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Abstract. From 2017 to 2019, an extensive sampling campaign was conducted in Belgian inland and coastal waters, aimed

at providing paired data of optical and biogeochemical properties to support research into optical monitoring of aquatic

systems. The campaign was focused on inland waters, with sampling of four lakes and a coastal lagoon along the growth

season, in addition to samples of opportunity of other four lakes. Campaigns also included the Scheldt estuary over a tidal

cycle and two sampling campaigns in the Belgian coastal zone. Measured parameters include inherent optical properties (ab-5

sorption, scattering and attenuation coefficients, near-forward volume scattering function, turbidity), apparent optical prop-

erties (Secchi disk depth, substrate and water-leaving Lambert-equivalent bi-hemispherical reflectance), and biogeochemical

properties (suspended particulate matter, mineral fraction of particle mass, particle size distribution, pigment concentration,

DNA metabarcoding, flow microscopy counts, and bottom type classification). The diversity of water bodies and environ-

mental conditions covered a wide range of system states. The chlorophyll a concentration varied from 0.63 mg m−3 to10

382.72 mg m−3, while the suspended particulate matter concentration varied from 1.02 g m−3 to 791.19 g m−3, with mineral

fraction varying from 0 to 0.95. Depending on system and season, phytoplankton assemblages were dominated by cyanobacte-

ria, green algae (Mamiellophyceae, Pyramimonadophyceae) or diatoms. The dataset is available from Castagna et al. (2022),

https://www.pangaea.de/tok/c67200d99ea9bbbeadd9edec9690f937b5bacbff.

1 Introduction15

Datasets of paired optical and biogeochemical properties are essential for developing and validating the interpretation of optical

signals captured with in situ instrumentation or remote sensors. Though the data gathered in the last 50 years provide a large

collection of conditions across a diverse set of environments, three major caveats are observed in the freely accessible datasets:

1. The majority of the data concerns open oceans and coastal waters, with little representation of inland water systems;
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2. The majority of the data concerns multispectral measurements, particularly at wavebands typical of ocean colour sensors;20

3. The majority of the paired biogeochemical data includes only broad features (e.g., chlorophyll a concentration) deemed

suitable for operational retrievals with multispectral instruments.

In order to fully exploit the potential of hyperspectral satellite missions, hyperspectral datasets paired with detailed com-

position information of aquatic systems are required (Dierssen et al., 2020). In addition, more extensive data is necessary to

develop and validate regional optical retrievals over complex optical systems such as lakes, lagoons, estuaries and rivers.25

The data presented here were gathered and processed druring three projects funded by the Belgian Science Policy Of-

fice (BELSPO) and one project funded by the Research Foundation – Flanders (FWO). The PONDER project (BELSPO

SR/00/325) focused on developing tools for spaceborne remote sensing of inland water systems using high spatial resolution

(≤ 30 m) sensors, of which current global coverage and open access data is only available for multispectral missions. The

HYPERMAQ project (BELSPO SR/00/335) focused on exploring hyperspectral data for detailed biogeochemical retrievals30

in support of the new generation of hyperspectral spaceborne remote sensing missions. The PHYTOBEL project (BELSPO

SR/02/213) provided funding for data curation and publication. The Flemish part of the LifeWatch BE, a long-term research

project funded by FWO, provided biogeochemical data and infrastructure for sampling the Belgian coastal zone (BCZ). Sam-

ples were taken from 2017 to 2019 and cover eight lakes, the Spuikom lagoon, the Scheldt estuary and the BCZ.

The goal of this data report is to provide a detailed description and validation of the methods used during the research,35

present a summary of the observations and briefly discuss aspects of the data that might be relevant for potential users.

2 Methods and data description

Measurements are presented in three groups: (1) Inherent optical properties (IOPs) consisting of absorption, scattering and

attenuation coefficients, near-forward volume scattering function and turbidity; (2) Apparent optical properties (AOPs) consist-

ing of Secchi disk depth, water-leaving and substrate Lambert-equivalent bi-hemispherical reflectance; and (3) biogeochemical40

properties consisting of suspended particulate matter concentration, mineral fraction of particle mass, particle size distribu-

tion, pigment concentration, DNA metabarcoding, flow imaging microscopy counts, and bottom type classification. Table 1

presents the description of relevant acronyms, symbols, constants and subscripts used in this study. The studied aquatic systems

are listed in Table 2. The measured parameters and the number of samples are listed in Tables 3, 4 and 5. All coordinates are

relative to the WGS84 datum and times are reported in UTC.45

Linear models used for consistency check between parameters were fitted using robust linear regression. For selected pa-

rameters, the data summary is provided in the form of a violin plot, which in addition to the median point, 25th and 75th

percentiles, presents the empirical distribution of the data as the variable width of the planar shape. All analyses were per-

formed in R (version 3.6.3, R Core Team, 2020) with aid of packages ‘MASS’ (version 7.3-51.5, Venables and Ripley, 2002),

‘vioplot’ (version 0.3.6, Adler and Kelly, 2020), ‘dada2’ (version 1.12.1, Callahan et al., 2016) and ‘decontam’ (version 1.6.0,50

Davis et al., 2018).
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2.1 Study sites

The majority of the measurements were performed in Belgian inland waters, in particular four lakes and a coastal lagoon. The

sampling frequency along the growth season varied with the sampling year. The field campaigns were performed seasonally

throughout 2017 (fortnightly) and 2018 (monthly), spanning a broad range of conditions. Data for four additional lakes with55

sporadic sampling during 2017 are also included in the dataset. Those systems were previously described in Castagna et al.

(2020) and are reintroduced here for convenience. A summary of the study sites is presented in Table 2.

The Spuikom (51◦13’41.0”N 2◦57’09.5”E) is a shallow, brackish-marine coastal lagoon (typical salinity between 27 PSU

and 33 PSU), with a surface area of 0.82 km2 and an average depth of 1.5 m. It is connected to the sea through the Ostend

harbor by a lock system. The lagoon exchanges water with the harbor continuously, resulting in median daily renewal of 3.7 %60

of its volume. It is used for recreational activities and shellfish aquaculture. During the observation period (2017 to 2018)

it experienced a cycle of diatom blooms in spring followed by a transition to transparent waters in autumn, with extensive

bottom coverage by macroalgae. It is subject to strong coastal winds that can cause sediment resuspension, adding bottom

sediments and benthic diatoms to the water column. The chlorophyll a (Chl a) concentration typically varied from 2 mg m−3

to 25 mg m−3, with the exception of an intense nanoflagellate bloom that reached a Chl a concentration of≈130 mg m−3. The65

Secchi disk depth ranged from 0.62 m to bottom.

The Hazewinkel (51◦03’57.4”N 4◦23’27.1”E) is a mesotrophic lake with an area of 0.66 km2 and a maximum depth of

20 m. It is used for recreational and sport activities. During the observation period (2017) it presented a peak of phytoplankton

abundance in spring, with Chl a concentration reaching 20 mg m−3, after which the concentration stayed around 5 mg m−3.

Secchi disk depth varied from 1 m to 6 m. Submerged macrophytes were confined to near-shore locations due to a steep basin70

slope.

The Donkmeer (51◦02’23.4”N 3◦58’47.2”E) is the second largest lake in Flanders, with a surface area of 0.86 km2 and

an average depth of 2 m. It experiences recurrent cyanobacterial blooms of Anabaena spp. and Planktothrix agardhii (Descy

et al., 2011). It is used for recreational activities and fishing. During the observation period (2017 to 2018) it experienced

cyanobacterial blooms from summer to autumn, reaching a Chl a concentration of ≈400 mg m−3 and a Secchi disk depth75

of 0.2 m. Its northern and southern portions are connected through a narrow and shallow passage, with the northern portion

experiencing a shorter period of cyanobacterial blooms due to management actions.

