL-AV model (Tolstykh, 2002) for their smaller truncation errors. To improve

parallel efficiency, compact finite-differences are abandoned now except Helmholtz and velocity reconstruction solvers.

The important question for the global atmospheric model is the choice of the horizontal grid on the sphere. The regular

latitude-longitude grid that served in the atmospheric modelling for decades is now ending its era. The grid-points clustering

near the poles forces to use either very small time-step for stability or special numerical techniques (polar filters, SL advection)30

that needs excessive data transfer in the polar regions and leads to scalability problems. Moreover, physical grid-spacing in

latitude in the polar regions can be order of magnitude (or even more) larger than the grid-spacing in longitude. This presents a

difficulty for parametrizations of sub-grid scale processes. A significant effort is made to develop models based on icosahedral

(e.g. Zangl et al., 2015), Voronoy/Delaunay (e.g. Skamarock et al., 2012), cubed-sphere (e.g. Fournier et al., 2004), Yin-Yang

(Quaddouri and Lee, 2011) or some less popular grids on the sphere.35
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Unfortunately, all quasi-uniformly spaced grids proposed to date suffer from one or more of the following problems (as

discussed in Staniforth and Thuburn, 2012): disbalance between vector and scalar degrees of freedom (grids with triangular

or hexagonal/pentagonal cells), non-orthogonality of underlaying coordinate system (cubed-sphere), overset regions or grid

transition (Yin-Yang, cubed sphere). These issues can degrade the accuracy of atmospheric circulation simulation, cause grid-

imprinting and/or occurrence of unphysical wave modes and some other problems.5

SL-AV20 is formulated using the reduced latitude-longitude grid suggested in Kurihara (1965) but with different design. We

believe that using reduced grid can alleviate most of the polar problems of the regular latitude-longitude grid. Moreover, the

reduced latitude-longitude grid is free of problems specific to more complex quasi-uniformly spaced grids, and is relatively

easy to implement. As shown in Tolstykh and Shashkin (2012), the accuracy problems of reduced grid computations reported

by Williamson (2007), Staniforth and Thuburn (2012) can be overcome with proper construction of this grid (Fadeev, 2013)10

and using high-order discretizations.

Another feature of SL-AV20 is the possibility to use variable resolution in latitude. This approach is especially suitable

for Russia territory which is stretched for almost 180◦ in longitude. Variable resolution in latitude with the ability to use

non equatorially symmetric grid reduction allows us to refine resolution in the region of interest (midlatitudes of Northern

hemisphere) and to coarsen it in other regions (e.g. Southern hemisphere).15

The article is organized as follows. The governing equations are listed in Sect. 2, Sect. 3 briefly presents SL-AV20 semi-

Lagrangian advection scheme. The details of semi-implicit temporal discretization are given in Sect. 4, the numerical tech-

niques for horizontal and vertical discretization are presented in Sect. 5. The solvers for Helmholtz problem and wind velocity

reconstruction are presented in Sect. 6, Sect. 7 discusses the dissipation mechanisms used in the model. Section 8 describes

SL-AV20 parallel implementation. Numerical experiments are described in Sect. 9.20

2 Governing equations

Governing equations of the SL-AV model are derived from the set of hydrostatic shallow-atmosphere primitive equations on

the sphere (Holton, 2004, chapter 2). The hybrid coordinate η of Simmons and Burridge (1981) is used in the vertical.

The spherical longitude and latitude are (λ,ϕ), r is the vector pointing from the center of the sphere to the point on its

surface, a is the radius of the sphere (notations used in the article are summarized in Appendix A). Standard definitions of25

horizontal ∇ operator and Lagrangian derivative d
dt are used . The pressure is p(η) =A(η)p0 +B(η)ps, p0 is a constant

reference pressure and ps is the surface pressure.

The horizontal wind velocity is V with u and v being its zonal and meridional components respectively. D =∇ ·V and

ζ = k ·∇×V are the horizontal divergence and vertical component of relative vorticity, k = r/a is the vertical unit vector. The

vertical velocity in the hybrid coordinate system is η̇. The Coriolis parameter f = 2|Ω|sinϕ, Ω is the Earth’s angular velocity.30

Φ is the geopotential, T is the temperature, Φs is the surface geopotential. We also use virtual temperature Tv = Rmoist
Rd

T ; Rd

is the dry air gas constant and Rmoist = (1−q−∑qi)Rd+Rvq, where Rv is the gas constant of water vapor, q is water vapor

specific concentration, qi are liquid and solid water species specific concentrations. The heat capacity of moist and dry air at

3

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-265, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 12 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



constant pressure are cp and cpd, cp includes contributions from all water species presented. The sources/sinks of arbitrary

quantity ψ due to subgrid/diabatic processes are denoted by Fψ .

We begin with the equation for the vertical component of absolute vorticity ζ obtained by applying k · ∇× operator to the

momentum equations:

d
dt

(ζ+f) =−(ζ+f)D−Jζ +Fζ (1)5

Jζ =
B(η)ps

A(η)p0 +B(η)ps

Rd
a2 cosϕ

(
∂Tv
∂λ

∂ lnps

∂ϕ
−∂Tv
∂ϕ

∂ lnps

∂λ

)
+

1
acosϕ

(∂η̇
∂λ

∂v

∂η
− cosϕ

∂η̇

∂ϕ

∂u

∂η

)
, (2)

Equation for the horizontal divergence D is derived from the discrete form of momentum equations (see Sect. 4 for details).

The momentum equations are written in the vector form of Bates et al. (1993) using advective Coriolis term (Rochas, 1990):
(

dV
dt

+ 2Ω× dr
dt

)

H

=−∇Φ− B(η)ps

A(η)p0 +B(η)ps
RdTv∇ lnps +FV , (3)

subscript H denotes projection on the surface of the sphere.10

Also, there is an option to use divergence equation obtained in analytic way applying ∇· operator to momentum equations

(Eq. (3) can be used, however the derivation is simpler with the component form Holton, 2004):

dD
dt

+D2 =−∇2Φ− B(η)ps

A(η)p0 +B(η)ps
∇ · (RdTv∇ lnps) + ζf − u

a

∂f

∂ϕ
+ JD +FD, (4)

JD =− 1
a2 cosϕ

{
∂
(
(u2 + v2)sinϕ

)

∂ϕ
+ 2

[
∂

∂ϕ

(
u
∂v

∂λ

)
− ∂

∂λ

(
u
∂v

∂ϕ

)]
+

1
acosϕ

(∂η̇
∂λ

∂u

∂η
+ cosϕ

∂η̇

∂ϕ

∂v

∂η

)}
. (5)

Using analytic divergence equation (4) gives a possibility to use the same spatial approximation for ∇2Φ in both explicit and15

implicit parts of time-discrete equations. Therefore, we can expect better dispersion properties for the shortest inertia-gravity

waves (according to Caluwaerts et al., 2015), however, at the cost of computing additional non-linear terms. It is interesting to

note that unlike Heikes and Randall (1995) who formulated vorticity and divergence equations in terms of true scalars (ζ, D,

Φ, stream function and velocity potential) we use components of vector quantities V and ∇Φ.

Thermodynamic equation is readily formulated for virtual temperature Tv . The energy conversion term 1
p

dp
dt is rewritten in20

terms of lnps and analogue of vertical velocity ṡ= 1
ps

∂p
∂η η̇ (McDonald and Haugen, 1993):

d
(
Tv + γ(η)Φs

)

dt
− RmoistTv

cp

(
ps

A(η)p0 +B(η)ps
ṡ+

B(η)ps

A(η)p0 +B(η)ps

dH lnps

dt

)
= FTv + γ(η)V · ∇Φs + η̇

∂γ(η)
∂η

Φs, (6)

FTv =
Rmoist

Rd
FT +T

[(
Rv

Rd
− 1

)
Fq −

∑
Fqi

]
, (7)

where dH
dt is horizontal Lagrangian derivative with neglected vertical displacement. The term γ(η)Φs was proposed by Ritchie

and Tanguay (1996) to suppress spurious orographic resonance, also, it smooths temperature field near orographic variations25

and contribute positively to the accuracy of temperature advection.
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The continuity equation in the form of mass conservation for an arbitrary Lagrangian cell V(t) can be written as

1
g

d
dt

∫

V(t)

(∂p
∂η

)
dV = 0, (8)

is rewritten in terms of lnps and ṡ similar to McDonald and Haugen (1993):

∂B

∂η

dH

dt

(
lnps +

Φs

RdTconst

)
=−

∂A
∂η p0 + ∂B

∂η ps

ps
D− ∂ṡ

∂η
+
∂B

∂η
V · ∇

( Φs

RdTconst

)
, (9)

the term
(

Φs
RdTconst

)
was also proposed by Ritchie and Tanguay (1996).5

The hydrostatic balance equation is

∂Φ
∂η

=−RdTv
∂ lnp
∂η

. (10)

The equations for transport of water vapour and other water species are all written in the same form:

dq
dt

= Fq, (11)

d
dt

∫

V(t)

(∂p
∂η

)
qdV =

∫

V(t)

(∂p
∂η

)
FqdV, (12)10

the finite-volume form (12) is used for locally mass-conserving discretization.

