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Abstract. Planning for the impacts of climate change requires accurate projections by Earth System Models (ESMs). ESMs, as

developed by many research centres, estimate changes to weather and climate as atmospheric Greenhouse Gases (GHGs) rise,

and they inform the influential Intergovernmental Panel on Climate Change (IPCC) reports. ESMs are advancing the under-

standing of key climate system attributes. However, there remain substantial inter–ESM differences in their estimates of future

meteorological change, even for a common GHG trajectory, and such differences make adaptation planning difficult. Until5

recently, the primary approach to reducing projection uncertainty has been to place emphasis on simulations that best describe

the contemporary climate. Yet a model that performs well for present–day atmospheric GHG levels may not necessarily be

accurate for higher GHG levels and vice-versa.

A relatively new approach of Emergent Constraints (ECs) is gaining much attention as a technique to remove uncertainty

between climate models. This method involves searching for an inter–ESM link between a quantity that we can measure10

now and another of major importance for in describing future climate. Combining the contemporary measurement with this

relationship refines the future projection. Identified ECs exist for thermal, hydrological and geochemical cycles of the climate

system. As ECs grow in influence on climate policy, the method is under intense scrutiny, creating a requirement to understand

them better. We hypothesise that as many Earth System components vary in both space and time, their behaviours often

satisfy large–scale Partial Differential Equations (PDEs). Such PDEs are valid at coarser scales than the equations coded in15

ESMs which capture finer high resolution gridbox–scale effects. We suggest that many ECs link to such an effective hidden

PDE that is implicit in most or all ESMs. An EC may exist because its two quantities depend similarly on an ESM–specific

internal bulk parameter in such a PDE, and with measurements constraining and revealing its (implicit) value. Alternatively,

well–established process understanding coded at the ESM gridbox–scale, when aggregated, may generate a bulk parameter

with a common “emergent” value across all ESMs. This single parameter may link uncertainties in a contemporary climate20

driver to those of a climate–related property of interest, the EC constraining the latter by measurements of the former. We

offer illustrative examples of these concepts with generic differential equations and their solutions, placed in a conceptual EC

framework.
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1 Introduction

Earth System Models (ESMs) form the basis of climate research and provide predictions of global environmental change due to

burning fossil fuels. Projections by ESMs strongly inform the reports of the Intergovernmental Panel on Climate Change (e.g.

IPCC, 2013, 2021) and influence climate policy. These models consist of solving, on numerical meshes, discretised differential

equations that describe the evolution of the atmosphere, oceans, land and cyrosphere and their interactions. In addition to5

physical processes, these models have evolved to emulate key global geochemical cycles. ESMs are typically forced with

prescribed values of historical atmospheric greenhouse gas (GHG) concentrations, followed by a range of scenarios for their

future levels (e.g., Meinshausen et al., 2011). This process estimates how the planetary climate system responds to altered

atmospheric gas composition. Alternatively, an ESM can be forced with CO2 emissions scenarios (e.g., Cox et al., 2000), if

the ESM has a full description of the global carbon cycle. A major achievement of the scientific community is the pooling10

of climate model projections from different research centres into common Coupled Model Intercomparison Project (CMIP)

databases such as CMIP5 (Taylor et al., 2012) and CMIP6 (Eyring et al., 2016).

Almost all parts of the climate system vary in both space and time. Hence Partial Differential Equations (PDEs) are solved

for evolving temporal variations on the spatial numerical mesh particular to any ESM. Many of these PDEs central to under-

standing the climate system are well–established, as described in standard textbooks on atmospheric and oceanic behaviours15

(e.g. Vallis, 2006). However, for the same future GHG scenario, analyses of the CMIP databases reveal significant inter–ESM

differences between projections of even fundamental quantities such as the level of global warming (Lee et al., 2021). As

standard equations are frequently solved in ESMs, a valid question is: “why are ESM projections often so different”?. The

main possibly simplest answer is that some processes are still not fully understood and are therefore parameterised differ-

ently between ESMs. Components frequently noted in this category are the modelling of cloud–climate interactions (e.g. Bony20

et al., 2015), and how aerosols act in modulating global temperature rise (e.g. Bellouin et al., 2020). A secondary source of

uncertainty is the dependence of process parameterisation on gridbox resolution. Larger individual gridboxes (i.e. a coarser

numerical grid) often need effective parameterisation of sub–grid processes, and variation in this may cause inter–ESM dif-

ferences. Numerical tests with extremely high resolution models allow the explicit representation of convection (‘convection

permitting’; e.g. Clark et al., 2016) and verify its importance in describing local rainfall characteristics. While very high res-25

olutions are achievable in weather forecast models, computational speed precludes their routine operation for ESMs designed

to simulate century timescales.

