
1 
 

Quantifying land carbon cycle feedbacks under negative CO2 
emissions 
V. Rachel Chimuka1, Claude-Michel Nzotungicimpaye1,a & Kirsten Zickfeld1 
1Department of Geography, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada 
a Now at Department of Geography, Planning and Environment, University of Concordia, Montréal, QC, H3G 1M8, Canada 5 

Correspondence to: V. Rachel Chimuka (rchimuka@sfu.ca) 

Abstract. Land and ocean carbon sinks play a major role in regulating atmospheric CO2 concentration and climate. However, 

their future efficiency depends on feedbacks in response to changes in atmospheric CO2 concentration and climate, namely the 

concentration-carbon and climate-carbon feedbacks. Since carbon dioxide removal is a key mitigation measure in emission 

scenarios consistent with global temperature goals in the Paris agreement, understanding carbon cycle feedbacks under 10 

negative CO2 emissions is essential. This study investigates land carbon cycle feedbacks under positive and negative CO2 

emissions using an Earth system model driven with idealized scenarios of atmospheric CO2 increase and decrease, run in three 

modes. Our results show that the magnitude of carbon cycle feedbacks differs between the atmospheric CO2 ramp-up (positive 

emissions) and ramp-down (negative emissions) phases. These differences are likely largely due to climate system inertia: the 

response in the ramp-down phase represents the response to both the prior positive emissions and negative emissions. To 15 

isolate carbon cycle feedbacks under negative emissions and quantify these feedbacks more accurately, we propose a novel 

approach that uses zero emissions simulations to reduce this inertia. We find that the magnitudes of the concentration-carbon 

and climate-carbon feedbacks under negative emissions are larger in our novel approach than in the standard approach. This 

has two implications: using feedback parameters from the standard approach will (1) underestimate carbon release under 

negative emissions due to the concentration-carbon feedback, and (2) underestimate carbon gain due to the climate-carbon 20 

feedback. Given that the concentration-carbon feedback is the dominant feedback, quantifying carbon cycle feedbacks with 

the standard approach will result in the underestimation of carbon loss under negative emissions, thereby overestimating the 

effectiveness of negative emissions in drawing down CO2. 
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1 Introduction 

Anthropogenic CO2 emissions have increased substantially since the preindustrial era, increasing the risk of “severe, pervasive 

and irreversible impacts” to the Earth system (IPCC, 2022). In an effort to reduce greenhouse gas emissions, nations adopted 35 

the Paris Agreement, which stipulated that surface warming should be kept well below 2°C above preindustrial levels and 

encouraged efforts to further limit it to 1.5°C (UNFCCC, 2015). Carbon dioxide removal (CDR) is a key mitigation measure 

in emission scenarios that are consistent with these climate goals (Ciais et al., 2013; Fuss et al., 2014; Rogelj et al., 2018; 

Rogelj et al., 2019; IPCC, 2022). 

 40 

The land and ocean carbon sinks play a major role in regulating atmospheric CO2 concentration by absorbing approximately 

half of current anthropogenic CO2 emissions (Friedlingstein et al., 2021). However, this rate of absorption is sensitive to 

changes in climate and atmospheric CO2 concentration (Cox et al., 2000; Boer & Arora, 2010; Arora et al., 2013; Boer & 

Arora, 2013; Arora et al., 2020). As atmospheric CO2 concentration increases, carbon sinks will take up more carbon through 

air-sea exchange and CO2 fertilization, resulting in a negative concentration-carbon cycle feedback (Boer & Arora, 2010; 45 

Arora et al., 2013; Schwinger & Tjiputra, 2018). Conversely, changing climate, in response to the increasing CO2 

concentration, will decrease the ability of carbon sinks to take up carbon, resulting in a positive climate-carbon cycle feedback 

(Cox et al., 2000; Jones et al., 2003; Fung et al., 2005; Friedlingstein et al., 2006; Boer & Arora, 2010; Zickfeld et al., 2011; 

Boer & Arora, 2013; Friedlingstein et al., 2014; Schwinger & Tjiputra, 2018).  