Boundary conditions for the above Eqs. (1)–(12) are η̇ = 0 at the lower η = 1 and upper η = ηtop boundaries. Also, it is

assumed that B(η) = 1, A(η) = 0 when η = 1, normally B = 0 above some ηp > ηtop, however model can work in the pure

σ-coordinate mode, when B(η) = η, A(η) = 0 everywhere.

3 Semi-Lagrangian advection15

3.1 Conventional semi-Lagrangian advection

Lagrangian time derivatives in the prognostic equations given in Sect. 2 are approximated in time as dψ/dt= (ψn+1−ψn∗ )/∆t,

where superscript indicates time level tn = n∆t, subscript ∗ indicates that quantity ψ is evaluated at the departure position of

Lagrangian parcel (at tn). Under the SL approach, each point of fixed computational grid is the arrival position of some

Lagrangian particle. The advection equation dψ/dt= 0 is discretized in time as ψn+1 = ψn∗ . SL approximation is not subjected20

to the Courant-Friedrichs-Lewy stability limitation, so ∆t can be chosen from accuracy considerations that greatly contributes

to the computational efficiency.

The departure position of the Lagrangian parcel arriving to some grid point can be approximately found by integrating the

equation dr
dt = V one step back in time. Following SETTLS scheme (Hortal, 2002), we approximate this equation as

rn+1− rn∗
∆t

=
1
2

(
V n +V (n+1)e

∗
)
, (13)25
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where V (n+1)e = 2V n−V n−1. Iterative approach is used to solve Eq. (13):

rn∗m+1 = rn+1− ∆t
2

(
V n +V (n+1)e

∗m
)
, (14)

where ∗m indicates the departure point position found at m-th iteration. Additional geometric approximations are needed

iterating Eq. (14) to account for spherical geometry and shallow atmosphere approximation (see Temperton et al., 2001).

The quantities at the departure positions of Lagrangian particles are evaluated using interpolation. We use 3D tensor-product5

cubic Hermite interpolation for advective terms of equations (the terms that arise from SL approximation of d/dt). Trilinear

interpolation is used for components of V in iterative process (14) and non-advective terms of equations. The change in

the direction of coordinate system unit vectors between departure and arrival positions should be taken into account when

interpolating the vector components:

dψ
dt

=
1

∆t




 ψλ

ψϕ


−R


 ψλ∗

ψϕ∗




 , (15)10

where R is the rotation matrix (see Temperton et al., 2001, detailed derivation in Staniforth et al., 2010).

3.2 Mass-conservative semi-Lagrangian advection

The disadvantage of semi-Lagrangian approach as formulated in Sect. 3.1 is the lack of tracer mass conservation. To address

this problem, SL-AV20 incorporates finite-volume SL Conservative Cascade Scheme (CCS-3D, Shashkin et al., 2016). Finite-

volume SL discretization starts with the advection equation in form (12) where the arrival volume V(tn+1) coincides with grid15

cell Vijl (l is vertical index):

(
∂p

∂η
q

)n+1

Vijl

Sij∆ηk =
∫

V∗ijl

(
∂p

∂η

(
q+Fq∆t

))n
dV. (16)

(.)Vijl is quantity averaged over Vijl, Sij and Sij∆ηl are the cell horizontal square and volume respectively. Cell-averaged

tracer density ∂p
∂η q is chosen as prognostic variable.

The departure cell V(tn) = V∗ijl is defined by its vertices i.e. the departure positions of Lagrangian parcels arriving to the20

vertices of Vijl at tn+1. Departure cells vertices are found with interpolation of known coordinates of departure cells centers.

The latter are departure positions of the Lagrangian parcels arriving to the grid points computed using Eq. (13).

Approximation of integrals over the departure cells is the main problem of FVSL discretization. Geometrical approximations

of departure cells shape and reconstruction of (q∂p/∂η)n subgrid distribution are employed (Shashkin et al., 2016) to solve

this problem efficiently.25
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4 Time discretization

4.1 Basic semi-implicit formulation

The non-advective terms of prognostic equations (from Sect. 2) are approximated using the combination of Crank-Nicolson

scheme with the pseudo-second order decentering (Temperton et al., 2001) for linear terms and SETTLS scheme (Hortal, 2002)

for non-linear terms. For the equation5

dψ
dt

= Lψ+N(ψ), (17)

where ψ is an arbitrary scalar or vector variable the scheme writes as

ψn+1−ψn∗
∆t

=
1
2

(
N(ψ)(n+1)e

∗ +N(ψ)n
)

+
1 + ε

2
Lψn+1 +

1 + ε

2
Lψn∗ −

ε

2

(
Lψ

(n+1)e
∗ +Lψn

)
. (18)

Absolute vorticity Eq. (1) is discretized in time as follows:

ζn+1 +
∆t
2
fDn+1 =Rζ , (19)10

where Rζ is combination of time-level n and extrapolated in time ((n+ 1)e) quantities (see Appendix B for details on right-

hand-side terms of SI system of equation), no decentering is applied to term fD. We use the background state with constant

reference temperature T̄ and reference pressure p̄=A(η)p0 +B(η)p̄s (p̄s is a constant) to extract the linear terms in Eqs. (3),

(4), (6), (9). First, the pressure gradient term of momentum equations (3) is split into linear and non-linear contribution:
15

∇
(

Φs−
η∫

1

RdTvdlnp

)
+

B(η)ps

A(η)p0 +B(η)ps
RdTv∇ lnps =

(
∇G

)

︸ ︷︷ ︸
linear term

−∇
η∫

1

Rd

(
Tv − T̄

)
dln

p

p̄
+

B(η)ps

A(η)p0 +B(η)ps
Rd

(
Tv − T̄

)
∇ lnps

︸ ︷︷ ︸
non-linear term

, (20)

G= Φs−
η∫

1

Rd

(
Tv − T̄

)
dln p̄+RdT̄ lnps, (21)

here we use the fact that∇
∫ η

1
RdT̄dlnp=RdT̄ [∇p(η)/p(η)−∇ lnps] =RdT̄ [B(η)ps/(A(η)p0+B(η)ps)−1]∇ lnps. Similar20

relation is derived for∇2 of pressure in the analytic divergence Eq. (4). The approximation of vertical integrals is described in

Sect. 5.5.

The time-discretized divergence equation is written as

Dn+1 +
(1 + ε)

2
∆t∇2Gn+1 =∇ ·RV , (22a)

Dn+1− ∆t
2
fζn+1 +

(1 + ε)
2

∆t∇2Gn+1 =RD, (22b)25
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Eq. (22a) is the divergence equation derived from momentum equation (3) discretized in time via Eq. (18), RV is the right-

hand-side (RHS) of corresponding vector equation. The RHS term ∇ ·RV is calculated with the discrete divergence operator

from Sect. 5.2. Equation (22b) is based on analytic divergence Eq. (4). This equation allows to use the same Crank-Nicolson

discretization in time for −fζ and ∇2G, the two terms representing geostrophic balance.

In the thermodynamic equation (6), the Lagrangian time derivative of lnps is discretized in the SL manner in the linear part5

of energy conversion term, whereas it is replaced by the RHS of continuity Eq. (9) in the non-linear part. The resulting time

discrete equation is

Tv
n+1− RdT̄

cpd

p̄s

A(η)p0 +B(η)p̄s

(
B(η) lnpn+1

s +
1 + ε

2
∆tṡn+1

)
=RT . (23)

The continuity equation (9) is discretized as follows:

∂B

∂η
lnpn+1

s +
1 + ε

2
∆t

(∂A/∂η)p0 + (∂B/∂η)p̄s

p̄s
Dn+1 +

1 + ε

2
∆t

∂ṡn+1

∂η
=RP . (24)10

Integration of Eq. (24) from model top to the ground provides the expression for lnpn+1
s independent of ṡn+1, whereas the

integration to the arbitrary level η gives the ṡn+1:

(
1−B(ηtop)

)
lnpn+1

s =−1 + ε

2
∆t

η=1∫

η=ηtop

(
(∂A/∂η)p0 + (∂B/∂η)p̄s

p̄s
Dn+1 +RP

)
dη, (25)

1 + ε

2
∆tṡn+1(η) =−

(
B(η)−B(ηtop)

)
lnpn+1

s − 1 + ε

2
∆t

η=η∫

η=ηtop

(
(∂A/∂η)p0 + (∂B/∂η)p̄s

p̄s
Dn+1 +RP

)
dη, (26)

the RHS of Eq. (25) can be easily substituted for lnpn+1
s term in Eq. (26) providing equation for ṡn+1 which depends only on15

Dn+1 unknown quantity.