Unfortunately, the considerable variation in model estimates of future climate change makes societal adaptation planning

difficult. Such discrepancies can be used by some to discredit the overall notion of a human influence on climate. One possibility

to lower inter–ESM spread is to rank models by their ability to describe the contemporary climate and known recent changes.30

ESMs regarded as the most reliable at describing expected future change are those that perform best at simulating the recent

past. However, this can be a subjective activity, depending on selected datasets for comparison and their geographical location.

Furthermore, there is a risk of downrating a model that does not perform well for the present day yet accurately projects a

future change of concern to society.
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Recently a technique called “Emergent Constraints” (ECs) has gained prominence as a new method to reduce the spread

between the projections by different ESMs. The EC method capitalises on discovered relationships between two quantities

calculated by climate models when considering estimates of each from across many ESMs. One variable is an attribute of

the climate system for the present-day or historical period, for which data also exists. The second variable, for which data is

unavailable, is often a feature of the evolving climate system and is informative for climate policy. For example, this second5

variable may be an internal sensitivity of the climate system that determines changes to mean meteorological conditions as

GHGs rise. Alternatively, it can be the direct estimate of some feature of climate change (e.g. an aspect of near–surface

meteorology) corresponding to specific future higher GHG levels. Measurement of the first quantity, in combination with the

discovered inter-ESM link between the two variables (i.e. the EC), provides the constraint on the magnitude of the second

unknown variable.10

The first application of the EC technique was to refine estimates of large-scale snow albedo feedbacks in a warming world

(Hall, 2004). Since then, the EC method has lowered uncertainty in a substantial number of components of the Earth system

(Hall et al., 2019), and including for fundamental climate quantities such as Equilibrium Climate Sensitivity (ECS) (e.g.

Cox et al., 2018). Other researchers have provided EC–based estimates of both ECS and Transient Climate Response (TCR)

(Jimenez-de-la Cuesta and Mauritsen, 2019; Nijsse et al., 2020; Tokarska et al., 2020). Applications of ECs to physical parts15

of the Earth system have included cloud feedbacks (e.g. Klein and Hall, 2015), as well as components of global geochemical

cycles. ECs on aspects of geochemical cycles include constraining the expected level of ocean acidification (Terhaar et al.,

2020), marine primary productivity (Kwiatkowski et al., 2017) and soil carbon turnover (Varney et al., 2020). Notable is that

for many discovered ECs, the variable for which measurements exist is often a statistic of a quantity fluctuating at shorter

timescales than longer–term climate–related variation the EC estimates. This use of high frequency variations highlights how20

ignoring system fluctuations may constitute disregarding valuable information about the climate system. The EC approach,

therefore, offers an interesting comparison to the method of weighting ESMs by simply comparing their projections of present

day trends against measurements, as the latter neglects variation about such trends.

With ECs becoming ubiquitous in climate research and with their potential to enable better decisions on GHG emissions that

avoid dangerous change, it is appropriate that the method be moved to a stronger scientific basis. Some recent papers review25

the EC method, highlighting its capability and listing a set of potential pitfalls. For instance, Williamson et al. (2021) identify

a particularly broad range of discussion points related to ECs, all framed in their application to refining estimates of ECS.

Further critiques of the EC method exist in the context of the terrestrial carbon cycle (Winkler et al., 2019), Arctic warming

(Bracegirdle and Stephenson, 2012) and ECS (Caldwell et al., 2018) - all note potential issues that could result in incorrect

bounds on future estimates of change. Schlund et al. (2020) test the transferability of bounds derived for estimates of ECS30

(using different ECs) first created with models in the CMIP5 ensemble. These researchers find that the EC–based uncertainty

bounds, when derived using the CMIP6 ensemble, are generally larger than when using the CMIP5 models. Suggested causes

of this widening of uncertainty include the possibility that the spread of model projections informing an EC may be less in the

CMIP6 ensemble, lowering the ability to find a tight constraint. A second possibility is that the CMIP5 models were overly

simplistic, and the CMIP6 models include better process representation, but this also introduces substantial new uncertainty35
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that weakens the ability of ECs to constrain ECS. Fasullo et al. (2015) provide an important discussion on whether it is expected

that ECs hold across different generations of ESMs.

