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Abstract

In this paper we present a linear mixed model for the potassium content of soil across
a large region of eastern England in which the mean is modelled as a linear function
of the passive gamma-ray emissions of the earth surface in the energy interval com-
monly associated with potassium decay. Non-stationary models are proposed for the
random effect, the variation not captured by this regression. Specifically, we assume
that the local spectrum of the standardized random effect can be obtained by temper-
ing a common (stationary) spectrum, that is to say raising its values to a power, the
tempering parameter, which is itself modelled as a linear function of the radiometric
data. This allows the “smoothness” of the random effect to vary locally. In addition
the local spatially correlated variance and “nugget”’ variance (apparently uncorrelated
given the resolution of the sampling) can also be modelled as a function of the radio-
metric data. Using the radiometric signal as a covariate gave some improvement in
the precision of predictions of soil potassium at validation sites. In addition, there was
evidence that non-stationary models for the random effect fitted the data better than
stationary models, and this difference was statistically significant. Non-stationary mod-
els also appeared to describe the error variance of predictions at the validation sites
better. Further work is needed on selection among alternative non-stationary models,
since simple procedures used here, based on comparing log-likelihood ratios of nested
models and the Akaike information criterion for non-nested models, did not identify the
model which gave the best account of the prediction error variances at validation sites.

1 Introduction

Soil information is costly and relatively sparse, so there is interest in methods to predict
soil properties at unsampled sites from a set of sampled data. Generally the precision
of such predictions can be improved if covariates, which reflect factors of soil formation,
are incorporated into the predictor. There are various ways to do this. One of the most
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efficient, when direct observations of the target variable are distributed with reasonable
coverage over the area of interest, is the empirical best linear unbiased predictor (E-
BLUP) based on a linear mixed model (see below) in which the relationship between
the target variable and the covariate is expressed as a linear function of the covariate,
and the residual variation is expressed as a combination of a spatially correlated ran-
dom effect (a random variable), and identically and independently distributed random
error. The E-BLUP is, in effect, a combination of a regression-type prediction from the
covariation and a kriging-type prediction from the random effect. This was discussed in
the context of soil information by Lark et al. (2006), and the approach has been applied
in various studies (e.g., Chai et al., 2008). In addition to the predictor, a prediction
error variance is also computed which provides a measure of the uncertainty of the
prediction.

In the standard LMM—-E-BLUP approach to spatial prediction, as in all geostatisti-
cal methods, there is a necessary assumption of stationarity in the covariance of the
random variation. For geostatistical prediction we require the covariance between the
random effect at pairs of sites (including sites where we have data and sites where
we require predictions). Since our data provide us, in effect, with a single realization of
this random variable, the covariances cannot be obtained directly. Some generalization
about the random variation is therefore necessary, so as to allow the parameters of the
LMM to be estimated. Commonly we assume stationarity in the covariance (second-
order stationarity). Under this assumption the variance of the random variable is the
same at any two locations, s; and S and the correlation between the variable at the
locations is a function of the lag vector between them,

o(si-s;). (1)
This assumption makes it possible to model the covariance of the random effect with
some appropriate parametric function. The parameters of this function are best esti-
mated by residual maximum likelihood (REML).
However, the assumption of stationarity in the covariance is not usually plausible
when applied to properties of the soil, particularly across complex landscapes. It must
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first be noted that the assumption does not apply to data, but rather to a random func-
tion of which it is assumed that the data are a realization. However, behaviour of the
data may indicate whether or not the assumption is plausible. When a variable ap-
pears substantially more heterogeneous in one part of the landscape than in another,
or when the dominant spatial scale of variation in one part of the landscape differs
from another, then this casts doubt on the plausibility of stationarity assumptions. This
has been discussed by, for example, Voltz and Webster (1990) who examined vari-
ograms for soil properties over contrasting Jurassic strata in central England, included
in a single data set, and found pronounced differences. Analysis of soil data sets using
wavelet transforms (e.g., Lark and Webster, 2001) similarly cast doubt on the plausibil-
ity of stationarity assumptions.

