EGU21-8274
https://doi.org/10.5194/egusphere-egu21-8274
EGU General Assembly 2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Modelling the climate change impact on the largest White Sea estuarine areas

Evgeniya Panchenko1, Andrei Alabyan1,2, Inna Krylenko1,2, and Serafima Lebedeva3
Evgeniya Panchenko et al.
  • 1Lomonosov Moscow State University, Geography, Land Hydrology, Russian Federation (panchenko.zhe@gmail.com)
  • 2Water Problems Institute of RAS, Moscow, Russian Federation
  • 3Northern Agency for Hydrometeorology and Environmental Monitoring, Arkhangelsk, Russian Federation

Possible sea level rise and changes in hydrological regime of rivers are the major threats to estuarine systems. The sensibility of hydrodynamic regime of the Northern Dvina delta and the Onega estuary under various scenarios of climate change has been investigated. Hydrodynamic models HEC-RAS (USA, US Army Corps of Engineers Hydrologic Engineering Center) and STREAM_2D (Russia, authors V.Belikov et.al.) were used for analysis of estuarine flow regime (variations of water levels, discharges and flow velocities throughout tidal cycles). Input runoff changes were simulated for different climate scenarios using ECOMAG model (Russia, author Yu.Motovilov) based on data of global climate models (GSM) of CMIP5 project for the White Sea region.

ECOMAG modelling has demonstrated that the maximum river discharges averaged for 30-year period 2036 – 2065 can reduce for about 20 – 27% for the Onega and 15 – 20% for the Northern Dvina river compared against the historical period 1971 – 2000.Averaged minimum river discharges can reduce for about 33 – 45% for the Onega and 30 – 40% for the Northern Dvina.

The White Sea level rise by 0.27 m in average (with inter-model variation from 0.20 to 0.38 m) can took place by the middle of the XXI century according to input data of GSM models. The 12 scenarios of estuarine hydrodynamic changes were simulated for the both rivers based on combining river runoff changes and sea level elevation.

In general, the expected flow changes are negative for the local industry and population. According to modelling results for ‘high runoff/spring tide’ scenarios the flooding area in the Northern Dvina delta will increase by 13-20% depending on the intensity of sea level rise. In the low water seasons the distance from the river mouth to the upper boundary of the reach, where reverse currents can be observed, will move upstream by 8 - 36 km depending of sea/river conditions due to decrease in minimum river runoff. It may adversely effect on shipping conditions at the city of Arkhangelsk and on brackish water intrusion up-to industrial and communal water intakes.

The reverse currents also will intensify in the Onega estuary (tidal flow velocities increase for 11 – 19%) that leads to the change of the sediment regime and can significantly deteriorate the navigation conditions at the seaport of the Onega town. The problem of the intensification of salt intrusion can arise there as well.

The research was supported by the Russian Foundation for Basic Research (Projects No. 18- 05-60021 in development of the scenarios; No. 19-35-90032 in providing hydrodynamic modelling of the Onega; Project No. 19-35-60032 in providing hydrodynamic modelling of the Northern Dvina).

How to cite: Panchenko, E., Alabyan, A., Krylenko, I., and Lebedeva, S.: Modelling the climate change impact on the largest White Sea estuarine areas, EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-8274, https://doi.org/10.5194/egusphere-egu21-8274, 2021.