The Dikkebus (50◦49’07.4”N 2◦50’39.5”E; 0.36 km2, 2.5 m deep) and the Zillebeke (50◦50’15.4”N 2◦54’34.3”E; 0.28 km2,

2 m deep) are two lakes created in the 13th century for water supply, a function that remains to date along with recreational ac-

tivities. Both lakes exhibit annual blooms of the cyanobacteria Microcystis aeruginosa and Aphanizomenon flos-aquae (Descy80

et al., 2011). During the observation period (2018), intense cyanobacterial blooms were observed with the Chl a concentration

reaching 105 mg m−3 and in the Zillebeke those blooms were associated with fish mortality. The Secchi disk depth ranged

from 0.5 m to 2 m. Additional stations were included from four other Flemish lakes: Bocht (51◦04’24.0”N 4◦23’19.8”E;

0.35 km2 and 18 m deep), Nieuwdonk (51◦02’04.1”N 3◦58’32.2”E; 0.26 km2 and 22 m deep) and two unnamed adjacent
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lakes (51◦06’06.1”N 4◦01’44.1”E; ≈0.16 km2 each and 10 m deep), here referred to as “DelMare”, a sand extraction lake85

with water sports activities, and “Molsbroek”, a nature reserve.

Other inland water systems included were the Scheldt estuary and the Leuven-Dijle canal. The Scheldt is a rain-fed low-

land river, with an estuary environment subjected to tides from the mouth at Vlissingen (The Netherlands) to Ghent (Belgium,

160 km upstream), where a system of locks prevent further propagation of the tide (Meire et al., 2005). It has a large eco-

nomical importance as a transport waterway, connecting the harbours of Antwerp and Ghent to the North Sea. The Scheldt90

estuary was sampled in mid October 2019 at two locations near the city of Sint-Amands (51◦03’18.0”N 4◦11’59.6”E and

51◦04’24.1”N, 4◦11’24.0”E), with a time series including a full tidal cycle (tidal range of 6 m). During the observation pe-

riod the Chl a concentration reached 55.7 mg m−3 at high tide, while the suspended particulate matter (SPM) concentration

reached 791.2 g m−3. In the same campaign performed in the Scheldt, two samples were taken at the Leuven-Dijle canal, a

highly transparent artificial waterway running parallel to the Dijle river, connecting Leuven to the Zenne-Dijle confluence, and95

ultimately to the Scheldt. The sampling position was close to the lock of Zennegat (51◦03’46.7”N 4◦25’50.0”E).

The stations sampled in the BCZ are part of the regular LifeWatch sampling campaigns (Mortelmans et al., 2019). The April

and July 2018 campaigns were augmented to include spectroscopic measurements. The BCZ is a shallow part of the North

Sea (1 m to 40 m), experiencing high tidal fluctuations (average of 4 m) and strong tidal currents (1 m s−1). Those conditions,

combined with limited freshwater discharge into the region, result in a well mixed-water column (van Beusekom and Diel-100

Christiansen, 1993). It experiences high turbidity (SPM concentration from 1 g m−3 to 200 g m−3) with large influence from

particulate material imported through the Strait of Dover (Fettweis and Van den Eynde, 2003). And develops a turbidity

maximum zone near Zeebbrugge, also influenced by the decreasing magnitude of the residual transport vectors from the East

border (Fettweis and Van den Eynde, 2003). The inflow of the Yser and Scheldt rivers influence the availability of nutrients,

with an increase of nitrogen and phosphorus since the second half of the 20th century, followed by a de-eutrophication phase105

during which nitrogen and especially phosphorus decreased (Desmit et al., 2020). The phytoplankton seasonal dynamics are

well described (e.g., Reid et al., 1990), with an early spring diatom bloom followed by a mixed bloom of the haptophyte

Phaeocystis globosa and diatoms. A recent review of the phytoplankton seasonal dynamic was provided by Castagna et al.

(2021). The IOPs in this region were extensively studied by Astoreca et al. (2006, 2009, 2012).

2.2 Sampling110

Sampling was performed from a diverse set of platforms. For the inland water campaigns, samples were taken from pontoons

or an inflatable boat, depending on the system and date. The water was sampled just below the surface, taking care not to draw

in materials floating at the surface (e.g., pollen, debris, etc). Field samples were stored in 5 L semi-transparent plastic carboys,

and kept in the dark and cold during the transport to the laboratory. Sampling for the coastal campaigns was performed from

the Research Vessel (RV) Simon Stevin (Flanders Marine Institute, VLIZ). For most marine samples, water was sampled just115

below the surface using Niskin bottles (General Oceanics, Inc.), attached to a rosette system. The exception were subsurface

samples for flow imaging microscopy, taken with a bucket from the side of the ship. Filtrations were performed on board and

water subsamples were kept in the dark and cold during transport to the laboratory for spectrophotometric measurements.
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Macrophytes, sediment and biofilm were sampled in the Spuikom lagoon. Macrophytes were sampled during 2017 and 2018,

by collecting floating specimens or recovering specimens from the bottom using a rake. Specimens were stored in transparent120

plastic bags containing water from the lagoon, and kept in the dark and cold during transport to the laboratory. Sediments and

biofilm were sampled in April 2018 using polymethyl methacrylate (PMMA) tubes attached to a short corer. The cores were

retrieved with care not to disturb the surface of the sediment, sealed and transported to the laboratory in a vertical position. In

July 2018, biofilm patches had detached from the bottom of the Spuikom and were sampled floating at the surface and stored

in plastic bags for microscopic examination. The cores and macrophytes were stored in a climate room at 4◦C for up to 3 days125

until analysis.

2.3 Inherent Optical Properties

Most of the IOP measurements were performed ex situ, with a benchtop spectrophotometer (Lambda 650S, PerkinElmer)

equipped with a integrating sphere (150 mm internal diameter). The interior of the integrating sphere is made of highly reflec-

tive (nominal 99 %) sintered polytetrafluoroethylene (PTFE). The spectral IOP measurements made with the spectrophotometer130

include particle absorption (ap), chemically decomposed into in vivo pigment absorption (aφ) and depigmented particle ab-

sorption (ad), chromophoric dissolved organic matter absorption (ag), particle attenuation (cp) and scattering (bp) neperian

coefficients. Methods followed recommendations from Pegau et al. (2002) and IOCCG (2018). Measurements covered the

range from 250 nm to 850 nm in 1 nm steps, with a 2 nm integration slit and 0.24 s integration time (250 nm min−1). Data

is provided in the range of 380 nm to 850 nm, and include a single pass of a smoothing function to reduce noise (rectangular135

filter, 10 nm window moving average).

Turbidity was measured in discrete samples with a portable turbidimeter (2100P ISO, HACH). Additional IOP data were

measured from in situ instrumentation for a subset of water systems and stations. These include the diffraction peak (ψ < 15◦)

of the particle volume scattering function (VSF; βp(670)) and non-water attenuation at an acceptance angle of 0.018◦ measured

at 670 nm (cnw(670,0.018); LISST, Sequoia Scientific).140

2.3.1 Absorption coefficient from dissolved components (< 0.45 µm)

Absorption due to chromophoric dissolved organic matter (CDOM) was determined in the laboratory from fresh and undiluted

filtered subsamples, using a 5 cm pathlength quartz cuvette. Subsamples were filtered with 0.45 µm polyamide (nylon) fiber

syringe filters. Between samples, the syringe and cuvette were rinsed with deionized water. The filters were first rinsed by

filtrating 15 mL of deionized water before use with samples. The first sample filtration volume was used for final rinse of145

the quartz cuvette and the volume discarded. The cuvette was then gently filled with the second filtration volume to avoid the

formation of bubbles, and allowed to rest for at least 3 min before measurements. The blank was determined with deionized

water, using the same cuvette and at the same temperature (room temperature, ≈20◦C). Quality control evaluated the presence

of absorption peaks at 676 nm as an indication of cell leakage and the offset from zero absorption at 750 nm as a indication of

the presence of hydrosols.150
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The use of deionized water as blank for all measurements resulted in a mismatch of salinity for marine and brackish samples.