Yet despite recent scrutiny, there remains a basic, almost philosophical question: “What is an Emergent Constraint”?. While

there are likely many perspectives on the answer to this question (see Nijsse and Dijkstra, 2018; Williamson et al., 2021, for

example), here we suggest that one way to interpret many ECs is that they derive bulk parameters associated with differential5

equations that are valid at large spatial scales. Such equations are implicit in ESMs (i.e. not coded explicitly) and instead

“emerge” by aggregating the numerical finite difference schemes that are solved in ESMs at the finer gridbox spatial resolution.

Here we hope to initiate a discussion of whether this is an appropriate way to describe the underpinning properties of many

ECs. We consider simple illustrative examples using standard solutions to basic differential equations but in the novelty of

being placed in the context of the framework of the EC method.10

2 Methods and Conceptual Examples

2.1 The Emergent Constraint Method

The core of any EC is the discovery of a robust link, across different ESMs, between a driving variable, say X , and another

model calculated quantity, Y . Variable X is a quantity for which contemporary measurements are available. Quantity Y is a

climate–related statistic, metric or parameter often of importance for developing future adaptation or mitigation strategy, but for15

which data does not exist. It is the EC relationship betweenX and Y , in tandem with the measurement ofX , that constrains our

understanding of Y . In general, it is considered preferable that ECs are found by process intuition that reveals related quantities,

rather than direct inter–ESM “data mining”. For instance, in the context of finding ECs to constrain understanding of the size

of cloud feedbacks, Klein and Hall (2015) propose that each should be “accompanied by credible physical explanations”. The

EC relationship between X and Y may take many forms, such as a nonlinear response, or potentially multidimensional with20

more than one X component.

For illustration purposes, we imagine an EC that is a simple linear regression between two variables, and when indexing

each ESM with i, is of the form:

Yi = a0 + a1Xi + εi + ηi. (1)

Here parameters a0 and a1 quantify the emergent constraint, and εi and ηi are ESM–specific “noise” terms. We imagine that25

εi captures how far an individual ESM is from the fitted relationship of Eq. (1), and so any large absolute value corresponds to

a model outlier. Quantity ηi is a random variable, that describes natural climate variability for each model. Measurement X∗

utilises this relationship to predict the value of Y , named Y ∗. Cox et al. (2018) provide the methodology to derive uncertainty

bounds on the constrained value Y ∗, which include being a function of both ε and the size of uncertainty bounds on data X∗.
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2.2 Simple thermal “box” model with different heat capacities

Our working assumption is that ECs exist due to common inter–ESM deterministic processes, which we attempt to mirror

with abstract but illustrative, simple models. As such, the noise quantities εi and ηi are only reconsidered towards the end

of our analysis, and then only visually. We start with an especially simple conceptual representation of an EC. We consider

a set of single thermal box models indexed by i. This indexing may mirror the differentiation between ESMs in a collection5

of models, such as the CMIP6 ensemble (Eyring et al., 2016). Each model has a different heat capacity cpi (J K−1), in to

which we assume there is a common and known forcing heat flux H(t) (W). Long-term changes in this forcing are regarded

as analogous to Representative Concentration Pathways (RCP) of future GHGs levels, often applied as an equal forcing across

ESMs. As a single box, there is no spatial variation, so the model is regarded as having infinite diffusion. The equation for the

box temperature T (t) (K), where t (year) is time, c
′
pi = cpi/ny,s (J K−1 yr s−1) and ny,s (s yr−1) is number of seconds in a10

year, is:

c
′
pi

dT
dt

=H. (2)

We first consider a known fluctuating heat flux, H = bcos(ωt), for the contemporary period to force each model indexed by

i. This could be interpreted as a form of known annual seasonal cycle (and therefore ω = 2π), and this forcing results in a

model–specific temperature, Ti(t). In addition to the known common H driver, observed are seasonal temperature features15

named T ∗ (K). The simple solution to Eq. (2) with this periodic forcing is:

Ti(t) = C0 +
b

c′piω
sin(ωt). (3)

Removal of background multi–year temperature allows the setting of arbitrary constant C0 as C0 = 0. Required is a simple

statistic applicable to both modelled temperature projections and measurements, which could be the seasonal range, ∆TS (K).