Does the failure of this assumption matter? Lark (2009) compared two LMM for a soil
data set. In one of these a conventional assumption of stationarity in the variance was
made. In the second a non-stationary variance model was fitted (although the under-
lying autocorrelation was stationary). Lark (2009) showed that predictions made under
these two models were very similar, but that the prediction error variances derived from
the non-stationary model gave a much better description of the errors in predictions at
validation sites. (If the autocorrelation appeared to be non-stationary, then this might
affect the predictions themselves).

It would therefore seem worthwhile to attempt to model non-stationary covariation
of soil properties as a basis for spatial prediction. For this reason Haskard and Lark
(2009) presented a development and case study of the method of spectral tempering
proposed by Pintore and Holmes (2004, 2005). This method is described in more
detail below. Essentially it allows both the variance and autocorrelation of the property
of interest to adapt locally in response to a set of covariates. Thus the variable might
appear “smoother” in some regions than another. Haskard and Lark (2009) also found
that the prediction error variances based on this non-stationary model gave a better
account of the uncertainty of predictions at validation sites than did a simpler stationary
linear mixed model.
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A covariate which has been widely used for the prediction of soil properties is mea-
sured passive gamma ray emissions from the earth’s surface (McKenzie and Ryan,
1999; Wilford, 2008).

These emissions arise from the decay of particular elements in the upper 35cm
or so of the soil. Gamma rays are emitted over an energy spectrum, which can be
partitioned into bands dominated by particular decays. Three bands which are widely
used in soil studies are those associated with potassium, uranium and thorium. Much
of the application of gamma radiometry for prediction of soil properties has taken place
in Australia.

Here the total airborne radiometric signal — or the ratios between potassium and tho-
rium concentrations — relates to the age of the weathered material at the land surface
and provides information on soil texture properties (Taylor et al., 2002). Radiometry
has therefore proved a useful tool to map complex patterns of soil variation that arise
from erosion and deposition of material over long periods of time.

Rawlins et al. (2007) undertook a statistical analysis of the radiometric potassium
signal from the soil surface in a part of eastern England, and showed that its variation
could be attributed to a range of sources including the total potassium content of the soil
determined from samples collected in the field. This suggested that gamma radiometry
is a potentially useful source of soil information in the relatively young soils of the
United Kingdom. This paper addresses the following question. If we have a data set
on soil potassium as a basis for geostatistical prediction at unsampled sites, can we
beneficially use airborne radiometric data to model both the mean and covariance of
the target property in an appropriate LMM? By doing so, we may be able to improve
both the precision of the predictions of soil potassium content and the validity of the
prediction error variances.
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2 The statistical model
2.1 The stationary model, estimation and prediction

The analyses in this paper are based on the linear mixed model (LMM) in which our
data are assumed to be a realization of a random variate, with a single value at any
location,

z=XT+U+e, ()

where z is the n x 1 vector of observed values at locations sy, S5, ...S, respectively, T is
a t x 1 vector of fixed effects, such as to allow for a smooth spatial trend or other exter-
nal effects, with corresponding n x t design matrix X, u is a nx 1 vector of zero-mean
random effects and e is an n x 1 vector of independent random errors, one element for
each observation. In the application of the LMM to spatial data the random component
u models the spatially-correlated component of variation and e is the so-called ‘nugget
effect’ which incorporates uncorrelated measurement error and sources of variation in
the target property that are uncorrelated over the shortest interval between observa-
tions. We assume that the random components v and e are mutually independent.
The variance matrix of u is G (n x n) whose elements depend only on the sample loca-
tions under the assumption of a stationary covariance function, with a few parameters.
These parameters are variances, and spatial parameters that characterize the spatial
correlation function introduced in Eq. (1) above. The random vector e has zero mean
and covariance matrix R (nx n). The matrix R is diagonal when e denotes a nugget

effectand R = aﬁuggetl when it is assumed that the nugget effect has stationary variance
2
o,

nugget: 1he variance matrix of the random vector z is denoted H=G +R.