Dissolved salts change the complex refractive index of water (Quan and Fry, 1995; Röttgers et al., 2014b), affecting reflection

and refraction interactions with the cuvette wall, water scattering and absorption. In the wavelength range reported here, the

scattering effects and the absorption of salts are negligible, however the dissolved salts form what is known as salt-solvated

water, mixed with pure water (Max and Chapados, 2001). Salt-solvated water can have higher or lower absorption than pure155

water, depending on the wavelength, with a magnitude defined by the salt type (Max and Chapados, 2001; Röttgers et al.,

2014b). This difference is particularly important in the NIR range, due to the spectral shape of ag. The effect of the mismatch

in salinity was investigated by comparing the effects of salinity on blank readings for ag determinations from deionized water

and artificial seawater at a salinity of 35 (NaCl at 35 g kg−1). The results are shown in Fig. S1 (supplementary material) and

the resulting difference spectrum was subtracted from ag of the Spuikom lagoon and the BCZ for an approximate correction.160

Dissolved molecular oxygen (O2) also contributes to absorption in the UV range (Jonaz and Fournier, 2007, and references

therein), however in the wavelength range reported here CDOM dominates the signal.

The Lambda 650S was not available in 2017 and ag was measured for a subset of samples using another spectrophotometer

(UV-1601, Shimadzu). Sample preparation was the same, except that ag was only measured at selected wavelengths (380 nm,

400 nm, 433 nm, 550 nm and 750 nm). To retrieve the full spectrum for these samples, an hyperbolic model was fitted to the165

available wavelengths (Twardowski et al., 2004). The hyperbolic model fit was also applied to all measurements in the range

of 380 nm to 850 nm to provide a smooth, fitted version of ag and to calculate the CDOM absorption spectral hyperbolic slope

coefficient, Shg :

ag(λ) = ag(443)
(

λ

443

)−Shg

. (1)

Most samples had negligible absorption in the NIR (< |0.1| m−1 nm−1), fluctuating around zero due to instrument noise170

or residual blank salinity difference effect. Four stations had positive or negative offsets that were larger than |0.1|, and the

negative offsets were attributed to the presence of bubbles in the blank of the day. All spectra were subtracted by the average

ag between 750 nm and 850 nm. Five freshwater samples had a pronounced Chl a absorption peak at 676 nm, and since NIR

signals were close to zero, those peaks likely result from cell leakage. The ag for those stations were flagged.

The magnitudes of ag(412) varied between 0.547 m−1 nm−1 and 4.185 m−1 nm−1, with values above 2.25 m−1 nm−1175

generally observed only in freshwater systems. The exception was a sample in the Spuikom collected during a nanoflagellate

bloom, when ag(412) reached 3.160 m−1 nm−1. The range of the Shg was between 5.60 and 8.81. The observed values of ag

and fitted Shg are presented in Fig. 1.

2.3.2 Absorption coefficient from particulate components (> 0.7 µm)

Particle absorption was measured using the filterpad method, with particles concentrated onto a glass fiber filter (GF/F, effective180

mesh of 0.7 µm). To improve the homogeneity of particle deposition over the filtration area, two stacked filters were used and

samples with high abundance of particles were diluted in the filtration funnel with deionized water. Immediately after filtration,
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Figure 1. Chromophoric dissolved organic matter (CDOM) absorption in the Belgian water systems. (A) CDOM spectral absorption coeffi-

cient, ag; and (B) hyperbolic slope of ag, Shg , fitted in the range of 380 nm to 850 nm.

filters were transferred to PetriSlides (Merck), wrapped in aluminum foil and frozen in liquid nitrogen. Filters were then stored

at -80 ◦C until analysis.

Before analysis, the filters were allowed to thaw to room temperature and kept hydrated with deionized water. To avoid185

dislocating large particles deposited on the filter fibers, hydration was performed by raising the filter, adding a droplet of water

to the PetriSlide base and gently lowering the filter onto the droplet, resulting in water spreading by capillarity. The “inside

sphere” variant of the quantitative filterpad method was used (Stramski et al., 2015), using a center mount coated with PTFE.
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Filters were read twice, with a 90◦ rotation between reads to average small deviations from homogeneous deposition. This was

especially important to account for large cyanobacteria colonies when these occurred in low densities (Fig. S2, supplementary190

material). Pigments were then oxidized by treating the filters with sodium hypochlorite (NaClO; Ferrari and Tassan, 1999),

using the same approach as for hydration. Filters were read after 15 min or complete oxidation, following the same orientations

as of the pigmented readings. The pathlength amplification correction was taken from Stramski et al. (2015) as recommended

in IOCCG (2018). The in vivo pigment absorption coefficient (aφ) was calculated as the total particulate absorption coefficient

(ap) subtracted by the depigmented particle absorption coefficient (ad). The chemical oxidation step was not performed for the195

Scheldt samples.

Sodium hypochlorite has an absorption peak at ≈300 nm, with residual absorption up to 500 nm. One method to remove

the oxidant’s signal is to rinse the filter with pure water before the determinations of ad and this method was used for a subset

of samples to evaluate the impact of sodium hypochlorite and rinsing. We observed that some samples had an apparent loss

of ad observed between determinations with sodium hypochlorite and after rinsing (Fig. 2). This effect was dependent of lake,200

with Spuikom, Donkmeer, Hazewinkel and Bocht suffering little to no loss between 550 nm and 850 nm, while Dikkebus and

Zillebeke showed large reductions in ad after rinsing. This effect might provide additional information on the nature of the

particles in a given system, but needs to be further explored to understand its causes. A direct consequence for measurements

of ad and aφ is that rinsing might underestimate ad.

Therefore we developed a statistical method to remove the oxidant’s signal, instead of applying rinsing. We observed that205

when there was no loss of signal with rinsing, the minimum difference between ap and rinsed ad in the UV was at 305 nm,

with ad(305) typically between 80 % and 90 % of ap(305) (Fig. 2A). Based on these observations, we fitted an exponential

function to ad with sodium hypochlorite, using the range of 550 nm to 850 nm, and including an estimate of rinsed ad(305)

as 0.8ap(305). The additional data point at 305 nm helps to set the curvature of the exponential model. Finally, an offset was

included as necessary to match the ap absorption in the NIR end. The exponential model with an offset was:210

ad(λ) = αd + (ad(550)−αd)e−Sed (λ−550), (2)

where αd (m−1 nm−1) is a spectrally flat offset (Estapa et al., 2012) and Sed (nm−1) is the spectral exponential slope of ad.

The treatment with sodium hypochlorite can also introduce another artifact to the measurements. For a set of samples we

observed a baseline offset between ap and ad in the NIR even before rinsing, propagating to increased baseline absorption of

aφ. This likely results from sodium hypochlorite removing the adsorbed organic layer over particles (Binding et al., 2008),215

with the magnitude of the effect proportional to the concentration of particles and organic matter. In our samples this effect was

larger in the maximum turbidity zone of the BCZ. This loss of absorbing material was not observed in a study by Röttgers et al.

(2014a) including samples from a diverse set of environments, though the authors did not apply NaClO to the North Sea or

Baltic Sea samples. The baseline effect was compensated for by adding the minimum offset necessary to match ap and ad in the

range of 800 nm to 850 nm without generating negative aφ values. This constant offset likely underestimates the contribution220

of organic absorption in the blue end due to the exponential spectral shape of this component (e.g., Cael and Boss, 2017).
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Figure 2. Evaluation of the treatment of the filters with sodium hypochlorite (NaClO) and subsequent rinse on the determinations of ad. (A)

A sample from the Bocht (BL_08) and (B) a sample from the Dikkebus (DK_01). The sample in (B) show loss of absorbing material after

rinsing.