 50 

Since the dominant feedback controlling land and ocean carbon uptake is the negative concentration-carbon feedback, the land 

and ocean are currently carbon sinks (Arora et al., 2020). However, these sinks are expected to weaken or even reverse under 

net-negative CO2 emissions, that is, when the amount of CO2 removed from the atmosphere exceeds the amount of CO2 added 

to the atmosphere (Cao & Caldeira, 2010; Tokarska & Zickfeld, 2015; Jones et al., 2016). Decreasing CO2 levels will weaken 

the CO2 fertilization effect, decreasing net primary productivity (NPP) more than soil respiration, resulting in a flux of carbon 55 

into the atmosphere (Cao & Caldeira, 2010; Tokarska & Zickfeld, 2015). Furthermore, the gradient in the partial pressure of 

CO2 at the atmosphere-ocean interface will weaken and eventually reverse, resulting in the outgassing of CO2 (Cao & Caldeira, 

2010; Tokarska & Zickfeld, 2015). Carbon losses from the land and ocean following CDR are expected to significantly 

decrease the effectiveness of CDR in drawing down atmospheric CO2 (Tokarska & Zickfeld, 2015; Jones et al., 2016; Zickfeld 

et al., 2021).   60 

 

The behaviour of land carbon cycle feedbacks under positive and negative emissions is shown qualitatively in Figure 1. The 

dominant concentration-carbon feedback is shown in the top two panels. As the atmospheric CO2 concentration increases 
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under positive emissions, the land sequesters more carbon, reducing the atmospheric CO2 concentration (Boer & Arora, 2010; 

Arora et al., 2013). However, under negative emissions, the declining atmospheric CO2 concentration weakens and eventually 65 

reverses the land carbon sink, returning CO2 to the atmosphere. This feedback is negative because it promotes carbon 

sequestration under positive emissions and drives carbon loss under negative emissions. The bottom two panels show the 

behaviour of the less dominant climate-carbon feedback. As the climate warms under positive emissions, the land loses carbon 

to the atmosphere, increasing the atmospheric CO2 and causing further warming (Cox et al., 2000; Jones et al., 2003; Fung et 

al., 2005; Friedlingstein et al., 2006; Boer & Arora, 2010; Zickfeld et al., 2011; Boer & Arora, 2013; Friedlingstein et al., 70 

2014).  With cooling, the land carbon source weakens and eventually turns into a carbon sink, sequestering carbon and further 

cooling the climate under negative emissions. This positive feedback acts to amplify warming (cooling) under positive 

(negative) emissions.  

 
Figure 1: Carbon cycle feedback schematic illustrating the behaviour of the negative concentration-carbon feedback and positive 75 
climate-carbon feedback under positive and negative emissions. Each feedback loop under positive (negative) emissions starts with 
an increase (decrease) in atmospheric CO2 concentration or surface air temperature. Arrows indicate a positive coupling (change in 
the same direction) between components and lines with empty circles indicate a negative coupling (change in the opposite direction) 
between components.  
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The goal of this study is to quantify land carbon cycle feedbacks under negative emissions. We address two research questions: 80 

(1) How does the magnitude of carbon cycle feedbacks under negative emissions compare to that under positive emissions? 

(2) Is the approach currently used to quantify carbon cycle feedbacks under positive emissions adequate to quantify feedbacks 

under negative emissions? If not, how can this approach be improved upon? This study investigates carbon cycle feedbacks 

under positive and negative emissions in an Earth system model driven with an idealized scenario with a 1% per year increase 

and decrease in atmospheric CO2 concentration. Our study complements the only existing study on ocean carbon cycle 85 

feedbacks under negative emissions (Schwinger & Tjiputra, 2018) by exploring the behaviour of these feedbacks on land. We 

propose a novel approach to quantifying carbon cycle feedbacks under negative emissions and provides insight into the role 

of these feedbacks in determining the effectiveness of carbon dioxide removal in reducing CO2 levels. 

2 Methodology 

2.1 Model Description 90 

The University of Victoria Earth System Climate Model (UVic ESCM, version 2.10) (figure 2) is a model of intermediate 

complexity with a horizontal grid resolution of 1.8° (meridional) x 3.6° (zonal) (Weaver et al., 2001; Mengis et al., 2020). The 

model consists of a simplified atmospheric model, a 3D ocean general circulation model, including ocean inorganic and organic 

carbon cycle models, coupled to a dynamic-thermodynamic sea ice model, and a land surface model coupled to a vegetation 

model (including permafrost) (Mengis et al., 2020). The atmosphere is a 2D energy-moisture balance model with dynamical 95 

wind feedbacks. Atmospheric heat and freshwater are transported through diffusion and advection (Weaver et al., 2001), based 

on wind velocities prescribed from monthly climatological wind fields from NCAR/NCEP reanalysis data (Eby et al., 2013). 