Because the mean of z in Eq. (2) is given by X7 it is not necessarily assumed to be
stationary, and the fixed effects could describe pronounced spatial trends. However,
in standard applications of LMM to spatial data it is assumed that the covariance of
z is stationary, as described above. In this study we used an isotropic exponential
correlation function for the variable u. If the variance of u is 02, then, with a stationary
1844
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exponential model, element {/,/} of the covariance matrix G, which is the covariance
between the values of z at the two locations s; and s, is given by

o®o(|Isi-s;l;¢) = o®exp{(-lIs;-s;l)/®}. 3)

where ¢ is a distance parameter. Note that in this isotropic model the separation be-
tween the two locations is expressed as a (scalar) distance, but the model can be ex-
tended to an anisotropic case in two or more dimensions (Haskard et al., 2007). When
such a stationary model has been specified then the variance parameters (ofugget, o”
and ¢ in this case) can be estimated by residual maximum likelihood (REML), and
these estimates can then be used to obtain the best linear unbiased estimator (BLUE)
of the fixed effect coefficients — 7 in Eq. (2) — by generalized least squares (details are
given by Lark et al., 2006).

Once the parameters of the LMM are estimated then the empirical best linear unbi-
ased predictor (E-BLUP) can be computed at unsampled sites where the fixed effects
are known. Let there be p such sites, for which the fixed effects are contained in the
p x t design matrix X,,. We require the p x 1 vector of E-BLUPs which is

z,=X,7+U,+e, (4)

where 7 is the BLUE of the fixed effects vector 7, u, is the E-BLUP of the spatially-
correlated random effects vector uy, at the prediction locations, and ép is the E-BLUP
of the nugget effect, which is zero at unsampled locations. The E-BLUP i, is given by

~ _ -1~
u,=Gp,G 't
= G,Z' Pz,

where Gy, = Cov{up,u}, the elements of which can be computed given the REML es-
timates of the variance parameters, and P = H' - H'1X(XTH'1X)'1XTH'1. This shows
that the E-BLUP at an unsampled location consists of a regression-type component
(X,7) and a kriging-type component (i,).
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The PEV is the variance of the prediction error, Var{Zp —zp}, which can be obtained
from

- - 14T
[Xp. GpoG ' 1AT[X,, GpoG™ ']
+Gipp — GpoG G, + Ry, (5)

where G, = Var{up}, Rop = Var{ep} (again, obtained from the REML estimates of the
variance parameters) and A is the coefficient matrix from the mixed model equations

_[x"RT'X xRz
“|zZ'R'xZ'R'z+G7T |
2.2 The non-stationary model

In this paper we use the modified and extended version of the spatially adaptive spec-
tral tempering procedure (Pintore and Holmes, 2004, 2005) that we introduced and
described in full elsewhere (Haskard and Lark, 2009). We outline this procedure be-
low.

Consider a case where we are interested in a total of n; =n+ ny locations, at n of
which we have direct observations of our target variable as well as covariates for the
fixed effects, and at the other n, of which we know the values of the covariates for
the fixed effects and require predictions of the target variable because it has not been
measured there. We may propose an initial stationary variance model for our variable,
and from the parameters of this compute a n; x n; covariance matrix, C. A principal
components analysis of this matrix yields what is known as its spectral decomposition

ny
C = D vy, (6)
k=1

where v4,v,,..., v, are the n; eigenvectors, and 14,4,,...,4,, are the corresponding

eigenvalues. These latter constitute an empirical spectrum of the data. The eigen-

vectors can be regarded as a basis for the data, that is to say we can represent the
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variable as a weighted sum of the eigenvectors. If we examine the eigenvectors it can
be seen that some correspond to high-spatial frequency (short-range) components of
the variable where as others account for low frequency components, broader trends.
The eigenvalues, as an empirical spectrum, describe how the overall variance of the
variable is partitioned between these components. Tempering is a method to modify
the form of the spectrum, by raising its components to a power . Tempering can there-
fore change both the overall variance of a variable, and its distribution between spatial
scales. The latter is equivalent to a modification of the spatial autocorrelation of a vari-
able. In spectral tempering the power 17 is modelled as a function of location 7(s). This
allows the covariance of the variable to change with location, to give a non-stationary
covariance matrix

n
(s/.5/)
Ci = Svilide vy (7)
k=1

where
n(s;.s;) = 0.5n(s;)+0.5n(s;).