Hence ∆TSi = max(Ti)−min(Ti), and so for each model and from Eq. (3),20

∆TSi =
2b
c′piω

. (4)

Considered additionally is a longer–term forcing of our model, representing ongoing climate change. We describe this extra

forcing as simply a fixed value ofH0 (W) for t > 0. Hence this gives a combined forcing ofH(t) =H0+bcos(ωt), and solving

Eq. (2) for both drivers simultaneously gives:

Ti(t) =
H0t

c′pi
+

b

c′piω
sin(ωt) t > 0. (5)25

A second temperature–based statistic we can make is the running mean from the solution of Eq (5) by averaging within

individual years to remove seasonality. This running mean is the background change in T and is analogous to long–term

climate variation, such as global warming. Such averaging, denoted by an overline, is simply:

Ti(t) =
H0t

c′pi
. (6)
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A possible EC is now revealed. The issue of future concern might be the rate of change of mean temperature Ti. Plotting for the

simple model an “x” axis of ∆TSi (from Eq. (4)) and a “y” axis of dTi(t)/dt=H0/c
′
pi (from Eq. (6)) would yield a diagram

where both quantities increase, linearly, in 1/c
′
pi . The EC is, therefore, a relation between seasonal temperature variation and

long–term warming that holds across all c
′
pi values. Knowledge of the actual x axis variable, which here would be the known

observed seasonal amplitude, ∆T ∗S , constrains the bounds of the uncertainty of the y axis quantity. We present these ideas5

schematically in Fig. 1, and show the uncertainty, εi + ηi, as just random distances by individual models (black dots) away

from the EC regression line.

In the analysis presented above, the parameters related to forcings, i.e. b and H0, are assumed to be invariant between

models. Hence the measurement in tandem with the EC is designed to lower uncertainty on the model–specific value of bulk

parameter c
′
pi . However, an alternative possibility is an emergent constraint where there is instead uncertainty in the magnitude10

of the forcings between models (for instance, a range of representations, between ESMs, of the translation of atmospheric

aerosol levels to their cooling effect). Now the forcing parameters are indexed as bi and H0i . Subject to bi/H0i being invariant

between models, an EC of identical form to that of Fig. 1 could exist where instead c
′
p has a single numerical value, common to

all models. In this case, the emergent constraint represents the discovery that there is a single model–independent internal bulk

parameter (i.e. c
′
p), while the data point constrains uncertainty in the forcing element bi. With the forcing uncertainties common15

for both short– and long–term drivers, the data therefore also constrains H0i and thus the background warming dTi/dt.

2.3 Thermal model with spatial variation

We extend the basic box model of Section 2.1 with a further illustrative example that introduces spatial variability via directional

coordinate x (m) and retain temperature as our notional state variable. Now we consider the system to evolve on a semi–infinite

domain 0≤ x≤∞, and with the heat forcing boundary condition at x= 0. This framework may depict, for instance, heat20

absorption by the oceans and where information on future trends in surface temperature is required. Specifically, we solve for

Ti(x,t) as satisfying a diffusion equation:

c
′
pi

∂Ti

∂t
= κi

∂2Ti

∂x2
0≤ x≤∞. (7)

Here c
′
pi (J K−1 m−3 yr s−1) remains a form of heat capacity, while κi (W m−1 K−1) is a conductivity or mixing parameter,

and both parameters may be model specific, as indexed by i. We again start by prescribing a seasonal boundary condition, at25

x= 0, given by:

κi
∂Ti

∂x

∣∣∣∣
x=0

=−H =−bcos(ωt). (8)

The solution to governing Eq. (7) with the boundary condition of Eq. (8), assuming no non–seasonal transient terms and that

Ti is bounded as x→∞, is:

Ti(x,t) =
be
−
(

x

√
c
′
pi
ω

2κi

)
√
c′piκiω

cos


−ωt+

π

4
+x

√
c′piω

2κi


+C0. (9)30
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c′pi
dT

dt
= H

Ti(t) =
H0t

c′pi︸︷︷︸
Background
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+
b

c′piω
sin(ωt)

︸ ︷︷ ︸
Seasonal
Variation

H(t) = H0︸︷︷︸
Background
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Figure 1. Schematic representation of a simple emergent constraint. Panel (a) (top row) shows the combined equation for long–term

and seasonal forcing (so with ω = 2π yr−1) driving the thermal box model given by Eq. (2) (middle row), and the related response to both

forcings, which combine additively to give Eq. (5) (bottom row). Panel (b) illustrates a related emergent constraint, based on the response