The 19-layer 3D ocean general circulation model is based on the Geophysical Fluid Dynamics Laboratory (GFDL) Modular 

Ocean Model Version 2 (MOM2) (Pacanowski, 1995). The coupled dynamic-thermodynamic sea ice model simulates sea ice 

dynamics through elastic, viscous and plastic deformation and flow mechanisms (Weaver et al., 2001). Ocean carbon is 100 

represented by an inorganic ocean carbon model following the Ocean Carbon Model Intercomparison Protocol (OCMIP), and 

a NPZD (nutrient, phytoplankton, zooplankton, detritus) model of ocean biology simulating carbon uptake by the biological 

pump, accounting for phytoplankton light and iron limitations (Keller er al., 2012). The land surface model, based on the 

Hadley Centre Met Office Surface Exchange Scheme (MOSES), simulates the terrestrial carbon cycle and is coupled to the 

Top-Down Representation of Interactive Foliage and Flora including Dynamics (TRIFFID) model which simulates vegetation 105 

and soil carbon (Meissner et al., 2003). This model version also includes a permafrost carbon model in the soil module that 

generates permafrost through a diffusion-based scheme (MacDougall & Knutti, 2016). 
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Figure 2: University of Victoria Earth System Climate Model (UVic ESCM) Schematic. Energy, water and carbon exchanges 110 
between model components are represented by arrows. Figure reproduced with permission from Mengis et al. (2020). 

2.2 Model Simulations 

We performed a preindustrial spin-up simulation to equilibrate the model with the preindustrial CO2 concentration (~285ppm). 

All other greenhouse gas concentrations, surface land conditions and orbital parameters were held at 1850 levels according to 

the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design protocol (Eyring et al., 2016). The solar 115 

forcing was set to the 1850 – 1873 mean and the volcanic forcing was held at its average over 1850 – 2014, also consistent 

with CMIP6 protocol (Eyring et al., 2016).  

 

To explore how the magnitude of carbon cycle feedbacks under positive emissions differs from that under negative emissions, 

we ran the “CDR-reversibility” simulation from the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP) 120 

(Keller et al., 2018). Starting from a preindustrial equilibrium state, atmospheric CO2 concentration was prescribed to increase 

at 1% per year until quadrupling, then decline back to preindustrial levels at the same rate. We refer to the section of the 

prescribed CO2 concentration trajectory with increasing (decreasing) CO2 concentration as the ramp-up (ramp-down) phase.  

 

We also ran a zero emissions simulation (“Zeroemit”) for use in our novel approach for quantifying carbon cycle feedbacks 125 

under negative emissions. This simulation was initialized from the peak atmospheric CO2 concentration in the “CDR-

reversibility” simulation and run in emissions-driven configuration. Emissions were set to zero at the start of the simulation, 

then CO2 was allowed to evolve.  
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The “CDR-reversibility” and “Zeroemit” simulations were run in three modes, following the C4MIP protocol for the 

quantification of carbon cycle feedbacks (Friedlingstein et al., 2006; Arora et al., 2013; Jones et al., 2016; Arora et al., 2020):  130 

1. Fully coupled mode (FULL): the land and ocean carbon sinks are subject to changing atmospheric CO2 concentration 

and climate.  

2. Biogeochemically coupled mode (BGC): the land and ocean carbon sinks are subject to changing CO2 concentration 

alone. The radiation module uses preindustrial CO2 levels. 

3. Radiatively coupled mode (RAD): the land and ocean carbon sinks are subject to changes in climate alone. 135 

2.3 Approaches to Feedback Quantification 

In our first approach (referred to as the “standard” approach), we use the “CDR-reversibility” simulation to quantify carbon 

cycle feedbacks under positive and negative emissions. Although this simulation is highly idealized, the ramp-up phase is 

standardly used to investigate carbon cycle feedbacks under positive emissions, and therefore, allows easier comparison of 

these results to other literature. The ramp-up phase represents the response to positive emissions alone. However, the ramp-140 

down phase represents the response to both the prior positive emissions and negative emissions because negative emissions 

are applied from a transient (that is, time-evolving) state (Zickfeld et al., 2016; Keller et al., 2018). As a result, carbon cycle 

feedbacks quantified from the ramp-down phase do not represent the response to negative emissions alone. 