Equations (19), (22), (23), (25), (26) and the definition of linear geopotential G (21) forms the linear system for time-

level n+ 1 variables (ζ,D,Tv, lnps, ṡ,G). The solution procedure for this system is as follows. First, if analytically-derived

divergence equation (22b) is used, the relative vorticity ζn+1 is excluded by substitution from Eq. (19). Then, Eqs. (25), (26)

are substituted in (23) to obtain expression for Tn+1
v that depends only on Dn+1. This expression and Eq. (25) are used to20

eliminate Tn+1
v and lnpn+1

s in the Gn+1 definition Eq. (21). Therefore, we obtain the pair of equations that contains only

Gn+1 and Dn+1 unknowns. With the aid of vertical discretization (see Sect. 5.5) this pair can be written as

G+
1 + ε

2
∆tMD =H, (27)

(1 +α
f2∆t2

4
)D+

1 + ε

2
∆t∇2G=RD +α

f∆t
2
Rζ , (28)

where G, D and Rψ are columns of Nlev (number of model levels) components, with l-th component representing the25

corresponding horizontal field at the level l, H = Φs +RdART + M′RP , M, M′, A are the matrices of discrete vertical

operators (resulting from vertical integration, see details in Appendix C). The coefficient α= 0 if the standard divergence
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equation (22a) is used and α= 1 for analytically-derived divergence equation (22b), RD corresponds to the RHS term of the

relevant divergence equation.

Substituting D from Eq. (28) in Eq. (27) and using eigenvalue decomposition M = PΛP−1 results in Nlev 2D Helmholtz

problems for components of P−1G vector. The solution procedure for Helmholtz problems is described in Sect. 6.2. Once G

is found, we can find the divergence D with Eq. (27) and use it to calculate lnpn+1
s , ṡn+1, Tn+1

v and ζn+1 (see Eqs., (25),5

(26), (23), (19)). The n+ 1-th time-step calculations are finalized by reconstruction of the horizontal wind V n+1 as described

in Sect. 6.1 and calculation of η̇ and recalculation of ṡ (Sect. 5.5).

We have also implemented an iterative time-integration scheme (Goyman, 2015) in addition to the time discretization de-

scribed above. The basic discretization is used at first iteration to obtain first-guess n+1 time-step fields (ζ,D,T, lnps,V ). At

the second iteration, we replace the time-extrapolated non-linear terms N (n+1)e of the equations and time-extrapolated wind10

velocity (u,v, η̇)(n+1)e involved in the upstream trajectory computations with those obtained using n+ 1 time-step first-guess

values. Using this iterative approach allows to improve stability and use larger time-steps without degrading accuracy.

4.2 Inherently mass-conserving model semi-implicit formulation

Inherently mass-conserving (IMC) version of the model (Shashkin and Tolstykh, 2014) uses continuity equation in the finite-

volume form (8). The non-linearity of this equation is hidden into the trajectory computation or equivalently in the evolution of15

the Lagrangian cell V(t). The equation is linearized using orography dependent reference pressure profile pref =Ap0+Bprefs ,

where prefs = 1013.25hPa× exp(−Φs/(RdT̄ )). The following equation is

d
dt

∫

V(t)

(∂p′
∂η

)
dV =−

∫

V(t)

(
∇ ·
(∂pref

∂η
V
)

+
∂

∂η

(
η̇
∂pref

∂η

))
dV, (29)

where p′ = p− pref . The equation for mass-conservative update of ps is obtained with discretization of Eq. (29) using the

scheme (18) and its integration from model top to bottom:20

(
1−B(ηtop)

)
Sij

(
pn+1

s − prefs

)
Sij

=
l=Nlev∑

l=1

(
−1 + ε

2
∆t∇ ·

(∂pref
∂η

V n+1
)

+
ε

2
∆t∇ ·

(∂pref
∂η

V n
))

Vijl

Sij∆ηl+

l=Nlev∑

l=1

∫

V∗ijl

((∂p′
∂η

)
− 1 + ε

2
∆t∇ ·

(∂pref
∂η

V n
)

+
ε

2
∆t∇ ·

(∂pref
∂η

V (n+1)e

))
dV, (30)

where (ps)Sij is the surface pressure averaged over Sij . The departure volume integrals are evaluated using CCS-3D (Shashkin

et al., 2016).25

Using orography dependent reference pressure profile is crucial for stability in mountainous regions. The term∇·
(
∂pref

∂η V n+1
)

,

however, cannot be expanded in terms of model prognostic variables, so it is very difficult to solve the system of equations

similar to those formulated in Sect. 4.1, but with mass-conservative equation for pn+1
s (30) instead of Eq. (25). Therefore, the

following procedure is implemented. First, we run a time-step of non mass-conserving model version, solve the semi-implicit

9
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system as it formulated in Sect. 4.1 and obtain n+ 1 time-step horizontal wind V n+1. Then the mass-conservative update of

ps, Eq. (30) is calculated.

We achieve inherent mass-conservation, however, at a cost of introducing some inconsistency between the surface pressure

and horizontal wind fields. This results in a slight noise in the regions with steep orography, but does not significantly affect the

model accuracy. The greater problem not solved yet is the consistency between dry air and tracer mass so IMC model version5

now is rather a research option.

5 Spatial discretization

5.1 Horizontal grid

SL-AV20 model incorporates reduced latitude-longitude grid with variable resolution in latitude. The grid consists of points

located on the latitudes ϕ= ϕj , j ∈ [0,Nlat] with longitude spacing ∆λj , (λ,ϕ)ij = (i∆λj ,ϕj). The number of points on10

a grid latitude is reduced polewards of equator. The pole points are assumed to be the grid latitudes. The regular latitude-

longitude grid is the special case of the grid described above with constant latitude spacing and the same number of points on

each grid latitude.

Formally, the model algorithms can work with any set of ϕj and ∆λj . However, the choice of these crucially affects accu-

racy. The grids are constructed with the algorithm of Fadeev (2013). This algorithm generates the set of ϕj that satisfy grid15

smoothness constraints (to avoid spurious wave reflection at the regions of abrupt spacing change) and match the desired grid

spacing latitude dependence as close as possible. Then, given ϕj and the total number of grid points, the algorithm optimizes

∆λj to minimize the error of interpolation of an analytic test function to some finer grid.

5.2 Discretization of horizontal gradient, divergence and vorticity operators

The following 4-th order accurate formula is applied to evaluate first derivative:20

(∂ψ
∂x

)
i+1/2

=
ψi−1− 27ψi + 27ψi+1−ψi+2

24∆x
+O(∆x4), (31)

where x can be either ϕ or λ, ψ is scalar quantity or vector component. However, we use unstaggered grid and need the

values of ∂ψ
∂x to be located at the same points as ψ, thus we interpolate

(
∂ψ
∂x

)
i+1/2

to the integer nodes of the grid using

4-th order Lagrangian interpolation. To calculate divergence and vorticity, 4-th order Lagrangian interpolation is used to obtain

vector components at the grid half-nodes. Then second-order locally-conservative formula is applied to calculate the meridional25

derivative:

1
acosϕ

∂ψ cosϕ
∂ϕ

=
ψj+1/2 cosϕj+1/2−ψj−1/2 cosϕj−1/2

a(sinϕj+1/2− sinϕj−1/2)
+O(∆ϕ2), (32)

the longitudinal derivative is evaluated with Eq. (31) as in the gradient operator.
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To account for the variable resolution in latitude, we introduce pseudo-latitude ϕ′, such that the grid is equally spaced in

ϕ′ (following Tolstykh, 2003). Then the meridional derivative ∂ψ
∂ϕ = ∂ψ

∂ϕ′
∂ϕ′

∂ϕ . The derivative ∂ψ
∂ϕ′ and inverse mapping factor

M= ∂ϕ
∂ϕ′ are calculated using Eq. (31).

The longitudinal derivatives are calculated in the grid point space, whereas Fourier representation in longitude

ψ(ϕj ,λ) = Â0(ϕj)/2 +
∑

k

(
Âk(ϕj)cos(kλ) + B̂k(ϕj)sin(kλ)

)
(33)5

is used to calculate meridional derivatives on the reduced lat-lon grid. Actually, we calculate meridional derivatives of Âk, B̂k

and then use inverse Fourier transform. If Nj is the number of points at the grid latitude ϕj , the wave-numbers k > Nj/2− 1

can not be represented, so it is natural to set Âk, B̂k and their derivatives to zero at this latitude.