Similar to what was observed for ag(412), the magnitudes of ad(412) varied between 0.055 m−1 nm−1 and 4.570 m−1 nm−1,

with values above 2.79 m−1 nm−1 generally observed only in freshwater systems. The baseline absorption coefficient in the

NIR (ap or ad, and equal to aα) ranged from 0.003 m−1 nm−1 to 7.933 m−1 nm−1, with only Scheldt samples presenting

values higher than 0.565 m−1 nm−1 (Fig. 4A). The range of the Sed was between 0.0064 nm−1 and 0.0194 nm−1. The fitted225
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Figure 3. Depigmented particle absorption in the Belgian water systems. (A) Fitted depigmented particle absorption coefficient, ad; and (B)

spectral exponential slope of ad, Sed , fitted in the range of 380 nm to 850 nm. Note that for the Scheldt samples, the exponential model was

fitted directly to ap.

values of ad and Sed are presented in Fig. 3. Since particle absorption samples from the Scheldt were not depigmented but were

dominated by ad (Fig. 4A), an estimate of Sed is provided by fitting Eq. 2 directly to ap (Fig. 3B).

The integral-normalized aφ presented a diversity of pigment absorption peaks (Fig. 4B), showing spectral shapes associated

with dominance of cyanobacteria, green and red lineages of algae. Considering that aφ was retrieved from fitted ad, an indepen-

dent validation was performed against the total Chl a concentration (described later). In the blue end of the spectrum, we used230
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Figure 4. Particle and in vivo pigment absorption in the Belgian water systems. (A) Particle absorption coefficient, ap; and (B) In vivo

pigment absorption coefficient, aφ. The aφ presented here was calculated with the fitted ad.

Gaussian decomposition (Hoepffner and Sathyendranath, 1991; Chase et al., 2013) to extract the magnitude associated with the

Soret band of Chl a in vivo (435 nm; Fig. 5A). In the red end of the spectrum, we compared the aφ(676) against models fitted

to global datasets (Nardelli and Twardowski, 2016, Fig. 5B). We note that our observations are similar to those reported by

Hoepffner and Sathyendranath (1991), while the value of Nardelli and Twardowski (2016) are lower likely due a combination

of their lower Chl a concentration range and their estimation of aφ(676) from the anw(650,676,715) line height (Roesler and235

Barnard, 2013). The median spectral mass-specific in vivo pigment absorption coefficient at 676 nm, ∗aφ(676), was equal to
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0.022 m2 mg−1 nm−1 (Fig. 5C), similar to the value of 0.020 m2 mg−1 nm−1 presented by Hoepffner and Sathyendranath

(1991). The comparisons in the blue and red spectral regions we observe a linearity in log scale, with larger spread in the

comparison aGauss(435) likely due to a combination of the uncertainty in the estimate of the fitted ad and the variable pigment

packaging effect (Morel and Bricaud, 1981; Latimer, 1983), both larger in the blue spectral range.240

2.3.3 Near-foward (< 15◦) particle volume scattering function

The near-forward particle volume scattering function (VSF; βp) at 670 nm was measured with two Laser In-Situ Scattering

and Transmissometery (LISST, Sequoia Scientific Inc.) instruments, models 200X and 100X, equipped with a detector type C.

The LISST-100X has a set of 32 concentric detectors measuring βp between 0.038◦ and 7.519◦, while the LISST-200X has

a set of 36 concentric detectors, the first 32 detectors measuring βp between 0.081◦ and 15.394◦. Single depth measurements245

were taken at 1 m depth, with the instrument deployed horizontally (LISST-200X) or vertically (LISST-100X), having the

optical sensor end oriented down. The vertical deployment, preferentially made on the shady side of the platform, was chosen

to reduce the interference of environmental light since the model 100X does not compensate for external light. Considering

those deployment conditions and that our systems were mostly turbid, we expect negligible influence of environmental light

on the measurements. The instruments were used in a subset of stations. Calibrations with deionized water were performed250

monthly and the most recent calibration used for blank values. The VSF was retrieved from the raw LISST data file, using the

procedures described in Agrawal (2005) and the instrument calibration files.

Quality control was performed by flagging entries in which the single scattering transmittance (Tb) was lower than 30 %, to

avoid artifacts produced by multiple scattering:

Tb(670) = e−bt(670,0.018)lLISST , (3)255

where bt is the total scattering coefficient and lLISST is the pathlength of the LISST instrument. The non-water beam attenuation

coefficient at 670 nm measured by the LISST transmittance sensor with an acceptance angle of 0.018◦, cnw(670,0.018), was

subtracted by the anw(670) measured with a benchtop spectrophotomenter to calculate bt(670,0.018). The VSF is an important

parameter for a tentative correction of the spectral particle attenuation and scattering coefficients measured with the benchtop

spectrophotomenter.260

2.3.4 Attenuation and scattering from particulate components (> 0.45 µm)

In addition to the cnw(670,0.018) measured by the LISST instruments, the spectral particle attenuation (cp) and scattering (bp)

coefficients were calculated from the cnw measured on fresh samples with the Lambda 650S spectrophotometer, by subtracting

ag and ag+ap, respectively. To reduce the acceptance angle of the spectrophotometer (Boss et al., 2009; Leymarie et al., 2010),

a black barrier with a central circular aperture of 2.4 mm diameter was placed in the entry port of the integrating sphere. With265

a distance of 69.5 cm from the center of the sample cell to the integrating sphere (due to system of mirrors extending the

pathlength), the detector acceptance angle in water for this configuration is 0.074◦. The integration time of the instrument was
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Figure 5. Relation between the total chlorophyll a (monovinyl chlorophyll a + chlorophyllide a) and in vivo pigment absorption. (A)

Magnitude of the Gaussian peak centered at 435 nm: (B) the in vivo pigment absorption at 676 nm, aφ(676); and (C) mass-specific in vivo

pigment absorption at 676 nm, ∗aφ(676). The aφ(676) for the Scheldt samples were estimated as the anw(650,676,715) line height (Roesler

and Barnard, 2013).
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increased to 0.4 s (150 nm min−1) to compensate for the reduced signal, but noise levels were still noticed throughout the

spectra. On later samples, the reference beam was partially blocked with a 1 % transmittance filter to reduce the dynamic range

imposed by the lack of a similar aperture in the reference beam.270

As with the ag, cnw was measured in undiluted water subsamples, using 1 cm, 5 cm or 10 cm quartz cuvettes, depending

on the turbidity. Blank readings were measured with deionized water, resulting in mismatched salinity for brackish and marine

samples. The effect of the mismatched salinity was evaluated by comparing the attenuation between deionized water and

artificial seawater at a salinity of 35 (NaCl at 35 g L−1) in the same experimental conditions from sample measurements. In the

range from 380 nm to 850 nm, the difference in beam attenuation coefficient was ≈0.12 m−1 nm−1 (Fig. S3, supplementary275

material). The difference spectrum was subtracted from all brackish and marine samples for an approximate correction.

The measurements of cp(670,0.074) made with the benchtop spectrophotometer were tested against the LISST determina-

tions of cp(670,0.018), with a similar method as described in Boss et al. (2009). Measurements of cnw from both instruments

were converted to cp by removing the absorption by CDOM at 670 nm. The difference between cp(670) estimated by each

instrument should be accounted for by the additional scattering signal captured by the larger acceptance angle of the spec-280

trophotometer, given by the integration of the VSF between 0.018◦ and 0.074◦. The VSF between the lowest measured angle

by the LISST (0.038◦ or 0.081◦) and its transmittance acceptance angle (0.018◦) was calculated with linear extrapolation in

log10 space from the two lowest measured angles. A detailed demonstration for sample DN_29 is presented in Fig. S4 (sup-

plementary material). Fig. 6A shows the result for all samples with paired data available, with data closely following the 1:1

line, and variation possibly caused by artifacts related to in situ versus ex situ measurements. This analysis validates the cp285

measurements with the spectrophotometer.