Eq. (5), as also shown in panel (a). This response contains a seasonal (x axis) and long–term (y axis, with seasonality ignored), and the EC

links the two. The EC allows the observation of seasonal fluctuations to constrain the long–term rate of change of state variable, T . Each

model (black dots, indexed by i) has a different implicit value for c
′
p i.e. c

′
pi . The EC is assumed to not be exact, with noise causing variation

around the regression line (the εi and ηi terms of Eq. (1)). The vertical yellow band represents uncertainty in the measurement, ∆T ∗S . The

constrained projection of the long–term warming rate (based on the EC, the value of ∆T ∗S and its uncertainty) is given by the green horizontal

band.

Hence the value of Ti at x= 0, with additive constant set to C0 = 0, is given by:

Ti(0, t) =
bcos(−ωt+π/4)√

c′piκiω
. (10)
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From Eq. (10), the temperature seasonal cycle at x= 0 corresponds to a range of:

∆TSi = max(Ti(0, t))−min(Ti(0, t)) =
2b√
c′piκiω

. (11)

and for which we consider there is similarly a corresponding observable value, ∆T ∗S .

In further analogy to our example with the box model example, we consider an additional long–term heat flux, H0 at x= 0,

starting at time t= 0. That is, a boundary condition of:5

κi
∂Ti

∂x

∣∣∣∣
x=0

=−H0 t > 0. (12)

and this has a solution of:

Ti(x,t) =
2H0

κi


−x

2
erfc


x

2

√
c′pi
κit


+

√
κit

πc′pi
e
−
c
′
pi
x2

4κit


 t > 0, x > 0. (13)

The solution to Eq. (13) at x= 0 corresponds to:

Ti(0, t) = 2H0

√
t

c′piκiπ
t > 0. (14)10

As our governing Eq. (7) is linear, the seasonal and long–term solutions (Eqs. (9) and (13) respectively) may be simply added.

Hence a combined heat flux in to the system of bcos(ωt) +H0 at x= 0 generates a surface temperature Ti(0, t), for t > 0,

given by the addition of Eqs. (10) and (14). The inclusion of spatial variation, via x, causes a long-term transient effect where

although the long–term average heat flux is constant, the surface temperature given by Eq. (14) has a
√
t response. This solution

compares to a linear long–term temperature response for our single box model example in Eqs. (5) and (6).15

For our example with spatial variation, a possible emergent constraint could constitute an x axis of ∆TSi (Eq. 11) and a y

axis of dTi(0, t)/dt×
√
t=H0/

√
c′piκiπ (differentiation of Eq. (14) with respect to time, in tandem with averaging out the

seasonal variations of Eq. (10)). Using these variables, both the x and y axes are linear in 1/
√
c′piκi for the different indices i.

We present this EC schematically in Fig. 2. In conjunction with this EC, knowledge of seasonal temperature variation reveals

and so constrains the long–term warming rate. In this example the data point constrains, implicitly, the value of c
′
piκi. If c

′
pi is20

well known and fairly invariant between ESMs, then the data point is constraining the implicit value of κi, or vice versa where

the constraint is on c
′
pi

In a strong similarity to the discussion of uncertainty in the forcing boundary conditions of the box model and their potential

constraint, the same possibility exists for our example with spatial variability. In the event that both effective parameters cp

and κ show little or no variation between ESMs, but there is uncertainty in b of Eq. (8) and H0 of Eq. (12) (and with identical25

uncertainties, so again, b/H0 is invariant inter–ESMs), then the EC combined with data for ∆TS acts to remove that uncertainty.

Such removal of uncertainty between ESMs associated with forcing, via the EC and measurement of ∆TS , again constrains

longer–term warming levels in this illustrative example.