The disadvantage of FFT is the nessecity of global communications in parallel implementation, which could lead to poor

scalability. So we also implement an option to approximate meridional derivitives on the reduced lat-lon grid in grid point10

space. First we use interpolation along longitude to align ψ and then apply Eq. (31) to obtain half-integer values of derivatives.

The similar approach for calculation was applied in (Jablonowski et al., 2009). We have tested this grid point algorithm and

there is no impact on the results for the baroclinic test case presented in Sect. 9 as compared with the computations in Fourier

space as described above.

Calculation of meridional derivatives near the poles using Eq. (31) requires the values of ψ at virtual latitudes ϕ−1 =15

−π/2− (ϕ1 +π/2) and ϕNlat+1 = π/2 + (π/2−ϕNlat−1). If one continues the meridional line λ beyond the pole, it will

coincide with λ+π. Thus ψ(ϕ−1,λ) = (−1)νψ(ϕ1,λ+π), where ν is 0 for scalar quantities and 1 for vector components (the

latter is due to change of basis vectors orientation after π phase shift). It is easy to show that Âk(ϕ−1) = (−1)k+νÂk(ϕ1), the

similar relations take place for B̂k(ϕ−1), Âk(ϕNlat+1), B̂k(ϕNlat+1).

To evaluate divergence and vorticity at the pole point, one uses the fact that the scalar quantities can have only Â0 non-zero20

Fourier coefficient at the pole point to be uniquely defined. The 4-th order accurate Lagrangian interpolation is applied to obtain

Â0 polar values from known Â0 at adjacent latitudes (including virtual latitudes). Similarly, vector components can have only

Â1, B̂1 non-zero Fourier coefficients at the pole point (this corresponds to the unique value of the vector quantity at the pole

point and basis vectors dependent on longitude). Fourier coefficients of gradient components are also interpolated to the pole

point.25

The Inherently Mass Conserving (IMC) version of the model (Shashkin and Tolstykh, 2014) also requires calculation of

flux-divergence operator ∇ · (ψV ), where ψ is some scalar function. For mass conservation
∑
i,j∇ · (ψV )ijSij = 0 over the

whole sphere, must hold up to machine precision. This operator is discretized (as described in Tolstykh and Shashkin, 2012)

in the flux-form with fourth-order accuracy. In the IMC version, this operator with ψ = 1 replaces the divergence operator

described above.30

5.3 Discretization of the horizontal Laplace operator

The Laplace operator arises in the time-discrete divergence equation (22). In the case of Eq. (22a) derived in a discrete way from

momentum equations (3) (which is considered standard in SL-AV20) ∇2 appears in the implicit part, whereas in the explicit
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part it stands as the product of discrete divergence and gradient operators (see Sect. 4 for details). If analytical divergence

equation (22b) is used, ∇2 is present in both implicit and explicit parts of equation.

If the discrete-derived divergence equation is used, the compact finite-difference (CompFD) approximation of the merid-

ional derivatives in the Laplace operator is applied, for their smaller truncation errors. CompFDs discretization require matrix

inversion that generaly causes the parallel scalability problems. However, using CompFDs to discretize Laplace operator in the5

implicit part of divergence equation is not a computational burden, since it is already involved in the matrix inversion problem

(see Sect. 4, 6.2).

The Laplace operator is discretized using Fourier representation in longitude. The meridional part of Laplacian is discretized

with double application of compact formula for the first derivative:

1
24

(∂ψ
∂ϕ

)
i−1

+
11
12

(∂ψ
∂ϕ

)
i
+

1
24

(∂ψ
∂ϕ

)
i+1

=
ψi+1/2−ψi−1/2

∆ϕ
+O(∆ϕ4), (34)10

The longitudinal part of∇2 is the Fourier image of product of two longitudinal derivatives defined by Eq. (31).

1
a2 cos2ϕ

∂2 exp(ikλ)
∂λ2

=−k̃2 exp(ikλ) =−
(

261sin(k∆λ) + sin(3k∆λ)− 36sin(2k∆λ)
192acosϕ∆λ

)2

exp(ikλ). (35)

Further details about compact finite-difference approximation of∇2 operator are in Sect. 6.2.

The main objective of using analytically-derived divergence equation (22b) is time-symmetric discretization, which theo-

retically leads to better inertia-gravity wave dispersion properties (Caluwaerts et al., 2015). Temporal symmetry means that15

the same discretization of ∇2 is used in implicit and explicit parts of the divergence equation. We do not use CompFDs for

approximation of Laplace operator to avoid matrix inversion in the explicit part of the equation. The following approximation

to ∇2 is used:

(∇2ψ)i,j =
1

12a2 cos2ϕj∆λ2

(
ψi−2,j + 16ψi−1,j − 30ψi,j + 16ψi+1,j −ψi+2,j

)
+20

1
a2 cosϕj∆ϕ

((∂ψ
∂ϕ

)
i,j+1/2

cosϕj+1/2−
(∂ψ
∂ϕ

)
i,j−1/2

cosϕj−1/2

)
, (36)

(∂ψ/∂ϕ)i,j±1/2 are evaluated using Eq. (31).

5.4 Non-linear terms

The calculation of non-linear terms can give rise to non-linear instability, when the interaction of shortest scales leads to the

exaggerated contribution to the largest scales. We use spatial averaging to suppress this kind of instability. The following25

formulae do not have a strict theoretical basis, but they are rather a result of experience in optimizing model performance.

The first type of non-linear term is scalar-by-scalar product, namely ζD, D2 in vorticity and analytic divergence equations

(1),(4):

(ζD)i,j =
1
16

∑

m=±1

[(
ζi,j + ζi+m,j

)(
Di,j +Di+m,j

)
+
(
ζi,j + ζi,j+m

)(
Di,j +Di,j+m

)]
, (37)
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the term D2 is computed in similar way. Surprisingly, this leads to better medium-range forecast scores as compared to the

formula with the increased weight of central term ζi,jDi,j .

Before computing non-linear terms involving first-order derivatives in λ or ϕ (components of ∇ lnps, ∂η̇/∂x, ∂Tv/∂x),

these derivatives are averaged in the direction perpendicular to the direction of differentiation. E.g. ∂Tv/∂λ is averaged in

latitude. The averaging formula is5

(∂ψ
∂x

)
j

=
1

2 + c

((∂ψ
∂x

)
j−1

+ c
(∂ψ
∂x

)
j

+
(∂ψ
∂x

)
j+1

)
, (38)

where j is index in the direction perpendicular to x. The constant c= 3 for Tv and η̇ derivatives, c= 4 for∇ lnps components.

The horizontal wind components and temperature are averaged in 2D for computation of Jζ Eq. (2), JD Eq. (5) and terms

involving Tv in momentum (3) and thermodynamic (6) equations:

ui,j =
1
12

(
8ui,j +

∑

m=±1

(ui+m,j+m +ui+m,j−m)

)
, Tvi,j =

1
12

(
8Tvi,j +

∑

m=±1

(
Tvi+m,j +Tvi,j+m

))
. (39)10

Equations (37)–(39) are valid in the case of constant latitudinal resolution . To account for the variable resolution, we mention

that
∫
ψdϕ=

∫
ψMdϕ′ and multiply all (ζi,j+ζi,j±1)(Di,j+Di,j±1)-type combinations in Eq. (37) and ψi,j±1 terms of Eqs.

(38), (39) by 2Mj±1/2/(Mj+1/2 +Mj−1/2).

No averaging is applied for computations of terms involving the coefficients of hybrid coordinate system A, B, and their

derivatives. Also, no averaging is applied for computation of Rmoist/cp term in thermodynamic equation (6) and hydrostatic15

equation (10) terms.

5.5 Vertical discretization

We use Lorenz-staggered grid (Lorenz, 1960) in the vertical where all variables, except vertical velocity η̇ are located at integer

levels ηl (cell centers) and η̇ is located at half-levels ηl+1/2 (cell interfaces). Integer grid levels are set ηl = (ηl+1/2+ηl−1/2)/2,

η1/2 corresponds to the model top, ηNlev+1/2 is at Earth surface. Similarly to η, the hybrid coordinate system coefficient20

Al = (Al+1/2 +Al−1/2)/2 and the same holds for Bl, ∆ηl = ηl+1/2−ηl−1/2 and the same is implied for ∆Al, ∆Bl and other

variables. The vertical derivatives are approximated with 2-nd order of accuracy
(
∂ψ
∂η

)
l
= ∆ψl

∆ηl
+O(∆η2

l ).