 

Our second and novel approach, therefore, aims to improve the quantification of carbon cycle feedbacks under negative 145 

emissions in an experimental design utilizing both the “CDR-reversibility” and “Zeroemit” simulations. Since the “Zeroemit” 

simulation quantifies the “committed” response to the prior positive emissions, this simulation was subtracted from the ramp-

down phase of the “CDR-reversibility” simulation to isolate the response to negative emissions alone. A similar approach was 

used in Zickfeld et al. (2016). From our approach – referred to as the “Ramp-down – Zeroemit” approach – we also quantify 

carbon cycle feedbacks for comparison to feedbacks from the first approach. The main assumption made here is that of 150 

linearity, that is, we assume that the committed carbon cycle response to past positive emissions and the carbon cycle response 

to negative emissions combine linearly to the total carbon cycle response in the ramp-down phase.  

 

We use integrated flux-based feedback parameters from Friedlingstein et al. 2006 to quantify carbon cycle feedbacks in both 

approaches, under both positive and negative emissions (see supplementary material). The BGC and RAD modes are used 155 

to isolate the system response to changes in atmospheric CO2 concentration and climate, respectively, allowing for the 

quantification of the concentration-carbon and climate-carbon feedbacks. Climate-carbon feedbacks can also be quantified 

from the difference between the FULL and BGC modes (Arora et al., 2020; see supplementary equations 3.7 and 3.8). The 

resulting feedback parameters differ from those quantified from the BGC mode alone due to nonlinearities in carbon cycle 

feedbacks (Zickfeld et al., 2011). 160 
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3 Results 

3.1 “CDR-reversibility” Carbon Cycle Feedback Analysis 

Our results focus on the ramp-down phase of the “CDR-reversibility” simulation and compare the system response in this 

phase to that in the ramp-up phase. While the prescribed atmospheric CO2 concentration for the “CDR-reversibility” 

simulations is the same, the temperature response differs by mode (figure 3(a, b)). In the FULL and RAD modes, surface air 165 

temperature increases approximately linearly with increasing atmospheric CO2 concentration, continues to increase for 

approximately half a decade after atmospheric CO2 concentration peaks, then decreases with decreasing CO2 concentration. 

Surface air temperature declines more slowly in the ramp-down phase due to the thermal inertia of the ocean, and therefore, 

does not return to preindustrial levels by the end of the ramp-down phase. The temperature response in the FULL mode is 

consistent with earlier studies (Boucher et al., 2012; Zickfeld et al., 2016; Park & Kug, 2021). Surface air temperature in the 170 

BGC mode changes only marginally: surface air temperature increases slightly with increasing CO2 concentration and 

decreases as the CO2 concentration decreases. This temperature change is driven by biophysical responses to changing 

atmospheric CO2. Biophysical effects are also responsible for the difference in warming between the FULL and RAD modes 

(Arora et al., 2020). The temperature response in the ramp-up phase of the FULL, BGC and RAD modes is consistent with 

Arora et al. (2020) while the temperature response in the ramp-up and ramp-down phases of all three modes is consistent with 175 

Schwinger & Tjiputra (2018). 
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Figure 3: a. Prescribed atmospheric CO2 concentration b. surface air temperature change c. atmosphere to land carbon flux and d. 
land e. vegetation and f. soil carbon changes in the fully coupled (FULL), biogeochemically coupled (BGC) and radiatively coupled 
(RAD) “CDR-reversibility” simulations. Panels a, b, and d - f are calculated relative to 1850 (preindustrial). Carbon fluxes for the 180 
three modes are shown in the bottom panels (g, h, i). NPP = net primary productivity, LLF = leaf litter flux and SR = soil respiration. 
Solid lines represent the ramp-up phase and dot-dashed lines represent the ramp-down phase. The vertical dotted lines mark the 
beginning and end of the ramp-down phase. 

3.1.1 Land Carbon Change in the FULL Mode 

Figure 3(d) shows land carbon changes as a function of time. In the FULL mode, the land gains carbon at a decreasing rate, 185 

then begins to slowly lose carbon 7 years before the peak atmospheric CO2 concentration is reached.  Similar carbon uptake 

and loss patterns are observed for the soil carbon pool, which starts losing carbon roughly 20 years before the peak in 

atmospheric CO2 concentration, but vegetation carbon loss begins 2 years after the peak atmospheric CO2 concentration (figure 

3(e, f)). Our results differ from the earlier studies (MacDougall, 2019; Arora et al., 2020) wherein the land carbon pool remains 

a carbon sink in the ramp-up phase. MacDougall (2019) shows that the soil carbon sink switches into a source later in the 190 

ramp-up phase than our results show. Furthermore, other studies (Boucher et al., 2012; Zickfeld et al., 2016) show that both 

vegetation and soil carbon sinks persist throughout the ramp-up phase. The land loses carbon throughout the ramp-down phase 