In our modified spectral tempering procedure the function r(s) is used to adapt the
local autocorrelation of the variable (we refer to this as the “smoothness” of the vari-
able), and the spatially correlated variance (we refer to this as the spatial variance) and
the nugget variance are modelled separately, also as functions of spatial coordinates.
The variance of the random effect at location s; under this non-stationary model is
given by 62K(s,), where ¢ is the variance in the initial stationary model. Similarly the
nugget variance at location s; is given by yz(s,-). Clearly these functions must return
positive values for all n; locations. Once some general parametric forms for the func-
tions n(s), k(s) and yz(s) have been proposed the parameters are estimated by REML.
The residual log-likelihood can be computed for any proposed set of parameters. First
we obtain a provisional non-stationary covariance matrix CNS, by tempering the em-
pirical spectrum obtained from initial stationary covariance matrix C. This is done with
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Eq. (7). This preliminary matrix is then rescaled to a non-stationary correlation matrix,
B, by dividing each element by the square-root of the product of the corresponding el-
ements on the main diagonal, and then the non-stationary matrix of the random effect
G"® is obtained by

GNS = 2 diag(k)?B diag(k)?, (8)

where Kk = [K($1),K(82),...]T and o7 is the initial stationary variance. The matrix GNS,
along with the non-stationary nugget variances in yz, constitutes the non-stationary
variance component of a linear mixed model.

The resulting non-stationary variance parameters can be used to compute all the
variance matrices required to compute the E-BLUP at the n, sites where we require
predictions of the target variable, and its associated prediction error variance.

3 Soil data and their analysis
3.1 Stationary variance models

Our data are obtained from 890 locations in a region of approximately 2400 km? in
north-east England, collected by the G-BASE project (Johnson et al., 2005) and de-
scribed in detail by Rawlins et al. (2007). At each location we had data on total potas-
sium content of the soil, K, (depth 35-50 cm). We also had a corresponding value of
the radiometric potassium variable, K-, extracted from the gamma emission spectrum
measured by a 256-channel Picodas PGAM 1000 (Model 6.11) airborne spectrora-
diometer. The ground footprint corresponding to each measurement was an ellipse
with a long axis length of approximately 200 m. Five cores were taken at the centre
and vertices of a square, length 20 m, centred at the nominal location of the data point.
The cores were combined and the bulk sample then dried and disaggregated, sieved
to pass 150 um then coned and quartered and subsampled to produce a 50-g subsam-
ple which was ground in an agate planetary ball mill. A further subsample was then
1848
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analysed for total content of a range of elements, including potassium, by wavelength
dispersive X-ray fluorescence spectrometry (XRFS), described in detail by Johnson et
al. (2005).

We subdivided this data set at random into a set of 222 observations for modelling
and 661 at which predictions would be obtained for validation. Seven observations
were removed because they took extreme values (large and zero). After exploratory
analysis we decided to transform both the total potassium content and the gamma
potassium values to natural logarithms, since under these transforms an ordinary least
squares regression of logK; on logKr gave residuals with a histogram (see Fig. 1)
which appears consistent with an assumption of a normally distributed random variable.

The exploratory statistics of the residuals are also consistent with an assumption of
normality. The coefficient of skewness is 0.13 and the excess kurtosis is only 0.18.
Furthermore the mean and median (0.001 and -0.002 respectively) are very similar,
and the first and third quartiles (-0.694 and 0.744 respectively) are symmetrical about
the median. Figure 2 shows the scatter plot of the log-transformed variables, and
Fig. 3 shows a classified post-plot of the residuals, i.e. a plot of the co-ordinates of the
sample points with the value of the residuals indicated by the size of the symbols. While
an assumption of normality of the residuals is plausible from the histogram (Fig. 1),
it is apparent from Fig. 2 that the scatter of the residuals appears larger when the
radiometric potassium variable is small. This is not compatible with the assumption of
a stationary variance, although it must be remembered that stationarity is not a property
of data, but of the model that we postulate as underlying the data. Such exploratory
analysis can therefore only be indicative. Figure 3 is suggestive of spatial dependence
in the residuals, since those of similar size appear to be clustered.