It is almost standard for hydrostatic atmospheric models to use Simmons and Burridge (1981) vertical discretization, where

the geopotential is calculated at half-levels ηl+1/2 by integrating hydrostatic equation Eq. (10) with mid-point quadrature rule

and then interpolated to the integer levels. It was found that the trapezoidal rule allowing to calculate geopotential directly at25

the integer levels is more accurate. Eq. (10) is integrated in the following way:

ΦNlev = Φs +RdTvNlev ln
ps

pNlev
, (40)

Φl−1 = Φl +
Rd

2

(
Tvl +Tvl−1

)
ln

pl

pl−1
. (41)

The vertical integrals in the time discrete continuity equation (24) and also Eqs. (25), (26) are calculated using mid-point

rule. At the end of each time-step the vertical velocity is recalculated via the diagnostic relation derived from the Eulerian form30
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of continuity equation (9):

∂B

∂η

∂ps

∂t
=−∇ ·

(
∂p

∂η
V

)
− ∂

∂η

(
∂p

∂η
η̇

)
. (42)

Integration of Eq. (42) from η1/2 to ηL+1/2 using mid-point rule and vertical boundary conditions gives
(
BL+1/2−B1/2

)
∂ps

∂t
=−

l=L∑

l=1

(
Alp0Dl +Bl∇ · (psV )l

)
∆ηl−

(
∂p

∂η
η̇

)

L+1/2

. (43)

The expression for ∂ps
∂t can be obtained by setting L= Nlev in Eq. (43) and using η̇Nlev+1/2=0. After substituting this ex-5

pression back to Eq. (43) for arbitrary L, (∂p/∂η · η̇)L+1/2 can be evaluated. The term ∇ · (psV ) is calculated using standard

divergence discretization (see Sect. 5.2), second-order averaging is applied to ps in latitude (longitude) before computing psu

(psv). To retrieve the vertical velocity η̇ for calculation of upstream trajectories (see Sect. 3) and terms of Eq. (1), (∂p/∂η · η̇)

is interpolated to integer levels with second-order accuracy and divided by (p0∆Al + ps∆Bl)/∆ηl which is proxy for ∂p/∂η.

6 Elliptic problem solution10

6.1 Wind velocity reconstruction

Following Tolstykh and Shashkin (2012), the definitions of ζ = k·∇×V andD =∇·V are applied to reconstruct the horizontal

wind from known vertical component of relative vorticity and horizontal divergence. Fourier representation in longitude Eq.

(33) is used. The relations for u and v 0-th Fourier component are:

∂Âu0 cosϕ
∂ϕ

= Âζ0acosϕ, (44)15

∂Âv0 cosϕ
∂ϕ

= ÂD0 acosϕ. (45)

These relations are integrated in latitude with the compact formula (Lele, 1992):

1
24

(∂ψ
∂ϕ

)
j−1

+
11
12

(∂ψ
∂ϕ

)
j

+
1
24

(∂ψ
∂ϕ

)
j+1

=
ψj+1/2−ψj−1/2

∆ϕ
+O(∆ϕ4), (46)

where Âζ0 cosϕ (ÂD0 cosϕ)is substituted for ∂ψ/∂ϕ in the left hand side and Âuo cosϕ (Âvo cosϕ) is substituted for ψ in the

right hand side. The resulting Fourier coefficients for horizontal wind components at half grid latitudes are interpolated to the20

integer grid latitudes using 6-th order compact interpolation (Lele, 1992).

The k-th Fourier coefficients of horizontal wind components are determined solving



−kÂvk −

∂B̂uk cosϕ
∂ϕ = B̂ζkacosϕ,

kB̂uk + ∂Âvk cosϕ
∂ϕ = ÂDk acosϕ,

(47)




−kÂuk + ∂B̂vk cosϕ

∂ϕ = B̂Dk acosϕ,

kB̂vk −
∂Âuk cosϕ

∂ϕ = Âζkacosϕ,
(48)
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where ∂ψ/∂ϕ is approximated using Numerov’s scheme:

1
6

(∂ψ
∂ϕ

)
j−1

+
2
3

(∂ψ
∂ϕ

)
j

+
1
6

(∂ψ
∂ϕ

)
j+1

=
ψj+1−ψj−1

2∆ϕ
+O(∆ϕ4). (49)

If Âψ
k , B̂ψ

k are Nlat+1-element columns, with j-th element representing Âψk , B̂ψk at j-th grid latitude, then system (47) can

be written as:



−kÂv

k − 1
2∆ϕM−1δCB̂u

k = aCB̂ζ
k,

kB̂u
k + 1

2∆ϕM−1δCÂv
k = aCÂD

k ,
(50)5

where C is the diagonal matrix with Cjj = cosϕj , j-th component of column δÂ is Âj+1−Âj−1, M is matrix with diagonals

(1/6,2/3,1/6). We multiply the system of Eqs. (50) by matrix M from the left and rewrite it for (Âvk, B̂
u
k )Tj pairs, j ∈ [0,Nlat]

that results in 2× 2 block tri-diagonal system of equations. The same operations repeated for system (48) yields 2× 2 block

tri-diagonal system of equations for (Âuk , B̂
v
k)Tj . The details of this solver are given in Tolstykh and Shashkin (2012). As shown

in Caluwaerts et al. (2015), this solver alleviates the problems associated with non-temporal symmetric discretization. Also,10

it avoids the solution of Poisson problem on the sphere which requires certain care due to the non-trivial kernel of Laplace

operator.

6.2 Helmholtz problem solution

The discrete Helmholtz problem for ψ – the k-th Fourier harmonic of arbitrary quantity can be written in the column-matrix

notation of Sect. 6.1 as Lψ+µ2ψ =R, where L is a discrete Laplace operator, µ2 is some scalar,R is k-th Fourier harmonic15

of RHS. When divergence equation (22a) derived from time-discrete momentum equation (3) is used, the meridional part of

∇2 operator is approximated by double application of compact finite-difference formula for the first derivative Eq. (34) and

Eq. (35) is used for the approximation of longitudinal part of Laplacian. The resulting 4-th order accurate Helmholtz problem

discretization is

1
a2

C−1M−1δ1/2

(
C1/2M

−1
1/2δψ

)
+
(
µ2− 1

a2
C−2k̃2

)
ψ =R, (51)20

where operator δ1/2 acts on quantities defined at half-integer grid points, j-th component of δ1/2ψ is ψj+1/2−ψj−1/2, δ acts

on quantities defined at integer grid points, j-th component of δψ is ψj+1−ψj , M and M1/2 are tri-diagonal matrices with

diagonals (1/24,11/12,1/24) acting on quantities defined at integer and half-integer points respectively. Matrix C is the same

as in Eq. (50), matrix C1/2 is diagonal with j-th diagonal element cosϕj+1/2.

Following Tolstykh (2002), Eq. (51) is multiplied by MC from the left side and reformulated using auxiliary variable25

z = M−1
1/2δψ:

1
a2
δ1/2

(
C1/2z

)
+ M

(
Cµ2− 1

a2
C−1k̃2

)
ψ = MCR, (52)

M1/2z = δψ. (53)
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Then (52) is rewritten for the pairs (ψj ,zj+1/2)T , j = [0,Nlat] that results in 2× 2 block tri-diagonal system as in Sect. 6.1.

Approximation (36) to ∇2 operator is used when the analytically derived divergence equation (22b) is employed in the

system of equations (27), (28). This approximation leads to 5-diagonal system of equations for ψ components which is solved

by 5-diagonal Gauss elimination.

7 Dissipation mechanisms5

7.1 Fourth order hyper-diffusion

Non-linear interactions in the complex large-scale atmospheric flows results in the generation of progressively smaller eddies

until these eddies are converted to heat by molecular viscosity at the scales of order of 1cm. Such scales are far beyond the

affordable resolution of atmospheric models. Therefore, the parameterization of unresolved scales interactions and dissipation

is needed to avoid accumulation of energy at smaller scales. Such parameterizations are often considered as the integral part10

of the atmospheric model dynamical core (Williamson, 2007). The SL-AV20 model includes the implicit in time fourth-order

diffusion implemented in Fourier space with the finite volume representation in latitude (Tolstykh, 1997). This algorithm,

allowing variable resolution in latitude, is a generalization of that one presented in (Li and Bates, 1994). We start with the

equation

ψn+1
f = ψn+1−K∆t∇4ψn+1

f (54)15

where ψn+1 is one of Dn+1, Tn+1
v , ζn+1, η̇n+1 and ψn+1

f is the filtered quantity. Equation (54) uses implicit time-stepping

that allows us to circumvent severe limitation on K near the grid poles, ∆t is the same as in the rest of the model dynamics.