8
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Figure 2. Schematic representation of an emergent constraint with a spatial component. The spatial dimension is defined by x. Panel

(a) (top row) shows the combined equation for long–term and season forcing at x= 0, driving the diffusive model given by Eq. (7) (middle

row), and the related response at x= 0 and t > 0 given by Eqs. (10) and (14) (bottom row). The seasonal forcing (so with ω = 2π yr−1) is

given by Eq. (8) and the long–term forcing to the thermal model given by Eq. (12). These two forcings generate a response in T at x= 0

given by Eqs. (10) and (14) respectively, that combine additively and as shown. Panel (b) illustrates the related emergent constraint, based

on the response Ti(0, t) shown in panel (a). This response contains a seasonal (x-axis) and long–term (y axis, with seasonality ignored) part,

and the EC links the two. The EC allows the observation of seasonal fluctuations to constrain the long–term rate of change. Each model

(black dots, indexed by i) has a different implicit value for c
′
pi ×κi. As for the example of Fig. 1, the EC is again assumed to not be exact,

with noise causing variation around the regression line. The vertical yellow band represents uncertainty in the measurement of ∆TS . The

constrained projection of the long–term warming rate (multiplied by
√
t, and based on the EC, the value of ∆TS and its uncertainty), is given

by the green horizontal band.
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3 Discussion and Conclusions

How climate will change due to the ongoing burning of fossil fuels remains one of the most high–profile questions asked

of the scientific community. ESMs are central to such research activity, and their primary objective is to accurately predict

climate change for different potential future GHG levels. However, substantial differences can exist between ESM projections,

even for the same future scenario of atmospheric GHG changes, so dependable methods are required to reduce the spread in5

simulations. Emergent constraints are discovered linkages, inter–ESM, between a quantity that is presently measured and a

second important climate attribute associated with future changes, and where data on the former constrains our assessment

of the value of the latter. With constant pressure to provide policymakers with refined estimates of future climate change,

and against the backdrop of considerable variation between ESMs, ECs have attracted substantial application to a plethora

of components of the Earth system. The rapid rise in EC discoveries and their near–ubiquitous use to constrain uncertainty10

enables a way to extract additional information from available ESMs that have required huge expenditure to build and operate.

However, with such a high prominence of ECs as a method to lower uncertainty, it is timely to investigate the assumptions that

underline them and any potential pitfalls (e.g. Williamson et al., 2021). Here we try to start an additional but related route of

investigation. We suggest a potential explanation of many ECs is that their basis relates to solving large–scale equations that

are both implicit in ESMs and have common features between models.15

We develop the hypothesis that many identified ECs relate to undiscovered differential equations that describe the Earth

System at large geographical scales. Such equations are not coded explicitly in ESMs, but instead “emerge” as the aggregation

of the finer resolution behaviour of the climate system. Such finer resolution features are calculated in ESMs as the solution

of differential equations solved on the numerical mesh of each model and capture environmental processes that are often un-

derstood well. Such understanding introduces similarities between models, which remain present in any spatial aggregation.20

The role of ECs is to enable the discovery of the implicit value of parameters associated with such large–scale equations,

where uncertainty remains. Such bulk parameters affect both a quantity of interest linked to predicting future climate and a

contemporary attribute of the Earth system. The contemporary quantity is measurable and, in tandem with the EC, constrains

the parameterisation and thus understanding of the quantity associated with the future. In many instances of discovered emer-

gent constraints, the present–day component is of a higher frequency fluctuation (e.g. seasonal), with the EC then projecting a25

climate attribute of relevance to decadal or century timescales.

We have presented two illustrative examples of solving standard differential equations but placed them in a structure as if

they reveal an emergent constraint. We imagine the equations to be underlying large–scale bulk equations, solved implicitly in

multiple ESMs, as outlined above. There are many examples of equations that represent the aggregated behaviour of fine–scale

systems. For example, the bulk properties of an ideal gas, temperature and pressure, are related through the ideal gas law.30

However, these bulk properties can also be understood as the aggregated behaviour of the molecules (their mean velocity, mass

and number density) that make up the gas. Formally these relations can be made through kinetic theory (Pitaevskii and Lifshitz,

1981). There are also examples of linear bulk dynamics emerging from nonlinear fine scale dynamics as well as the converse

10
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- effective nonlinear bulk behaviour from linear microscopic dynamics e.g. the phase transition in the two dimensional Ising

model (McCoy, 1973).

Our first case is a simple box model for which we wish to derive a thermal capacity term, c
′
p, and the second has a single

spatial variation and represents a search for a multiplicative combination of capacity and diffusion, c
′
pκ. A discovered EC

between models, combined with measurements, would reveal the actual real world value of c
′
p or c

′
pκ. Large values of εi are for5

models that are outliers to the EC. In the context of our abstract examples, outliers have different values of effective parameters

c
′
p or c

′
pκ dependent on whether considering shorter seasonal timescales or longer periods, and implies these models to have

substantially different process representation compared to most other ESMs. We also suggest an additional EC possibility where

effective parameters emerge as invariant between ESMs and instead there is uncertainty in forcings (here, b and H0, although

the uncertainty is identical between the two parameters). Our conceptual model determines internal system properties, i.e.10

parameters, which for the spatial example are constrained based on behaviours at the edges of the domain. We note the basic

theorems of vector calculus (e.g. Stokes’ theorem) that relate integrated internal system features to conditions along domain

edges.