The additive error due the contamination with the near-forward scattered signal within the acceptance angle can be accurately

corrected for only when the VSF of each sample is known. However, an approximate correction is possible. Fig. 6B shows that

the scattering signal in the range of 0.018◦ to 0.074◦ represents an average of 43.2 % of the particle scattering coefficient, with

a stable relation across systems and seasons. Assuming that the angular shape of the VSF presents minor spectral variability290

and that the VSFs of different systems and seasons in our dataset are well represented by the subset for which LISST data is

available, it is possible to use the approximate correction:

bp(λ,0.074) = cp(λ,0.074)− ap(λ), (4)

bp(λ,0.018) =
bp(λ,0.074)
1− 0.432

, (5)295

cp(λ,0.018) = ap(λ) + bp(λ,0.018). (6)

The LISST-equivalent (acceptance angle of 0.018◦) version of the spectral bp and cp are also provided in conjunction with

the measured values (acceptance angle of 0.074◦), as recommended by IOCCG (2018).
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Figure 6. Evaluation of cp measurement bias due to the finite acceptance of the spectrophotometer. (A) Relation between the difference of

the cp measured with the spectrophotometer and the LISST, and the VSF integral in the range of solid angles defined by the difference of

their acceptance angles. (B) Relation between the scattering coefficient (bp = cp− ap) and the magnitude of scattering between 0.018◦ and

0.074◦ scattering angles (ψ).

Quality control included the flagging of cp spectra showing irregular behavior. Particle attenuation is a smooth spectral300

function (Roesler and Boss, 2003) due to anomalous diffraction that cause a complementary pattern between scattering and

absorption (Zaneveld and Kitchen, 1995). Disturbances can be present in the form of small peaks caused by pigment absorption

or oscillations caused by anomalous dispersion when there is a large contribution of small particles to the attenuation, but their
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shape and position are characteristic. Large, abrupt and otherwise irregular spectral behavior likely arises from motion of large

particles in the beam cross sectional area. Six samples from Belgian lakes were flagged by this procedure, all with presence of305

large cyanobacteria aggregates. All BCZ samples of April, taken during a major Phaeocystis bloom, were also discarded due

to similar effects of the large colonies. Beam attenuation remains elusive for standard bentchtop spectrophotometric analysis

(sequential spectral scanning) under these conditions. As an example, cyanobacteria aggregates were observed floating on the

surface of the cuvette at the end of the spectral run, even though the samples were mixed at the start of the measurement.

Another source of bias related to attenuation measurements in a spectrophotometer is that total internal reflection will occur310

for a fraction of the scattered light, dependent on the incident angles on the water side of the quartz wall. Some fraction

of the internally reflected light could scatter back into directions in the detector’s acceptance angle and artificially decrease

attenuation measurements (IOCCG, 2018). Our experimental procedure did not include a dark baffle inside the cuvette to

reduce this potential effect. Finally, our measurements show an oscillation centered at ≈500 nm, regardless of the system,

particle type or concentration. This suggests that this oscillation is an artifact of the measurement procedure, though we could315

not identify its source.

2.3.5 Turbidity

Turbidity was quantified as formazin nephelometric units (FNU), a NIR side-scattering (90◦) VSF magnitude relative to

formazin standards. For the BCZ and Scheldt campaigns, turbidity was measured just after water sampling, while for the lakes

and lagoon the turbidity was measured after transportation to the laboratory. The transportation might result in changes in320

particle aggregation due to changes in turbulence. However, we found a single linear relation between turbidity and suspended

particulate matter (described later) across all systems and seasons (Fig. 11).

2.4 Apparent Optical Properties

The AOP measured in situ were the Secchi disk depth (dSecchi) and the Lambert-equivalent water-leaving bi-hemispherical

reflectance (ρL
wl). ρ

L
wl was measured with the above water or on-water protocols, depending on the system. The Lambert-325

equivalent bi-hemispherical reflectance (ρL
s ) measurements of substrate samples (sediments, macroalgae) were performed ex

situ, underwater and in air, using natural illumination.

The “Lambert-equivalent” qualification indicates that the bi-directional reflectance distribution function (BRDF) of the tar-

gets is assumed to be well represented by the Lambert model, and the hemispherical-directional measurement is converted to

bi-hemispherical by scaling it with the cosine-weighted solid angle integral of an hemisphere, π sr. The water-leaving signal330

is not strictly Lambertian, however this approximation is commonly used for remote sensing purposes (cf. Frouin et al., 2019).

2.4.1 Secchi disk depth

A standard quadrant Secchi disk (black and white, 30 cm diameter) was used to measure transparency. The Secchi disk was

deployed from the shady side of the sampling platform, recording the depths of disappearence and reappearance. The Secchi
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Figure 7. LISST-equivalent (acceptance angle of 0.018◦) spectral particle beam attenuation coefficient, cp (A), and integral-normalized

particle scattering coefficient, bp (B).

disck depth (dSecchi) was recorded as the average of the two depths. A tentative correction for the effect of sun zenith angle335

(described later) at the time of measurement (Lee et al., 2015) was applied following the formulation of Verschuur (1997).

This correction normalizes the Secchi disk depth measurements to the Sun in the zenith. Measured and corrected values are

provided.
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2.4.2 Lambert-equivalent water-leaving bi-hemispherical reflectance

Reflectance spectroscopy measurements were performed in Belgian lakes and the coastal lagoon using the “on-water” method,340

also known as the skylight-blocked approach (Lee et al., 2013, 2019; Ruddick et al., 2019b). Measurements were made with

a hand held spectrometer (FieldSpec HH, Analytical Spectral Devices) equipped with a 7.5◦ Field-of-View (FOV) foreoptics.

The instrument has bands with 3.6 nm full width at half maximum (FWHM) and a spectral sampling of 1.6 nm, covering the

range from 325 nm to 1075 nm. Water-leaving radiance (Lwl) was recorded at 0.5 m horizontal distance from the deployment

platform, aligned with the Sun azimuth, and with the opening of the lens’ cylindrical shield at 2.5 cm below the water surface.345

The global downwelling plane irradiance just above the surface (Edn(0+)) was estimated from near-coincident measurements

of the exitant radiance of a sintered PTFE reference target (nominal reflectivity of 12 %), held parallel to the surface (Castagna

et al., 2019; Ruddick et al., 2019a). An example of the measurement approach is presented in Fig. S5 (supplementary material).

The Lambert-equivalent water-leaving bi-hemispherical reflectance (ρL
wl) was estimated according to:

ρL
wl(θ,∆φ,λ) = π

LMeas
wl (θ,∆φ,λ)

(1− ε)Edn(λ)
, (7)350

where ε is the estimated fractional shadowing error from the instrument and platform, θ is the nadir angle (0◦) and ∆φ here

refers to the platform-sensor system relative azimuth to the Sun (0◦). The superscript "Meas" for Lwl in Eq. 7 refers to the

measured water-leaving signal, biased due to shadowing of the water system. Measurements were resampled to a regular 1 nm

interval before Eq. 7 was applied. The shadowing error ε was calculated for the range of IOPs observed in the lakes and

lagoon and for the deployment from the inflatable boat and sensor as used in the campaigns, using a backward Monte Carlo355

radiative transfer code (unpublished). Formally, ε is a function of the deployment setup, Sun zenith angle, diffuse fraction of

Edn, at and ct. However, the main IOP defining ε is at (Fig. S6, supplementary material). The correction was applied using

field observations of the required parameters. For stations without measurements of IOPs, spectral cp was estimated from a

multivariate linear regression against turbidity calculated over all available data and ag was estimated as the median ag of given

water system. The diffuse fraction of Edn was simulated from the Sun zenith angle for clear skies (Castagna et al., 2019) and360

was set to 1 when field observations recorded clouds covering the direct Sun illumination.

The same spectrometer used in the lakes and lagoon campaigns was used in the Scheldt campaign, with the above water

approach (Mobley, 1999; Ruddick et al., 2019b, a). For this measurement, ∆φ refers to the view direction relative to the Sun,

set at 135◦. The water-system radiance (Lws) was recorded at a nadir angle of 40◦, the sky radiance (Lsky) was measured at the

nominal specular angle from Lws, 140◦, and Edn estimated from the exitant radiance of the reference sintered PTFE plaque.365

ρL
wl was estimated according to:

ρL
wl(θ,∆φ,λ) = π

Lws(θ,∆φ,λ)− ρ̃fLsky(180◦− θ,∆φ,λ)
Edn(λ)

, (8)

where ρ̃f is the effective Fresnel reflectance.
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For the BCZ campaigns of 2018, reflectance spectroscopy measurements were also made with the above water approach,

using a set of three spectroradiometers (VIS-ARC RAMSES, TriOS) fixed on the bow of the RV Simon Stevin (Castagna et al.,370

2021). The effective Fresnel reflectance was estimated from wind speed and Lsky according to Ruddick et al. (2006). Further

details of processing and quality control are described in Ruddick et al. (2006). The RAMSES instruments have a typical

bandwidth of 10 nm FWHM with spectral sampling every≈3 nm. Radiance and irradiance measurements were resampled to a

regular 2.5 nm interval before Eq. 8 was applied, and ρL
wl was interpolated to 1 nm interval to match the other reflectance data.