SL-AV20 uses variable resolution grids, so the filter should not excessively dissipate smaller scale features in high-resolution

regions. However, these features should be damped out before they spread to the low resolution regions where they cannot be

resolved. We use anisotropic diffusion coefficient that varies with latitude, the ∇4 is substituted for ∇ · (K∇3ψ) to preserve20

local conservation, K = diag(Kλ,Kϕ). To facilitate numerical solution, Eq. (54) is reformulated as

ψn+1
f = ψn+1−∆t∇ ·K∇ξ,
ξ =∇2ψn+1

f .
(55)

We use second order finite-volume formula to approximate the latitudinal part of∇ ·K∇ and ∇2 operators:

(
∇ ·K∇ξ

)
ϕ

=
1

a2∆(sinϕ)j

(
Kϕj+1/2 cosϕj+1/2

ξj+1− ξj
∆ϕj+1/2

−Kϕj−1/2 cosϕj−1/2
ξj − ξj−1

∆ϕj−1/2

)
+O(∆ϕ2) (56)

where ϕj+1/2 = 1/2(ϕj +ϕj+1), ∆ϕj+1/2 = ϕj+1−ϕj , ∆(sinϕ)j = sinϕj+1/2− sinϕj−1/2. Longitudinal part of∇·K∇25

and ∇2 is approximated in Fourier space as the Fourier image of second-order discretization.
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The system Eqs. (55) using (56) can be written for zonal wave-number k as

A


 ξ

ψn+1
f



j−1

+ B


 ξ

ψn+1
f



j

+ C


 ξ

ψn+1
f



j+1

=
a2∆(sinϕ)j

∆t


 ψn+1

0



j

, (57)

B =


−Kϕj−1/2

cosϕj−1/2

∆ϕj−1/2
−Kϕj+1/2

cosϕj+1/2

∆ϕj+1/2
− k̃2Kλj∆(sinϕ)j

cos2ϕj

a2∆(sinϕ)j
∆t

−a2∆(sinϕ)j − cosϕj−1/2

∆ϕj−1/2
− cosϕj+1/2

∆ϕj+1/2
− k̃2∆(sinϕ)j

cos2ϕj


 , (58)

A =


Kϕj−1/2

cosϕj−1/2

∆ϕj−1/2
0

0 cosϕj−1/2

∆ϕj−1/2


 ,C =


Kϕj+1/2

cosϕj+1/2

∆ϕj+1/2
0

0 cosϕj+1/2

∆ϕj+1/2


 (59)5

where−k̃2 =−(1−cosk∆λ)/∆λ2 is the Fourier image of longitudinal part of discrete Laplace operator. This system is solved

using 2× 2 block tri-diagonal version of Gauss elimination.

7.2 Sponge layer

The divergence damping at the vertical levels close to model top is used to avoid spurious reflection of vertically propagating

waves from the upper rigid lid (η̇ = 0 at η1/2 boundary condition). The term −ϑ(η)Dn+1 is included into the RHS of dis-10

crete divergence equation (22). Implicit time-stepping allows us to feel free in choosing damping coefficient ϑ and does not

complicate the solution of system (27), (28).

8 Parallel implementation

SL-AV20 model uses hybrid distributed-shared memory parallelism based on combination of MPI and OpenMP technologies.

Each MPI process performs computations in the band of grid latitudes during the first phase of the time-step that includes15

upstream trajectory computations, interpolation and combination of known terms into RHS of SI system of equation (see Sect.

4). OpenMP threads are used to parallelize longitude loops thus dividing the latitude belt into a number of parts.

The second phase of SL-AV20 time-step consists of the solution of SI system of equations, application of 4-th order hyper-

diffusion (Sect. 7) and reconstruction of wind velocity from vorticity and divergence (Sect. 6.1). This phase is mostly the

solution of elliptic problems. To apply the direct solvers described in Sects. 6, 7, it is convenient to gather k-th Fourier coeffi-20

cients from all grid latitudes in the memory of specific MPI-process. Therefore, the second phase of the SL-AV20 time-step is

preceded by data transposition. Each MPI-process performs computations within the set of longitude wave-numbers from pole

to pole. OpenMP parallelization of loops in vertical is applied.

To balance work-load of MPI-processes, the widths of corresponding latitude bands are calculated accounting for the grid

reduction, so each process treats approximately the same number of grid points. There is an additional constraint of current25

implementation that all grid points for a given latitude should be located at the same processor. There is no load balance

problem in Fourier-space computations, as the processor partition is the same as for regular grid. One can additionally adjust

load balance by taking into account that some parameterizations only work in some latitude band.
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The data transpositions before and after the solution of elliptical problems require global communications between the

processors and is a future scalability bottleneck, so we work on scalable iterative grid-point solvers for elliptic problems. It is

known that iterative solvers for problems described in Sects. 4, 6, 7 can scale up to tens of thousands processors (Müller and

Scheichl, 2014). The semi-Lagrangian advection code is also known to scale at 104 processors (White III and Dongarra, 2011).5

Currently, full SL-AV20 code with parameterizations runs at 3024 cores with 70% efficiency, at 4536 cores with 63%

efficiency, and at 9072 cores with 45 % efficiency when using the grid of 3024 by 1513 points in longitude and latitude

respectively (see Fig. 1). This grid corresponds to 13 km resolution at the equator and has 51 levels in vertical. Only 288

cores are needed to meet HMCR operational NWP requirements (20 minutes per 24 model hours) at the current operational

horizontal grid of 1600 by 865 points.10

9 Numerical experiments

Verification of atmospheric models dynamical cores with idealized adiabatic (moist-adiabatic, quasi-adiabatic) testcases such

as Held and Suarez (1994), Jablonowski and Williamson (2006b), Reed and Jablonowski (2012), Thatcher and Jablonowski

(2016) gained popularity last years. The reason is that various aspects of model numerics can be evaluated in easier way

using idealized setup than real atmospheric flow with all its complexity. Also, the numerical solutions to idealized tests are15

independent of sub-grid scale processes parameterizations.

The full verification of SL-AV20 dynamical core with all its options can hardly be presented in one article. Here we con-

centrate on the impact of the horizontal grid aspects on the numerical solution, namely, the grid reduction and resolution

refinement (see Sect. 5.1). The results presented below are obtained with baseline NWP setup of SL-AV20 dynamical core

with no inherent mass-conservation and divergence equation (22a) derived from the discrete form of momentum equation (3).20

The grids with 400× 250, 800× 500, 1600× 865 points in longitude and latitude respectively and 28 levels in vertical are

used in this study. The first and last horizontal grids correspond to the old and new SL-AV operational NWP configurations

at HMCR. The algorithm proposed by Fadeev (2013) is used to obtain variable resolution and reduced variants of these grids.

The latitude grid spacing is refined in the Northern hemisphere mid-latitudes. The reduced grids used in this study have about

25% less points than the source regular grids. As we learned from shallow water model (Tolstykh and Shashkin, 2012) and25

advection (Shashkin et al., 2016) experiments, 25% reduction is almost the greatest reduction that does not significantly damage

the solution. The characteristics of grids used in this study are summarized in Fig. 2.

The time-step for all variants of 400×250 grid is 1200 s and reduced by the factor c= 400
Nlon for finer grids (Nlon is the number

of grid points along the equator). The basic∇4 hyper-diffusion coefficients in 400×250 grid experiments are 1.5×1015m4s−1

for relative vorticity and temperature and 1.9× 1015m4s−1 for divergence, the hyper diffusion coefficients for finer grids are30

reduced by the factor c3. The latitudinal component of hyper-diffusion coefficient (see Sect. 7) varies with latitudinal grid

spacing Kϕ = (∆ϕ/∆ϕ′)3K0, where ∆ϕ′ = 2π
Nlat and K0 is the basic coefficient value for the given grid.
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9.1 Baroclinic instability test case

In the baroclinic instability test case by Jablonowski and Williamson (2006b), the small zonal wind perturbation of the

geostrophically balanced background state is placed in the Northern hemisphere mid-latitudes. After initial adjustment, the

perturbation causes exponential growth of the baroclinic wave (days 1-7) until it breaks down (days 7-10) and transforms to5

the fully chaotic solution in the course of other 20 days. The evolution of test case solution (obtained by different models) is

illustrated in details in Jablonowski and Williamson (2006a).

As can be seen from figures in Jablonowski and Williamson (2006a) and Wan et al. (2013), the surface pressure and temper-

ature fields rapidly converge to the smooth large scale pattern with the resolution increase. Contrary, the relative vorticity field

of breaking wave consists of filaments that become more and more twisted and thinner with greater amplitude when the grid10

resolution is increased. Each step of grid refinement reveals new smaller scale features in this field.