(figure 3(d)). Earlier studies show continued land carbon uptake in the early ramp-down phase followed by land carbon loss 

(Boucher et al., 2012; Zickfeld et al., 2016; Park & Kug, 2021). Changes in land carbon are governed by the balance between 

net primary productivity (NPP) and soil respiration. Carbon gain is driven by the CO2 fertilization effect: photosynthesis is 195 

enhanced under increasing CO2 concentration, increasing NPP (figure 3(g)) (Arora et al. 2013). Soil respiration also increases 

with warming (figure 3(g)). Initially, soil respiration remains below NPP, but the rate of increase of NPP declines faster and 

soil respiration exceeds NPP towards the end of the ramp-up phase. This occurs due to the different response timescales of 

NPP and soil respiration: NPP depends on atmospheric CO2 changes, whereas soil respiration depends on temperature change, 

which lags behind the change in CO2 concentration (Cao & Caldeira, 2010). In the ramp-down phase, NPP decreases as the 200 

CO2 fertilization effect weakens, whereas soil respiration continues to increase for a year before decreasing at a slower rate 

than NPP, driven by decreasing surface air temperature and soil carbon. 

3.1.2 Land Carbon Change in the BGC Mode 

In the BGC mode, the land sequesters carbon in the ramp-up phase, remains a carbon sink until 16 years after the peak in CO2 

concentration, then switches into a source of carbon (figure 3(d)). A similar lag is observed for both vegetation and soil carbon 205 

pools, but the soil carbon sink persists for five years longer than the vegetation carbon sink (figure 3(e, f)). The land sequesters 

carbon in the ramp-up phase due to the CO2 fertilization effect, which increases NPP (figure 3(h)) (Arora et al. 2013).  In the 

UVic ESCM, soil respiration depends on soil temperature, moisture, and carbon content (Cox et al., 2001; Mengis et al., 2020). 

Since changes in surface air temperature in the BGC mode are small (figure 3(b)), changes in the first two factors are negligible 

and soil carbon content is the main driver of soil respiration changes. Soil respiration increases with increasing soil carbon, 210 

but NPP remains higher, resulting in land carbon uptake in the ramp-up phase (figure 3(h)). In the ramp-down phase, NPP 
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decreases as the CO2 fertilization effect weakens, whereas soil respiration continues to increase before decreasing at a slower 

rate than NPP, following changes in soil carbon (figure 3(h)). NPP declines below soil respiration, and the land switches into 

a carbon source. 

3.1.3 Land Carbon Change in the RAD Mode 215 

The land loses carbon in the ramp-up phase of the RAD mode, remains a carbon source until roughly 30 years after the peak 

in atmospheric CO2 concentration, then switches into a carbon sink (figure 3(d)). Both vegetation and soil carbon pools exhibit 

a similar lag, but the vegetation carbon pool remains a carbon source for a decade longer than the soil carbon pool (figure 3(e, 

f)). The land loses carbon in the ramp-up phase because NPP decreases as plant respiration rates increase (see figure S1), 

whereas soil respiration increases with warming (figure 3(i)) consistent with earlier literature (Arora et al., 2020). NPP later 220 

increases due to vegetation shifts that occur on decadal to centennial timescales (see figure S2) but remains lower than soil 

respiration. In the ramp-down phase, NPP increases (figure 3(i)) as gross primary productivity increases and plant respiration 

decreases with cooling, then later declines as gross primary productivity declines, because cooler temperatures negatively 

impact vegetation growth in the high latitudes (see figures S1, S3). Soil respiration decreases steadily with declining surface 

air temperature, and after a few decades, declines below NPP, and the land switches into a carbon sink. 225 

3.1.4 Ocean Carbon Change in the FULL, BGC and RAD Modes 

In the FULL mode, the ocean gains carbon at a steady rate, then begins to slowly lose carbon roughly three decades after the 

peak in atmospheric CO2 concentration (figure 4(a)). In the ramp-up phase, the partial pressure of CO2 in the atmosphere 

increases, strengthening the partial pressure gradient and driving an influx of CO2 into the ocean (figure 4(b)). In the ramp-

down phase, the gradient in partial pressure weakens and eventually reverses, and the ocean carbon sinks switches into a 230 

source. Earlier studies forced with the “CDR-reversibility” simulation also show ocean carbon uptake in the ramp-up phase 

(MacDougall, 2019; Arora et al., 2020) followed by delayed carbon loss in the ramp-down phase (Boucher et al., 2012; 

Zickfeld et al., 2016).  