A broad set of possibilities may link to our suggestion that the underlying principle of many ECs is the existence of equations

valid at the large scale. For instance, additional to our example of diffusion, PDEs with spatial dimensions can also simulate15

advection, and in terms of climate modelling this may correspond to teleconnections. To constrain the strength of future tele-

connections is likely to need a present day measurement of wind fluxes, or measurements of a quantity of interest in two

locations. Modelling many components of the Earth system requires coupled differential equations to link different physical

quantities, capture changes of state, or where geochemical cycles link tightly to climate variation. An example of an EC cap-

turing features of a coupled system is that of Cox et al. (2013). In that analysis, data on present–day simultaneous fluctuations20

in atmospheric CO2 and annual temperature anomalies reveals the fate of future South American carbon stores under global

warming and the related risk of the iconic possibility of Amazon forest “die–back”. In some cases, the EC x axis, for which

measurements exist, is a combination of high-frequency drivers and response, and for the same variable. As an example of such

a more refined and complex contemporary statistic, Cox et al. (2018) estimate equilibrium climate sensitivity with a statistic Ψ

that is a combination of the standard deviation and autocorrelation of current global temperature fluctuations. Arguably, the Ψ25

statistic merges a system driver (standard deviation) and a response (autocorrelation).

In summary, the analysis of ensembles of ESMs, as built by different research centres, has revealed multiple emergent

constraints for all parts of the Earth system (Hall et al., 2019). Discovered ECs have reduced uncertainty bounds for features

of the climate system that directly affect society and are therefore of particular interest to policymakers. With the placement of

much emphasis on the EC method to lower uncertainty, there is a growing requirement to understand its underlying assumptions30

better. Timely research is emerging that critically assesses the method (e.g. Williamson et al., 2021). We wish to add to the

discussion by suggesting that many ECs represent the discovery of parameters associated with large–scale implicit equations

that describe features of the Earth system. Such equations emerge from the aggregation of more local effects simulated on

the gridpoints of the numerical meshes of individual ESMs. We do not propose this as a universal theory of ECs, as some

may function well for other reasons. However, with the general view that physical intuition provides a better route to EC35

11
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discovery than, say, data mining, our suggestion is therefore analogous to that standpoint. Hence we consider most ECs to

correspond to underlying processes and related mathematical representation. Such bulk process discovery helps counter a view

that ESMs are so complex that they can never be amenable to interpretation via standard applied mathematics techniques (a

concern raised by Huntingford, 2017). Such methods include equation scaling (“nondimensionalisation”) to find the dominant

underlying forms, although we speculate that EC discovery may instead identify key large–scale processes. Further hinting at5

the need to confirm underlying processes is the analysis of Qu et al. (2018), who consider the statistical linkages between four

different ECs proposed for ECS and suggest that the discovered commonalities are because each is constraining, implicitly,

shortwave radiation cloud feedbacks. We present two simple illustrative examples of differential equations, their solutions,

and their potential interpretation as ECs. Despite differential equations representing a range of processes, mathematics can

often characterise them in discrete ways (for instance, every PDE being either diffusive, elliptic or hyperbolic). We conjecture10

that there are one–to–one mappings between ECs and equation forms and their identification could also incentivise revisiting

aspects of climate change science from an applied mathematics standpoint. Although our examples are synthetic, we hope

the concepts we present may support the placement of ECs on a stronger theoretical footing by, where applicable, revealing

underlying bulk equations that fit with process intuition. We note Brient (2020) argue that when multiple ECs exist to predict

the same quantity, each should be weighted by the level of physical understanding they offer to elucidate the relationship. It15

remains important to understand ECs as they offer an elegant and nearly unique potential capability to lower the continuing

uncertainty between ESM projections.

4 Code availability

The computer scripts leading to checking of the analysis solutions (with the sympy python module), and any of the diagrams

(with the matplotlib python module) are available on request to Chris Huntingford (chg@ceh.ac.uk)20
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