Exploratory analysis also showed that there was no pronounced anisotropy in the
residuals, so we elected to use an isotropic variance function. We also found that an
exponential stationary covariance function gave the best fit in a linear mixed model in
which the fixed effect structure was a linear function of logK. We used this stationary
covariance function to obtain the E-BLUP and corresponding PEVs for logKy; at all
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the 661 validation sites. This stationary function was also used to provide an initial
stationary empirical spectrum for spectral tempering to give a non-stationary variance
model.

In addition we fitted a linear mixed model in which the only fixed effect was an overall
mean, specifying a stationary exponential covariance function for the random effect.
This was also used to compute the corresponding E-BLUP and PEVs of logKj; at the
validation sites. This provides a basis for assessing the utility of K- as a covariate for
spatial prediction of K.

3.2 Non-stationary variance models

In this study we hypothesized that the covariance of transformed K, as well as its
local mean, could be predicted from K. This hypothesis is compatible with our com-
ments on Fig. 2 above. We therefore proposed linear functions of logK to obtain the
expressions required for non-stationary variance models: n(s), k(s) and yz(s) so that,
for example

n(s;) = ag+aslogKr(s;).

The overall variance models are labeled by a three-character code, with the three
characters denoting, respectively, smoothness, spatial variance and nugget variance.
In each position, “L’ denotes a linear function in logK (two parameters to estimate),
“1” denotes a constant only (one parameter to estimate), and “0” denotes fixing the
function at the value of the initial stationary variance model (no parameters to estimate
for this term). The option “0” was never considered for the spatial and nugget vari-
ance components. When selected for the smoothness it forces the variance model to
be exponential with the same distance parameter throughout the region. The spatial
variance and nugget variance may still be varied.

Note that the initial stationary model requires an estimate for the nugget variance
and for the variance of the spatial variance, so can be seen to require estimation of two
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variance parameters, corresponding to model-code 011, conditional on the initial sta-
tionary variance model. (If we allow the method to estimate a common spatial variance
and common nugget variance, with n(s) fixed at 1, it should yield those optimal values
we obtained when fitting the initial stationary model. However, if r(s) is different from
1, whether constant or otherwise, different variance estimates would be optimal).

A fully non-stationary variance model (LLL) would have six parameters, conditional
on the initial stationary empirical spectrum, by comparison to a stationary model with
two (011). Models of intermediate complexity are also possible, so we require a method
for model selection. In our previous paper (Haskard and Lark, 2009) we proposed a
procedure to decide whether or not additional variance parameters are justified by
the improved fit that they achieve. It is important to note that this is a procedure for
comparing alternative variance models, it is assumed that the fixed effects structures of
all the models are identical, for example a linear function of logK}- . In this procedure we
start with the full non-stationary variance model (six parameters). The stationary model
can be regarded as a particular case of the full non-stationary model, nested within it,
in which the parameters take particular values. There are various pathways from the
full model to the stationary model through successively simpler models each of which is
nested within the (more complex) models above it on the pathway. This is represented
in a lattice diagram — see Fig. 4, Haskard and Lark (2009). Having estimated the
residual log-likelihood for all the models on the lattice, we may then consider in turn
each alternative to the full model that is one step down each of the possible pathways.
Whether the more complex model is justified can be decided by testing twice the log-
ratio of the likelihoods of the two models against ,1/2 with N degrees of freedom where
the complex model has N more parameters than the simpler. If the null hypothesis is
accepted the more complex form of the model is not significantly better than the one
a step below it, and the step down the path is justified. By repeating this procedure
down all the pathways until the null hypothesis for a particular comparison is rejected
(P < 0.05), we may obtain a set of candidate models. These are not necessarily nested,
if not they can be compared with respect to the Akaike information criterion, twice the
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number of parameters minus twice the log-residual likelihood, which will be smaller for
the more parsimonious model (Akaike, 1973).