 

The ocean exhibits a delayed response in the ramp-down phase of the BGC and RAD modes consistent with Schwinger & 235 

Tjiputra (2018). In the BGC mode, the ocean takes up carbon in the ramp-up phase, remains a carbon sink for approximately 

half a century after the peak atmospheric CO2 concentration, then switches into a source of carbon (figure 4(a)). The partial 

pressure gradient of CO2 strengthens in the ramp-up phase, driving CO2 uptake, then weakens and reverses in the ramp-down 

phase, promoting carbon loss, but the magnitude of the flux is larger than in the FULL mode (figure 4(b)). In the RAD mode, 

the ocean loses carbon in the ramp-up phase, remains a carbon source for over a century in the ramp-down phase, then switches 240 

into a weak carbon sink (figure 4(a)). The ocean outgasses in the ramp-up phase possibly due to climate effects on ocean 

circulation and the solubility pump (Cox et al., 2000; Fung et al., 2005; Friedlingstein et al., 2006; Zickfeld et al., 2011). In 

the ramp-down phase, the ocean remains a carbon source for over a century before switching into a weak carbon sink. Ocean 
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carbon changes in the BGC and RAD modes are also driven by the concentration-carbon and climate-carbon feedbacks. An 

in-depth discussion of the mechanisms behind the ocean carbon response is beyond the scope of this paper. 245 

 
Figure 4: a. Ocean carbon change and b. atmosphere to ocean carbon flux in the fully coupled (FULL), biogeochemically coupled 
(BGC) and radiatively coupled (RAD) “CDR-reversibility” simulations. Ocean carbon change is calculated relative to 1850 
(preindustrial). Solid lines represent the ramp-up phase and dot-dashed lines represent the ramp-down phase. The vertical dotted 
lines mark the beginning and end of the ramp-down phase. 250 

3.1.5 Sensitivity of Land and Ocean Carbon Pools 

To assess the sensitivity of land and ocean carbon pools to changes in atmospheric CO2 and temperature, we plot carbon 

changes in the BGC mode as a function of atmospheric CO2 concentration (figure 5) and carbon changes in the RAD mode as 

a function of surface air temperature (figure 6). The trajectory of carbon change differs in the ramp-up and ramp-down phases 

of the BGC mode (figure 5), a behavior referred to as hysteresis. Hysteresis in the land carbon pool is primarily driven by the 255 

soil carbon pool, although the contribution from the vegetation carbon pool is also significant (figure 5(a, c, d)). The width of 

the hysteresis – measured as the vertical distance between the ramp-up and ramp-down trajectories – initially increases, then 

decreases (figure 5(a - d)), except in the vegetation carbon pool where the width of the hysteresis increases throughout the 

simulation (figure 5(c)). The land and ocean carbon pools in the RAD mode also exhibit hysteresis (figure 6). The hysteresis 

in the land carbon pool is dominated by the soil carbon pool (figure 5(d)), and the width of the hysteresis appears to increase 260 

throughout the simulation for all carbon pools except the vegetation carbon, which shows nearly constant hysteresis. The 

observed hysteresis in the land and ocean carbon pools in the BGC and RAD modes is likely largely due to climate system 

inertia: the carbon cycle response under negative emissions, that is, in the ramp-down phase, is a combination of the response 

to both negative emissions and the prior positive emissions. 

 265 

Despite the restoration of preindustrial atmospheric CO2 levels in the BGC mode, the land and ocean carbon pools do not 

return to their preindustrial states. At the end of the ramp-down phase, the land carbon pool holds approximately 250 PgC 

more than at preindustrial, with 80 PgC remaining in vegetation and 170 PgC remaining in the soil (figure 5(a, c, d)), whereas 

the ocean carbon pool holds much more carbon (615PgC) than at preindustrial (figure 5(b)).  In the RAD mode, the land and 
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ocean carbon lost in the ramp-up phase is not completely regained in the ramp-down phase, though this response would not be 270 

expected given the asymmetric surface air temperature response in this mode. By the end of the RAD mode, the land carbon 

pool holds approximately 300 PgC less than at preindustrial, with the vegetation carbon pool accounting for 70 PgC and the 

soil carbon pool accounting for the remaining 230PgC (figure 6(a, b, c)). The ocean holds only 70PgC less than at 

preindustrial, but unlike the land carbon pool, a miniscule amount of ocean carbon is regained in the ramp-down phase (figure 

5(d)).  275 

 

Previous studies have shown carbon cycle hysteresis in the FULL mode of the “CDR-reversibility” simulation (Boucher et al., 

2012; Zickfeld et al., 2016; Park & Kug, 2021), consistent with our results (see figure S4). However, in these studies, the 

vegetation and soil carbon pools do not return to their preindustrial states by the end of the ramp-down phase. Our results for 

the FULL mode of the “CDR-reversibility” simulation show that the vegetation and soil carbon pools are very close to their 280 

preindustrial states by the end of the ramp-down phase, consistent with Ziehn et al. (2020), who show a near-return to the 

preindustrial state in the vegetation carbon pool. 