The above water measurements were not corrected for possible disturbances by the platform in the spectroscopic measurements375

(Shang et al., 2020) and were not corrected for the non-nadir viewing geometry (Gleason et al., 2012).

The available ρL
wl(0

◦) and ρL
wl(40◦,135◦) are presented in Fig. 8. As expected from the wide range of SPM concentrations,

ρL
wl at 810 nm varied over three orders of magnitude, from 0.00036 to 0.10560. Similarly, the large diversity in terms of particle

composition (e.g., mineral fraction, taxonomy, pigment) and relative contribution of aφ translate to a diversity of ρL
wl spectral

shapes. A validation of ρL
wl and the shadowing correction for the on water approach is provided in Fig. 9, by estimating turbidity380

from ρL
wl(730) following the algorithm proposed by Nechad et al. (2010). The Nechad et al. (2010) algorithm was calibrated

with data between ≈1 g m−3 and ≈100 g m−3 and the comparison is restricted to that range, covering all systems with the

exception of the Scheldt.

2.4.3 Lambert-equivalent bi-hemispherical reflectance of bottom substrates

Measurements of reflectance spectroscopy of the surface of the sediment cores were made with the portable spectrometer385

described previously (FieldSpec HH, Analytical Spectral Devices). The PMMA tubes were cut 5 cm above the sediment’s

surface level, and measurements made in nadir view, with 2.5 cm of water above the sediment. Measurements were performed

with the on-water approach as described previously, i.e. an extension to the shield of the foreoptics was submerged to 2.5 cm

below the water surface. A circular NIST-traceable Munsel card was used as a submerged reference, gently placed over the

sediment. An example of the measurement setup is shown in Fig. S7 (supplementary material). The bottom depth at the390

sampled stations varied between 1.3 m to 1.93 m and all but the station SP_43 (1.3 m deep) had the Secchi disk depth above

the bottom (average Secchi disk depth of 1.4 m). In July 2018, reflectance spectroscopy measurements were also made of

floating biofilm mats that had detached from the bottom of the Spuikom, presumably due to enhanced buoyancy caused by

bubbles trapped in the mucilage matrix following several days of high irradiance and heat. Measurements were performed

from a boat, without disturbing the floating biofilm mats. A sample taken for microscopy examination, revealed an assemblage395

composed of representatives of the benthic diatom genera Pleurosigma, Gyrosigma and Navicula (Fig. S8, supplementary

material).

Reflectance spectroscopy measurements of the most conspicuous macrophyte species occurring in the Spuikom (Cladophora

glomerata, Ulva sp. and Sargassum muticum) were performed in air, with an hyperspectral camera (SOC710-VP, Surface

Optics Coorporation). The macrophyte reflectance measurements were made in nadir view with natural illumination. The400

hyperspectral camera was set up at 1 m above the samples, using a f/2.8 aperture following the observation of lower spatial

variability in the visible to red-edge spectral region. The 12 % (nominal) reflectivity sintered PTFE plaque was used to estimate
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Figure 8. Lambert-equivalent water-leaving bi-hemispherical reflectance, ρL
wl, estimated on Belgian water systems. The view geometry is

dependent on the measurement approach, being nadir view (θ = 0◦) for lakes and the Spuikom, and θ = 40◦ ∆φ= 135◦ for the Scheldt and

the BCZ. (A) Magnitude of ρL
wl and (B) its integral-normalization with respect to wavelength. ρL

wl(0
◦) values measured with the on water

approach presented here were corrected for shadowing.

Edn and a spectrally flat 5 % reflectivity sheet was used as background. Specimens were folded over a supporting petridish

to avoid signal from the background and the reflectance averaged over circular areas to average over the three dimensional

structures (Fig. S9, supplementary material). As the macroalgae were washed free of the sediment before the measurements,405

the determined ρL
s represent pure end members of substrate reflectance.
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Figure 9. Assessment of ρL
wl data quality by comparing the turbidity estimated from reflectance using the algorithm of Nechad et al. (2010)

to the measured turbidity.

The average ρL
s spectra of macroalgae and the spectra of sediment samples are presented in Fig. 10. ρL

s spectra of macroalage

reached values as high as 0.4 in the NIR range, while sediments, independent of biofilm thickness, had an average ρL
s in the

NIR of≈ 0.11. In the visible range, the spectral shape of Sargassum muticum seems indistinguishable from the sediments with

thickest biofilms, as expected due to similar pigment composition of brown algae and diatoms. The similarity in pigment com-410

position also explains the similarity between the average ρL
s of healthy specimens of the green algae Ulva sp. and Cladophora

glomerata (cf. Kotta et al., 2014).

2.5 Biogeochemical data

2.5.1 Suspended particulate matter and mineral fraction

Determinations of suspended particulate matter (SPM) concentration (g m−3) were performed gravimetrically, after filtration415

of the suspensions with pre-treated glass fiber filters (GF/F, Whatman, nominal mesh size of 0.7 µm). For brackish and marine

samples, the filters were rinsed with distilled water to remove salt from the filtration area and rim of the filter (Strickland and

Parsons, 1968). The filters were then dried overnight at 60◦C and cooled to room temperature before mass determinations.

The pre-treatment of filters involved combustion for one hour at 450◦C to eliminate organic components, followed by washing

to remove loose glass fibers and blank mass determinations. To calculate the mineral fraction (fm) of the SPM, the filters420

were heated to 500◦C for one hour for thermal oxidation of organic matter and cooled to room temperature before new mass

determinations. For some filters, the last mass determinations were lower than the blank mass, indicating a combination of
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Figure 10. Lambert-equivalent substrate bi-hemispherical reflectance, ρL
s , estimated from samples on the Spuikom. The view geometry

was nadir view (θ = 0◦, ∆φ undefined) for all measurements. (A) The magnitude of ρL
s in the visible to NIR spectral range and (B) the

magnitude in the visible spectral range. In (B) only the sediment samples with the thinnest and thickest biofilm mats are shown, as judged by

the reflectance magnitude at 676 nm.

very low mineral fraction and loss of glass fibers during manipulation. Those samples had the mineral fraction set to zero. The

observed range of SPM across all systems was from 1.02±0.09 g m−3 to 791.19±0.10 g m−3 and the range of mineral fraction

was from 0±0.00 to 0.95±0.08. A comparison between SPM and turbidity is presented in Fig. 11.425
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Figure 11. Relation between suspended particulate matter (SPM) concentration and turbidity in Belgian water systems.

2.5.2 Particle size distribution

The particle size distribution (PSD) was inverted from the LISST measurements of VSF, using the random shaped particle

VSF kernels provided by the manufacturer. The LISST-100X with random shaped particle inversion provides the PSD between

1.8 µm and 381 µm in 32 log-spaced intervals, while the LISST-200X provides the PSD between 1 µm and 500 µm in 36

log-spaced intervals. The LISST software automatically flags measurements with transmittance lower than 30 %. For further430

details of the measurements with the LISST, see Sec. 2.3.3. Values are provided as volume concentration PSD (cm3 m−3,

ppm). The PSDs converted to particle number concentration, using the volume of a sphere with the median diameter of each

retrieved bin size range (Buonassissi and Dierssen, 2010), are shown in Fig. 12. Assessing differences in the PSD measured

with the two instruments is under further investigation, but beyond the scope of this data report.