At each validation location we therefore had a prediction and PEV from each of: (i)
a stationary model in which the only fixed effect is the overall mean, (ii) a stationary
model in which the overall mean and coefficients of K- are fixed effects, and (iii) a set
of non-stationary models in which the overall mean and coefficients of K are fixed
effects and the variance model has differing degrees of complexity. We computed a set
of validation statistics from observations and predictions at these sites. In general if
z(s;) is the observed value of logK at the /th validation location out of n,, and Z(s))

is the E-BLUP, given some particular LMM with 02 the corresponding PEV, then the
prediction error (PE) is

PE = z(s;)-Z(s)),
and the standardized squared prediction error (SSPE) is

[2s)-2(5))

2
Op

SSPE =

We computed the mean values of PE and of PE? over the 661 validation sites. The
SSPE is a measure of the validity of the PEV. The expected value is 1 when the PEVs
are reliable. However, it has been found (e.g., Lark, 2009) that the median SSPE which
is a more robust statistic may be more useful than the mean for assessing PEVSs, since
it is less affected by a few validation points at which the SSPE is very large or small.
Under an assumption of normal prediction errors the expected value of the median
SSPE is 0.455.

We computed an empirical distribution of the mean and median SSPE under condi-
tions where the same distribution of observation and validation sites are used and the
data are a realization of a known spatial model in which the fixed effects are a linear
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function of the overall mean and logK and the random effects have a stationary distri-
bution with parameters equal to those fitted in our model (0, 1, 1). We computed 1001
realizations of this process. The central 95% of the distribution of the mean SSPE
was 0.881 to 1.126, with median 0.996, while the central 95% of the distribution of the
median SSPE was 0.375 to 0.545, with median 0.454.

4 Results

Figure 4 displays a hierarchy of non-stationary variance models that were fitted, with
lines connecting models that are nested and therefore for which likelihood-ratio tests
can be carried out. P-values are displayed on the connecting lines when they are less
than 0.05. On the basis of residual log-likelihood, two candidate models are identified.
The the first is 01L with constant variance, with correlation fixed at exponential (i.e. not
spatially adapting) and, with the nugget variance changing spatially, depending linearly
on logK. The second candidate model is L11, which keeps both the spatial variance
and the nugget variance constant but allows the smoothness to spatially adapt as a
linear function of logK . However this requires four parameters to be estimated, and
while the two models L11 and 01L cannot be compared by a log-likelihood test be-
cause they are not nested, on the basis of the Akaike Information Criterion the latter is
preferred.

Table 1 shows validation results for the E-BLUPs based on LMMs with stationary
variance models, and a selection of cases with non-stationary models. Note first that
there is a reduction in the mean PE? on using log K as a fixed effect for prediction, but
relatively little difference among the models with this fixed effect with respect to PEV. In
short there is little difference, with respect to the precision of the predictions, between
E-BLUPs with log K as a fixed effect and stationary and non-stationary variance mod-
els, even in non-stationary models where the smoothness (and so the autocorrelation)
is adapted. However, there is an effect on the quality of the computed PEV. Note that
the median SSPE for the BLUPs from the stationary model (with log K as a fixed
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effect) is smaller than the 2.5 percentile, suggesting that the error variance is overes-
timated. This is consistent with results of Lark (2009) and Haskard and Lark (2009),
who found that the median SSPE of E-BLUPs from stationary models indicated that the
PEVs were overestimated. However, some of the non-stationary models for which val-
idation results of the corresponding E-BLUPs are presented, show mean and median
SSPE much closer to the expected values.

5 Discussion and conclusions

These results show that improvements in the precision of spatial prediction of soil
potassium (log-transformed) of about 20% (mean square error) are achieved by us-
ing the radiometric potassium signal as a covariate. It is also seen that the PEV of
E-BLUPs based on a model with a stationary variance structure, in which this covari-
ate is used, appear to overestimate the uncertainty of the predictions. When E-BLUPs
were computed using LMMs based on non-stationary covariance models the PEVs are
better as judged by the mean and median SSPE. However, it must be noted that the
LMM selected on the likelihood criteria and AIC (model 01L), only achieves a small
improvement over the stationary model, as judged by the median SSPE. The best re-
sults on SSPE are obtained with model L11, in which the smoothness is adapted, but
this model would not be selected on the fitting criteria alone, since its advantages over
01L with respect to the likelihood are not large enough to justify the inclusion of an
additional parameter.