 
Figure 5: a. Land b. ocean c. vegetation and d. soil carbon pool changes as a function of atmospheric CO2 concentration, taken from 
the biogeochemically coupled (BGC) “CDR-reversibility” simulation ramp-up and ramp-down phases, and “ramp-down – zeroemit” 285 
simulation. All values are calculated relative to 1850 (preindustrial). 
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Figure 6: a. Land b. ocean c. vegetation and d. soil carbon pool changes as a function of surface air temperature change, taken from 
the radiatively coupled (RAD) “CDR-reversibility” simulation ramp-up and ramp-down phases, and “ramp-down – zeroemit” 
simulation. All values are calculated relative to 1850 (preindustrial). 290 

3.1.6 Carbon Cycle Feedback Parameters quantified from “CDR-reversibility” simulations 

Table 1 shows the carbon cycle feedback parameters quantified from the Friedlingstein et al. (2006) carbon cycle feedback 

framework (see supplementary material). The concentration-carbon feedback parameter (b), which quantifies the 

concentration-carbon feedback, is computed as the change in land or ocean carbon per unit change in atmospheric CO2 

concentration in the BGC mode. The climate-carbon feedback parameter (g) quantifies the climate-carbon feedback as the 295 

change in land or ocean carbon per unit change in surface air temperature in the RAD mode (referred to as the RAD approach).  

An alternative approach to quantifying the climate-carbon feedback involves taking the difference between the fully coupled 

and biogeochemically coupled simulations and computing the change in land or ocean carbon per unit change in surface air 

temperature from that difference (referred to here as the FULL-BGC approach).  

 300 

Feedback parameters are quantified for both the ramp-up and the ramp-down phases i.e., under positive and negative emissions. 

Feedback parameters under positive emissions are computed at the peak atmospheric CO2 concentration (quadruple the 

preindustrial level) using changes in carbon pools, atmospheric CO2 concentration and surface air temperature computed 

relative to preindustrial levels. Feedbacks under negative emissions are computed at the return to preindustrial levels (end of 

ramp-down phase) using changes in carbon pools, atmospheric CO2 concentration and surface air temperature computed 305 

relative to the time of peak atmospheric CO2.   
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For positive emissions, feedback parameters are positive (negative) for a gain (loss) of carbon. Under negative emissions, both 

atmospheric CO2 concentration and surface air temperature decline, resulting in a negative denominator (see supplementary 

equations 3.3 – 3.6). Therefore, the sign convention is reversed: feedback parameters are negative for a gain in carbon (positive 310 

numerator divided by negative denominator) and positive for a loss in carbon (negative numerator divided by negative 

denominator). The concentration-carbon and climate-carbon feedback parameters shown here can also be derived from figures 

5 and 6 respectively by taking the slope of the land or ocean response at the same time points. 

 

In the “CDR-reversibility” simulation, the magnitudes of b and g for both land and ocean are smaller under negative emissions 315 

than under positive emissions (Table 1). Climate-carbon feedback parameters calculated using the FULL-BGC approach 

(shown in parentheses) are consistent in sign with those calculated using the RAD approach, but the magnitudes of these 

feedback parameters are larger (see Figure S5 for hysteresis figures for this approach). Carbon cycle feedback parameters are 

smaller under negative emissions because carbon loss (gain) due to the concentration-carbon (climate-carbon) feedback is 

reduced due to continued carbon uptake (loss) at the beginning of the ramp-down phase related to carbon cycle inertia. In fact, 320 

the ocean continues to lose carbon throughout the ramp-down phase due to the climate-carbon feedback (shown by the positive 

ocean climate-carbon feedback parameter under negative emissions). As a result, feedback parameters under negative 

emissions are underestimated, and improving this quantification could be achieved by quantifying and removing this inertia. 