2.5.3 Pigment concentration435

Pigment mass concentrations were determined using High Performance Liquid Chromatography (HPLC), following the method

of Van Heukelem and Thomas (2001). Cells were broken with sonication and the suspension was cleared by filtration through

a 0.22 µm syringe filter. The HPLC was equipped with a reverse-phase column (Eclipse XDB C8) and the detection was

performed with spectral absorption (Agilent 1100 series, Diode Array Detector). Pigment standards were acquired form the

Danish Hydrographic Institute (DHI) and quantified pigments are listed in Table 6. For the BCZ samples, the measurements440

are part of the regular marine LifeWatch BE sampling campaigns (Flanders Marine Institute, 2021a), described in Mortelmans
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Figure 12. Particle size distribution (PSD) in the Belgian water systems. (A) Retrieved with the LISST-100X; and (B) retrieved with the

LISST-200X. The continuous particle number concentration PSD was calculated from the volume concentration PSD assuming spherical

particles of median diameter in each size bin and normalizing by the width of each logarithmically spaced size bin.

et al. (2019). The observed range of total Chl a (Chl a + Chlide a) across all systems was from 0.63 mg m−3 to 387.53 mg m−3.

Fig. 13 presents the distributions of total Chl a per system and the spread of Chl b to total Chl c (Chl c1c2 + Chl c3).
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Figure 13. Pigment concentrations in Belgian water systems. (A) Total chlorophyll a (TChl a) concentration; and (B) relation between

monovinyl chlorophyll b (Chl b) and total chlorophyll c (TChl c) concentrations. TChl a = monovinyl chlorophyll a + chlorophyllide a,

TChl c = chlorophyll c1c2 + divinyl chlorophyll c3 (cf. Table 6). A value of 0.01 mg m−3 was added to represent in the log-log plot the

samples with concentrations below the detection limit.

2.5.4 DNA metabarcoding

DNA metabarcoding (amplicon sequencing) was performed only for samples from the Spuikom and the BCZ. The molecular445

analysis was based on replicate filters collected for pigment analysis. DNA extraction was performed with the DNeasy Plant
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Mini Kit (Qiagen), with the polymerase chain reaction (PCR) amplification targeting the variable region 4 (V4) of the nuclear

18S ribossomal RNA gene. The 18S rRNA V4 primers were the TAReuk454FWD1 (5’ CCAGCASCYGCGGTAATTCC 3’)

and the TAReukREV3 (5’ ACTTTCGTTCTTGATYRA 3’; Stoeck et al., 2010). Paired-end (2 x 300 base pairs) sequencing was

performed with the Illumina MiSeq technology (Illumina, San Diego, US) by Genewiz (Leipzig, Germany). The primers were450

trimmed from the sequenced reads using the FASTX-Toolkit (Gordon and Hannon, 2010). The resulting base-pair sequences

were processed with the DADA2 algorithm (Callahan et al., 2016) to resolve amplicon single variants (ASVs). Probable con-

taminant sequences were removed using negative controls, following the method of Davis et al. (2018). Taxonomic assignment

to the ASVs was based on the Protist Ribosomal Reference database (PR2 version 4.12; Guillou et al., 2012). The raw molec-

ular data can be found at the Sequence Read Archive (SRA) of the National Center for Biotechnology Information (NCBI)455

under the accession number PRJNA778668 (https://www.ncbi.nlm.nih.gov/sra/PRJNA778668).

The raw data was further processed to an aggregation level that is relevant for optical monitoring. The assigned taxonomy

with PR2 was updated to follow the taxonomy of the World Register of Marine Species (WoRMS Editorial Board, 2021),

aggregated to species rank and filtered to remove non-pigmented organisms. Heterotrophic organisms were filtered at division

rank, with the exception of exclusively heterotrophic dinoflagellates, which were filtered at the lowest rank possible based460

on reference sources (Hasle et al., 1997; WoRMS Editorial Board, 2021). The data was further annotated to indicate: (1) the

pigmentation group (sensu Jeffrey et al., 2011) of each species based on our pigment ratio database; and (2) the toxicity,

based on the IOC-UNESCO HAB reference list (Moestrup et al., 2021). More than 200 different species from 19 classes of

phytoplankton were identified.

2.5.5 Flow imaging microscopy465

As part of the regular LifeWatch BE samples in the BCZ, organisms in the range of 55 µm to 300 µm were counted and

identified to the lowest taxonomic unit possible using flow imaging microscopy (FlowCam VS IV, Fluid Imaging Technologies,

Inc.; Amadei Martínez et al., 2020; Flanders Marine Institute, 2021b). Fresh water samples were fixed with lugol and stored in

the dark until analysis. The images were analyzed with the VisualSpreadsheet software (Fluid Imaging Technologies, Inc.) for

automatic taxonomic identification. Data was visually inspected to validate the classification. The fixation with lugol results in470

the disaggregation of Phaeocystis globosa colonies and single-cell P. globosa were not detected due to the lower size range of

the instrument configuration. In total, 30 different species were detected, the majority of which were diatoms. A comparison

of the spatio-temporal pattern of relative abundance of Rhizosolenia spp. cells between amplicon sequencing and FlowCam is

shown in Fig. 14.

2.5.6 Bottom cover475

For systems in which the bottom can be visible from the surface, the bottom type was described. Bottom cover was classified

based on visual inspection from the surface or from images taken with a submersible camera (Fig. 15). For some stations the

bottom cover was classified based on sampling of bottom material. The discrete classes were: (1) Sediment (potentially with

biofilm); (2) Shells; (3) Cladophora; (4) Sargassum; (5) Brown algae (not specified); and (6) Heterogeneous. The last class
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Figure 14. Relative abundance of Rhizosolenia spp. cells as estimated by DNA metabarcoding (amplicon sequencing) and microscopy

(FlowCam). Data normalized using the counts of common species of diatoms in each dataset.

was used when the bottom was covered by a complex mixture of other classes. This classification is qualitative in the sense480

that describes the major composition of the bottom at a given station, but does not provide fractional cover.

2.6 Ancillary parameters

In addition to the optical and biogeochemical parameters, a series of ancillary parameters were also determined: Time, position,

local depth, sampling platform, Sun zenith angle, and visual descriptions of the sky and water system.

For the inland water campaigns, time and position of each station were recorded from a handheld Global Navigation Satellite485

System (GNSS) receiver (GPSmap 62s, Garmin), which is enabled to receive corrections from the European Geostationary

Navigation Overlay Service (EGNOS). The local depth at the time of sampling was estimated with a handheld single beam

echosounder (Echotest II, Plastino) at the start of each station. The exception was one very shallow station (0.2 m), where a

folding ruler was used. For marine stations, position, time and local depth were taken from the ship’s navigation data, acquired

with a differential GPS and a mounted single beam ecosounder (JFE 380-25, Japan Radio Co., Ltd.). Sun zenith angles were490

calculated with the HORIZONS system (Jet Propulsion Laboratory, NASA; https://ssd.jpl.nasa.gov/horizons/). All ancillary

parameters, with the exception of the Sun zenith angle, were combined into a single metadata file.
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Figure 15. Example of bottom cover classes in the Spuikom. (A) Sediment (with biofilm); (B) Sediment, shells and brown algae; (C)

Heterogeneous.

3 Conclusions and recommendations

This study described in detail the first open dataset of paired optical and biogeochemical measurements in a diverse set of water

systems located in Belgium. The wide range of observed conditions and the relative scarcity of similar open datasets in inland495

waters make this a relevant contribution to the community. Potential users of this dataset are encouraged to contact the authors

for further inquiries concerning the data and an updated status of studies in development using the dataset.