Our particular interest is the net effect of increasing latitudinal and reducing longitudinal resolution in the zone of interest

i.e. Northern hemisphere mid-latitudes. Figure 3 presents the comparison of day 9 850 hPa relative vorticity field between

numerical solutions on regular lat-lon grids with constant grid spacing in latitude and reduced lat-lon grids with variable

latitudinal resolution. The absolute values of vorticity and its gradients are greater and the inner structure of the vortices is more15

developed in the solutions at 400× 250 and 800× 500 variable resolution reduced grids as compared to the solutions obtained

at corresponding regular grids. The improvement in 1600× 865 grid solution is less obvious that can be partly attributed to

the convergence. Slightly stronger development of the leftmost and middle vortices can be noticed in the variable resolution

solution after closer consideration. However, some subtle details of the rightmost vortex are lost due to the grid reduction (see

discussion below).20

To isolate the effect of the grid reduction, we compare the day 9 850 hPa relative vorticity snapshots from the variable

resolution grid solutions with and without reduction of longitudinal resolution (Fig. 4). Except the leading vortex on 1600×865

grid, the difference between the solutions using the reduced and non-reduced grids can hardly be found. Therefore, the reduction

of longitudinal resolution does not lead to the degradation of solution. At the same time, one can hope that reproduction of

mid-latitude pressure systems dynamics can be improved using variable resolution in latitude. Nevertheless, it should be noted25

that the effect of latitudinal resolution refinement is weaker than the effect of increasing resolution of the basic grid.

One can see in Figs. 3, 4 that SL-AV20 solutions are smooth and no evidence of grid-scale noise or any other type of

noise can be found. This does not compromise the reproduction of smaller scale details, gradient strength and amplitude of

the relative vorticity field which agree well with the solutions of comparable resolution (ICON (Zangl et al., 2015), ECHAM

(presented in Wan et al., 2013), CAM-FV, CAM-EUL, CAM-SLD, GME (compared in Jablonowski and Williamson, 2006a).30

The surface pressure error norms with respect to CAM-SLD reference solution (not shown) are below the uncertainty level

(Jablonowski and Williamson, 2006b), similar to the previous version of SL-AV model (Shashkin and Tolstykh, 2014) .
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9.2 Held-Suarez test

The goal of Held and Suarez (1994) experiment is to verify statistical properties of the atmospheric model circulation driven

by highly idealized forcing – the relaxation of temperature to the equilibrium profile and Rayleigh friction near the surface.

The resulting atmospheric regime is a balance between non-uniform heating, polewards transport of heat and momentum by5

baroclinic eddies and destruction of the momentum in the boundary layer. Thus, the accurate representation of baroclinic

motions in the mid-latitudes plays a crucial role for the test results.

Both lat-lon grid reduction and local increase of latitudinal resolution can modify the intensity of eddy heat and momentum

fluxes and thus alter the net circulation characteristics. Figure 5, panels (a) – (f) presents the 1000 days time-zonal averaged

zonal wind speed, temperature, eddy heat and momentum fluxes, eddy kinetic energy and temperature variance. Shading10

shows the solution at 400×250 reduced grid with variable resolution in latitude, regular grid solution with constant latitudinal

resolution is shown by contours. One can note a slight increase of Northern hemisphere eddy momentum flux (near 300

hPa) and temperature variance (near 900 hPa) maximum values. The eddy heat flux in the Southern hemisphere at 300 hPa

is slightly degraded in the variable resolution solution that can be co-effect of grid reduction and increased latitudinal grid

spacing. The color-levels of eddy kinetic energy to the North of 45◦N in Fig 5, panel (e) are extended polewards as compared15

to the corresponding contours of regular grid solution. That means more intensive eddy motions at high latitudes in the variable

resolution reduced grid solution.

The standalone effect of grid reduction can be evaluated from panels (g) – (l) in Fig. 5. The shading shows the difference

between constant latitudinal resolution regular and reduced grid solutions (regular minus reduced), the contours of regular grid

solution are overlaid for reference. The majority of features depicted in these panels are explained by the shift of jet-stream20

cores which is rather the result of internal low-frequency variability of test solution (Wan et al., 2008) than a consequence of

grid reduction. We can find no significant decrease in polewards eddy fluxes due to suppression of the shortest-scale motions

in the regions with reduced longitudinal resolution.

Figure 6 presents 500 hPa kinetic energy spectra from three numerical solutions (regular, reduced, reduced with variable

resolution in latitude) in Northern hemisphere mid-latitudes (left panel) and high-latitudes (right-panel). To obtain the cor-25

responding spectra, u and v are multiplied by window-function equal to 1 in 30◦N–60◦N (to the North of 70◦N in the case

of high-latitudes spectrum) and 10◦-width smooth transition to the zero value outside. The lines corresponding to the regular

and reduced grid solutions are almost identical in mid-latitudes for all wave-numbers, whereas variable resolution solution

shows more intensive smaller scale motions. The effect of variable resolution in high latitudes also outweighs the effect of grid

reduction.30

10 Conclusions

We have described the dynamical core of SL-AV20 (semi-Lagrangian Absolute Vorticity) atmospheric model thus summarizing

all recent developments in the model numerics (Fadeev, 2013; Tolstykh and Shashkin, 2012; Shashkin and Tolstykh, 2014;

Shashkin et al., 2016). The model is applied to operational global numerical weather prediction with 20km resolution over
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Russia. Also, its lower resolution configurations will be soon applied for probabilistic long-range forecasts and is the base for

development of the new atmospheric component of INMCM Earth system model (Volodin et al., 2010).

The main features of the model dynamical core are the vorticity-divergence formulation at the unstaggered grid, reduced

latitude-longitude grid with variable resolution in latitude, using high-order finite-difference formulae, semi-Lagrangian semi-5

implicit discretization. The number of grid points in longitude at near-polar latitudes for the reduced grids constructed with the

algorithm by Fadeev (2013) is an order of magnitude smaller than the number of points at the equator.

The effects of the grid reduction and variable latitudinal resolution on numerical solutions are investigated with two idealized

tests – the Jablonowski and Williamson (2006b) determenidtic case and Held and Suarez (1994) long-run experiment. The

results agree with other published model solutions. It is shown that the reduction in number of grid points by 25% leads to only10

moderate damping of the shortest longitudinal waves and does not degrade the solution. At the same time, variable resolution in

latitude allows to refine grid in the region of interest and thus improve the solution accuracy. Particularly, increasing latitudinal

resolution in the Northern hemisphere results in sharper gradients and stronger development in the relative vorticity field during

unstable baroclinic wave breaking in Jablonowski and Williamson (2006b) test and more intensive mid-latitude eddy motions

in the Held and Suarez (1994) test. In all tests, the evident positive effect of increase in latitudinal resolution outweighs the15

slight negative effect of grid reduction.

Currently, the experimental SL-AV20 configuration with approximately 13km horizontal resolution can use up to 9000 cores.

This is sufficient in a short term perspective but will become a bottleneck after some years once exascale computer architectures

will be implemented. So far, we use Fast Fourier transforms in some parts of the dynamical core. Hence data transpositions

(global communications between processors) are needed in parallel implementation. We work on scalable iterative grid-point20

solvers for elliptic problems which are known to scale up to tens of thousands processors (Müller and Scheichl, 2014). Also, we

have successfully tested computation of meridional derivatives at the reduced grid in the grid-point space. These developments

will help to avoid the use of FFT in the model code thus moving scalability limit further.

11 Code availability

The code of SL-AV20 dynamical core is available for research purposes on request, please contact Mikhail Tolstykh tol-25

stykh@m.inm.ras.ru .

Appendix A: List of notations

a – mean Earth’s radius

A(η), B(η) – coefficients of Simmons and Burridge (1981) hybrid vertical coordinate

Âψk , B̂ψk – k-th zonal wave number coefficients of ψ Fourier representation in longitude30

cpd, cp – heat capacity of dry and moist air under constant pressure

21

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-265, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 12 December 2016
c© Author(s) 2016. CC-BY 3.0 License.