Our results therefore indicate that across this region some model for non-stationarity
in the variance is appropriate, if we want to put reliance on the PEV of E-BLUPs. They
also suggest that spatially adaptive tempering, with K- as a predictor for the tempering
parameter n and local variances, has potential to improve modelling of the variance of
soil potassium.

Application of our approach to other landscapes would help to determine whether
more complex, non-stationary variance models based on suitable covariates can im-
prove prediction of soil properties at unsampled sites.
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However, there are clearly questions for further research, prompted by the fact that
the best non-stationary variance model (selected on likelihood criteria) does not give
the best PEVs when these are validated on independent data. It may be that the de-
pendence of the non-stationary parameters on the predictor could be better modelled
than by the simple linear functions that we used here. Improving this modelling would
require the development of some appropriate method for exploratory analysis of the
data. These results also suggest that, where possible, the use of a separate validation
data set could be used for selection of a variance model from a set of possibilities.

To conclude, we have shown that the adapted and extended spectral tempering
method that was presented by Haskard and Lark (2009) can be applied to large two-
dimensional data sets. We have shown that the use of gamma radiometric data can
improve spatial prediction of a soil property, and that in principle using spectral temper-
ing can improve modelling of the spatially-dependent variance of this property, and so
the PEVs of the predictions. Further work remains to be done on the problem of model
selection for non-stationary variance structures.
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Table 1. Mean and median squared predictions errors and standardized squared prediction

errors for selected non-stationary variance models for the BGS potassium data.

BGD
7, 18391862, 2010

log-residual  Number of AlC’ Mean Mean Mean Median
Model likelihood  parameters PE PE? SSPE SSPE
Fixed effect: mean only.
Stationary covariance 0.144 0.035 0.930 0.347
Fixed effects: mean and K.
011? 259.887 2 0 0.127 0.028 0.884 0.357
01L° 269.043 3 -16.31 0.128 0.029 0.920 0.364
L11° 269.838 4 -15.90 0.127 0.028 0.965 0.390
L1 270.641 5 -15.51 0.127 0.028 0.948 0.373
LL1® 269.887 5 -14.00 0.127 0.028 0.963 0.385
LLLf 271.877 6 -15.98 0.125 0.028 0.945 0.365

Predicting soil
potassium content

K. A. Haskard et al.

@ Stationary covariance;

b Non-stationary covariance, nugget variance adapts.

¢ Non-stationary covariance, smoothness adapts.
d Non-stationary covariance, nugget and smoothness adapt.
° Non-stationary covariance, spatial variance and smoothness adapt.
f Non-stationary covariance, nugget and spatial variance and smoothness adapt.
* The AIC is twice the number of parameters minus twice the log-residual likelihood, for ease of
comparison the value of AIC for model 011 was subtracted from all values.
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Fig. 1. Histogram of the residuals of an exploratory regression of logKy,; on logK:.
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Fig. 3. Postplot of the residuals of the exploratory regression of logK,,; on logK.
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Full model: Spatially-adapting smoothness,
spatial variance and nugget variance
Model loglr, nparams = LLL 271.877, 6

i

Constant spatial variance Non-adapting correlations Constant nugget variance
L1L 270.641, 5 1LL 271.029, 5 LL1 269.887, 5

p<0.001

| I
) i Smoothness adapts, i Spatial variance adapts
Nugget variance adapts ' variances constant | 1L1 260.408, 4
| I
| I

11L 269.866, 4 L11 269.838, 4

b 1

(p<0.001
Exponential correlation, Non-adapting correlations, Expongntlal cc;rreltatlon,
nugget variance adapts constant variances va r|anc.e adapts,
01L 269.043, 3 111 260.078, 3 nugget variance constant
! ! OL1 259.897, 3

\PSO.QQ]\L//
Stationary exponential

011 259.887, 2

Fig. 4. Lattice diagram of alternative non-stationary covariance models.
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