Although the raw, measured IOPs and AOPs are provided, their fitted or corrected versions are recommended for use. For

example, the fitted ag removes noise and oscillation in the NIR due to salinity mismatch between blanks and brackish or

marine samples. The fitted ad was found as the least biased way to remove the absorption signal of NaClO, providing the best500

estimate of ad and aφ. The bp, and consequentially cp, corrected to an acceptance angle of 0.018◦ (equivalent to the LISST
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instruments) provides a more accurate estimate of the scattering and attenuation. The dSecchi was corrected for the Sun zenith

angle, normalizing all measurements to the Sun in the zenith, and ρL
wl measured with the on-water method were corrected

for platform and instrument shadowing. The results of the fitting and corrections were evaluated through consistency checks

between different data types and instruments as presented in the text.505

4 Data availability

Data is available from Castagna et al. (2022), hosted at PANGAEA (http://www.pangaea.de) under the doi: https://www.

pangaea.de/tok/c67200d99ea9bbbeadd9edec9690f937b5bacbff
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Table 1. Description of relevant acronyms, symbols, constants and subscripts used in this manuscript.

Description

Acronyms

AOP Apparent optical properties

BCZ Belgian coastal zone

BRDF Bidirectional reflectance distribution function

CDOM Chromophoric dissolved organic matter

FNU Formazin nephelometric units

FWHM Full-Width-at-Half-Maximum

IOP Inherent optical properties

NIR Near-infrared range of the electromagnetic spectrum (700 nm to 1000 nm)

PMMA Polymethyl methacrylate

PSD Particle size distribution

PTFE Polytetrafluoroethylene

SPM Suspended particulate matter

UV Ultraviolet range of the electromagnetic spectrum (10 nm to 400 nm)

Symbols

a Spectral neperian absorption coefficient (m−1 nm−1)

b Spectral neperian scattering coefficient (m−1 nm−1)

c Spectral neperian beam attenuation coefficient (m−1 nm−1)

dSecchi Secchi disk depth (m)

Edn(0
+) Spectral global (direct + diffuse) downwelling plane irradiance just above the water surface (W m−2 nm−1)

fm Mineral fraction of SPM (1)

l Metric pathlength (m)

L Spectral radiance (W m−2 sr−1 nm−1)

Sh Spectral hyperbolic slope coefficient (1)

Se Spectral exponential slope coefficient (nm−1)

T Transmittance (1)

αd Spectral neperian depigmented particle absorption coefficient offset (m−1 nm−1)

β Spectral neperian volume scattering function (m−1 sr−1 nm−1)

∆φ Relative azimuth angle (◦)

ε Fractional error caused by shadowing of the downwelling light for on water spectroscopy measurements (1)

θ Nadir angle (◦)

λ Wavelength (nm)

ρL Lambert-equivalent bi-hemispherical reflectance (1)

ρ̃f Effective Fresnel reflectance (1)

ψ Polar scattering angle (◦ or rad)

Constants
e Euler’s number (≈2.718282)

π The ratio of a circle’s circumference to its diameter (≈3.141593)

Subscripts

b Relative to backscattering

d Relative to the depigmented particle components

g Relative to the CDOM component

nw Relative to all non-water components

p Relative to the particle components

s Relative to the substrate (macroalgae, sediments)

t Relative to all components (total)

wl Relative to water-leaving

ws Relative to water-system (water-leaving + interface)

φ Relative to the in vivo pigments component
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Table 2. Summary of Belgian water systems sampled in this study.

Type System Platform Period

Fresh

Bocht Boat, Pontoon 2017

Donkmeer Boat, Pontoon 2017-2018

DelMare Boat 2017

Dikkebus Pontoon 2018

Hazewinkel Boat, Pontoon 2017

Leuven-Dijle Pontoon 2019

Molsbroek Boat 2017

Nieuwdonk Pontoon 2017

Zillebeke Boat 2018

Brackish
Scheldt Pontoon 2019

Spuikom Pontoon, Boat 2017-2019

Marine BCZ RV Simon Stevin 2018

Table 3. Summary of measured and derived inherent optical properties per water system. Values indicate the number of valid, quality checked,

measurements.

Type System
ag ap ad aφ cp bp βp Turb

(m−1 nm−1) (m−1 sr−1 nm−1) (FNU)

Fresh

Bocht 1 7 7 7 - - 2 8

Donkmeer 18 33 32 32 8 8 10 38

DelMare - 2 2 2 - - 1 3

Dikkebus 7 7 7 7 3 3 5 7

Hazewinkel 1 17 17 17 - - 1 18

Leuven-Dijle 2 2 - - 2 2 - 2

Molsbroek - 1 1 1 - - - 1

Nieuwdonk - 1 1 1 - - - 2

Zillebeke 8 8 8 8 3 3 6 8

Brackish
Scheldt 21 21 - - 21 21 2 21

Spuikom 35 51 46 46 21 21 15 60

Marine BCZ 9 19 19 19 - - 19 19

Total 102 169 140 140 58 58 61 187
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Table 4. Summary of measured apparent optical properties per water system.

Type System
ρL

wl ρL
s dSecchi

(1) (1) (m)

Fresh

Bocht 7 - 8

Donkmeer 34 - 37

DelMare - - 4

Dikkebus 7 - 7

Hazewinkel 20 - 21

Leuven-Dijle - - -

Molsbroek - - 1

Nieuwdonk - - 2

Zillebeke 7 - 7

Brackish
Scheldt 8 - -

Spuikom 62 14 68

Marine BCZ 19 - 18

Total 164 14 173
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Table 5. Summary of measured and derived biogeochemical parameters per water system.

Type System
SPM fm PSD Pigments Amplicon FlowCam Bottom

(g m−3) (1) (cm3 m−3) (mg m−3) (counts) (counts) (type)

Fresh

Bocht 8 8 2 8 - - -

Donkmeer 34 34 10 36 - - -

DelMare 2 2 1 3 - - -

Dikkebus 7 7 5 7 - - -

Hazewinkel 18 18 1 18 - - -

Leuven-Dijle 2 2 - - - - -

Molsbroek 1 1 - 1 - - -

Nieuwdonk 2 2 - 2 - - 1

Zillebeke 8 8 6 8 - - -

Brackish
Scheldt 21 21 2 12 - - -

Spuikom 56 48 15 53 48 - 26

Marine BCZ 19 19 19 19 15 13 -

Total 178 170 61 167 63 13 27
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Table 6. List of quantified pigments. Names and abbreviations follow Roy et al. (2011). Known co-elutions according to Van Heukelem and

Thomas (2001) are described in the table footnotes.

Name Abbreviation Name Abbreviation

(monovinyl) Chlorophyll a Chl a Diadinoxanthin Diadino

(monovinyl) Chlorophyll b Chl b Diatoxanthin Diato

Chlorophyll c1c2† Chl c1c2† Echinenone Echin

(divinyl) Chlorophyll c3 Chl c3 Fucoxanthin Fuco

Chlorophyllide a Chlide a 19′-Butanoyloxyfucoxanthin But-fuco

Pheophorbide a Pheide a 19′-Hexanoyloxyfucoxanthin Hex-fuco

Pheophytin a Phe a Lutein Lut

α-Carotene βε-Car Mutatoxanthin Mutato

β-Carotene ββ-Car Myxoxanthophyll Myxo

Lycopene Lyco 9′-cis-Neoxanthin†† c-Neo††

Alloxanthin Allo Peridinin Peri

Antheraxanthin Anth Prasinoxanthin††† Pras†††

Astaxanthin Asta Violaxanthin Viola

Canthaxanthin Cantha Zeaxanthin Zea

Crocoxanthin Croco

α-Cryptoxanthin α-Cypto

β-Cryptoxanthin β-Cypto

† Chl c1c2 = Chl c1 + Chl c2 + magnesium 2,4-divinylpheoporphyrin a5 monomethyl ester (MgDVP). MgDVP is present in

trace concentrations in most algae and cyanobacteria, but is a major component of PRASINO 3A and 3B pigmentation groups

(sensu Jeffrey et al., 2011);
†† c-Neo and 19′-Hexanoyloxy-4-ketofucoxanthin (Hex-kfuco) co-elute and are not know to co-occur in the same organism

or pigmentation group (sensu Jeffrey et al., 2011);
††† Pras and micromonol (Microl) co-elute and co-occur in the PRASINO 3B pigmentation group (sensu Jeffrey et al., 2011).
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