D – horizontal divergence

f – the Coriolis parameter

Fψ – source/sink of ψ due to subgrid/diabatic processes

G – linear geopotential term5

i, j – longitude and latitude grid-point indices

Jζ , JD – Jacobian-like terms of absolute vorticity and divergence equations (1, 4)

k – r/a – vertical unit vector

k, k̃ – zonal wave-number, the modified zonal wave-number

l – vertical level index10

M – inverse mapping factor ∂ϕ/∂ϕ′

Nlat, Nlon,Nlev – number of grid points in latitude, longitude and vertical respectively

p, p0, ps – pressure, constant reference pressure, surface pressure respectively

p̄, p̄s – reference pressure profile, reference surface pressure

prefs – orography dependent reference surface pressure15

q, qi – specific concentraions of water vapour and liquid (solid) water species

r – vector pointing from the center of the sphere to the given point on its surface

Rd, Rv , Rmoist – gas constants of dry air, water vapour and moist air respectively

Rζ ,RV , RD, RT , RP – RHS of time-discrete absolute vorticity (19), momentum, divergence (22b), thermodynamic (23) and

continuity (24) equations respectively20

R – the rotation matrix

ṡ – analogue of vertical velocity used in thermodynamic and continuity equations (9,6)

Sij – horizontal square of i, j-th vertical column of computational cells

T , Tv – temperature, virtual temperature

T̄ – constant reference temperature
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V = (u,v) – horizontal wind

Vijl – computational cell

V(t) – Lagrangian volume

γ(η)Φs – Ritchie and Tanguay (1996) correction term for thermodynamic equation (6)5

∆λj – grid spacing in longitude at j-th grid latitude

ζ – vertical component of relative vorticity

η – hybrid vertical coordinate of Simmons and Burridge (1981)

η̇ – vertical speed in η coordinate

λ – longitude10

ϕ, ϕj – latitude, j-th grid latitude

ϕ′ – pseudo-latitude

Φ – geopotential

Φs – surface geopotential

ψ – arbitrary quantity15

Ω – Earth’s angular velocity

(ψ)∗ – ψ is evaluated at the departure point of upstream trajectory

(ψ)Vijl , (ψ)Sij – average of ψ over Vijl-cell or Sij-horizontal square

Appendix B: Right-hand side of SI system

The right-hand sides of the discrete in time equation formulated in Sect. 4.1 are as follows:20

Rζ = ζn∗ + f∗−
∆t
2

[
(
fD
)n
∗ +

(
ζD
)(n+1)e

∗ +
(
ζD
)n + Jζ

(n+1)e
∗ + Jζ

n +Fnζ

]
, (B1)

where departure-point Coriolis term f∗ = 2|Ω|sinϕ∗, ϕ∗ is the latitude of departure point, (fD
)n
∗ = f∗Dn

∗ , Dn
∗ is divergence

interpolated to the departure point.
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RV =−2Ω× rn+1 +
∆t
2

(
ε∇Gn−∇GnN

)

+ R

[
V n + 2Ω× rn +

∆t
2

(
−(1 + ε)∇Gn + ε∇G(n+1)e −∇GN (n+1)e

)
+F nV

]

∗
, (B2)

RD =
∆t
2

(
ε∇2Gn +Nn

D

)
+Dn

∗ +
∆t
2

(
(fζ)n− (1 + ε)∇2Gn + ε∇2G(n+1)e +N

(n+1)e
D +FnD

)

∗
, (B3)5

ND =−Dn2−Rd∇ ·
(

(Tv − T̄ )∇ lnps

)
− u

a

∂f

∂ϕ
+ JD. (B4)

The right-hand side of discretized in time thermodynamic equation (23):

RT =−RdT̄
cpd

ε

2
∆t

p̄s

Ap0 +Bp̄s
ṡn +

∆t
2
Nn
T+

(Tnv )∗−
RdT̄

cpd

[
Bp̄s

Ap0 +Bp̄s
lnpns ∗−

∆t
2

(
p̄s

Ap0 +Bp̄s

(
(1 + ε)ṡn− εṡ(n+1)e

))

∗

]
+

∆t
2
NT

(n+1)e
∗ +FnTv∗ (B5)10

NT =

(
RmoistTv

cp

ps

Ap0 +Bps
− RdT̄

cpd

p̄s

Ap0 +Bp̄s

)(
ṡ−B (∂A/∂η)p0 + (∂B/∂η)ps

ps(∂B/∂η)
D−B

(∂B
∂η

)−1

ṡ

)

+ γ(η)V · ∇Φs + η̇
∂γ(η)
∂η

Φs, (B6)

the terms ofNT proportional toB(∂B/∂η)−1 which arise from substitution of dH/dt lnps from continuity equation (9) are set15

0 when (∂B/∂η) = 0. Actually, (∂B/∂η) = 0 only when B = 0 and thermodynamic equation (6) transforms to pure isobaric

coordinate form that does not contain dH/dt lnps at all.

RP =
∆t
2

(
ε
(∂A/∂η)p0 + (∂B/∂η)p̄s

p̄s
Dn + ε

∂ṡn

∂η
+NP

n

)
+
∂B

∂η
lnpns ∗

+
∆t
2

[
(∂A/∂η)p0 + (∂B/∂η)p̄s

p̄s

(
−(1 + ε)Dn + εD(n+1)e

)
− (1 + ε)

∂ṡn

∂η
+ ε

∂ṡ(n+1)e

∂η
+NP

(n+1)e

]

∗
, (B7)20

NP =

(
(∂A/∂η)p0 + (∂B/∂η)p̄s

p̄s
− (∂A/∂η)p0 + (∂B/∂η)ps

ps

)
D, (B8)
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Appendix C: SI system matrices

Following column-matrix notation introduced at the end of Sect. 4.1, we define T , S, P as vectors with k-th component

representing Tvn+1
k , ṡn+1

k and lnpn+1
s 2D fields respectively, and write Eqs. (23), (25), (26) as:

T −κT̄
(
W1P + W2 1 + ε

2
∆tS

)
=RT , (C1)5

(1−B1/2)P =−CW3 1 + ε

2
∆tD+ CRP , (C2)

1 + ε

2
∆tS = I

[
−BP − C̃W

1 + ε

2
∆tD+ C̃RP

]
, (C3)

where κ=Rd/cpd, C is the matrix of mid-point rule integration from the model top to the ground, Ck,l = ∆ηl, k, l ∈ [1,Nlev],

Wm, m ∈ [1,3] are diagonal matrices, W 1
l,l = Blp̄s

Alp0+Blp̄s
, W 2

l,l = p̄s
Alp0+Blp̄s

, W 3
l,l = ∆Alp0+∆Blp̄s

p̄s∆ηl
, I is the two-diagonal ma-

trix interpolating ṡn+1 to the integer vertical levels, Il,l = Il,l−1 = 1
2 . Matrix B is diagonal, Bl,l = (Bl+1/2−B1/2). Matrix10

C̃ equals to the lower triangle (including main diagonal) of C and represents the operation of mid-point rule integration from

model top to some level l+ 1/2.

The definition of G (21) in the column-matrix form is

G= Φs + AT +RdT̄P , (C4)

with the matrix of vertical integration using trapezoidal rule A = UΦ. Φ is two-diagonal matrix which represents the in-15

crement for linear part of the geopotential between the neighbouring levels: ΦNlev,Nlev = ln p̄s
p̄Nlev

, Φl,l = Φl,l+1 = 1
2 ln p̄l+1

p̄l
,

l ∈ [1,Nlev− 1], U is the upper triangular matrix responsible for summation of the increments, Ul,k = 1, l ≥ k, l ∈ [1,Nlev].

One can see that elimination of T , P , S from Eq. (C4) using Eqs. (C1)-(C3) results in Eq. (27) with M′ = κRdT̄ (1−
B1/2)−1A[W1C + W2I(C̃−BC)] +RdT̄ (1−B1/2)−1C, M = M′W3.
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Figure 1. Parallel acceleration of SL-AV20 experimental configuration on the grid of 3024 by 1513 points with respect to 504 cores (red

line), linear acceleration - black line.
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Figure 2. Latitude grid spacing (solid line) of 400×250 (red), 800×500 (green) and 1600×865 (blue) variable resolution latitude-longitude

grids. Dotted lines presets longitude grid spacing of the corresponding reduced grids. Dashed lines shows latitude grid spacing in the constant

resolution grids with the same number of latitudes.
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Figure 3. Day 9 relative vorticity at 850 hPa in baroclinic instability test. Left column – SL-AV20 solutions using regular lat-lon grids with

constant latitude resolution , (a) 400× 250, (c) 800× 500, (d) 1600× 865. Right column, (b), (d), (e) - the same as left column, but using

reduced lat-lon grids with variable resolution in latitude.
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Figure 4. The same as Fig. 3, but lat-lon grids with variable resolution in latitude (no reduction) in left column.
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Figure 5. 1000 days time-zonal averaged zonal wind speed (U), temperature (T), momentum flux (U’V’), heat flux (V’T’), eddy kinetic

energy and temperature variance in Held-Suarez test. Panels (a) – (f) – shading shows reduced grid solution with variable resolution in

latitude, contours show regular grid solution with constant latitudinal resolution. Panels (g) – (l) – shading shows the difference between

regular and reduced grid solutions with constant resolution in latitude (regular minus reduced), overlaid contours depict the regular grid

solution.
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Figure 6. 500 hPa kinetic energy spectra in mid- and high- latitudes in Held-Suarez test. Reduced grid with variable resolution in latitude

(red line), reduced grid with constant latitudinal resolution (green line), regular grid with constant latitudinal resolution (blue line).
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