 

Simulations(s) used for calculation 
of feedback parameters 

Positive Emissions Negative Emissions 

 bL  bO  gL  gO bL bO gL gO 

 (PgC ppm–1) (PgC °C–1) (PgC ppm–1) (PgC °C–1) 

“CDR-reversibility” simulation  
taken at 4xCO2 for positive emissions 
and at return to preindustrial for 
negative emissions  
 

0.96 
 

0.88 -117.8 
(-121.5) 
 

-7.36 
(-22.7) 

0.68 
 

0.16 -56.4 
(-67) 

10.8 
(31.1) 

“Ramp-up – Zeroemit” simulation 
taken at 4xCO2 for positive emissions 
and at return to preindustrial for 
negative emissions  
 

0.96 
 

0.88 -117.8 
 

-7.36 0.80 
 

0.84 -157.1 
 

-18.1 
 

 325 
Table 1: Carbon cycle feedback parameters under positive and negative emissions. Feedback parameters for negative emissions are 
positive (negative) for a loss (gain) in carbon. Values shown in parentheses were calculated using the FULL-BGC method: an 
alternative method for quantifying climate-carbon feedbacks (see supplementary equations 3.7 and 3.8). 
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3.2 Improving the Quantification of Carbon Cycle Feedbacks under Negative Emissions 

3.2.1 “Zeroemit” Simulation: Quantifying Climate System Inertia 330 

Zero emissions simulations quantify committed changes due to prior positive emissions. Changes in atmospheric CO2 

concentration in zero emissions simulations are driven by the carbon sinks, which in turn are influenced by the CO2 

concentration and climate. Following cessation of emissions, the CO2 concentration in the FULL mode declines steadily, 

mainly driven by ocean carbon uptake consistent with results from MacDougall et al. (2020) (figure 7(a)). The CO2 

concentration in the BGC mode declines more than in the FULL mode because both land and ocean remain carbon sinks. In 335 

the RAD mode, the CO2 concentration increases as both land and ocean release CO2 into the atmosphere. Changes in 

atmospheric CO2 concentration, together with changes in ocean heat uptake and surface albedo, drive changes in surface air 

temperature. In the FULL mode, the warming effect of declining ocean heat uptake dominates over the cooling effect of 

declining CO2 concentration resulting in continued warming (MacDougall et al., 2020) (figure 7(b); figure S6). Surface air 

temperature in the RAD mode increases more than in the FULL mode because the CO2 concentration increases, causing further 340 

warming. Surface air temperature remains relatively constant in the BGC mode. In the FULL mode, the land switches into a 

source of carbon after emissions cease, consistent with the behaviour of the UVic ESCM in the Zero Emissions Commitment 

Model Intercomparison Project (ZECMIP) (MacDougall et al., 2020) (figure 7(c)). The vegetation carbon pool continues to 

take up carbon (figure 7(d)) whereas, the soil switches into a source of carbon (figure 7(e)). The ocean remains a carbon sink 

after cessation of emissions (figure 7(f)). In the BGC mode, the ocean remains a strong carbon sink after CO2 emissions are 345 

set to zero, whereas the land initially takes up carbon, stabilizes, then becomes a weak carbon sink again (figure 7(c, f)). The 

vegetation carbon pool takes up carbon throughout the zero emissions phase whereas, the soil initially takes up carbon, 

stabilizes, then slowly releases CO2 (figure 7(d, e)). Both land and ocean release CO2 to the atmosphere in the RAD mode 

(figure 7(c, f)) with both vegetation and soil carbon pools driving the land carbon release (figure 7(d, e)).  

 350 
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Figure 7: a. Atmospheric CO2 concentration anomaly b. surface air temperature change c. land carbon change d. vegetation carbon 
change f. soil carbon change and d. ocean carbon change for the zero emissions simulations relative to 1850 (preindustrial). BGC = 
biogeochemically coupled, RAD = radiatively coupled and FULL = fully coupled. Solid lines are for the ramp-up phase; dashed lines 
are for the zero emissions phase. 355 

3.2.2 “Ramp-down – Zeroemit” Approach: Isolating the Response to Negative Emissions 

The “Ramp-down – Zeroemit” approach uses the zero emissions simulations described in the previous section to isolate the 

response to negative emissions in the “CDR-reversibility” simulations by taking the difference between the ramp-down phase 

of the RAD (BGC) “CDR-reversibility” simulation and the RAD (BGC) zero emissions simulation. In the BGC mode, despite 

our attempt to reduce climate system inertia in our novel approach, carbon pools do not return to their preindustrial states at 360 

the time atmospheric CO2 returns to preindustrial levels (figure 5). In the RAD mode, all carbon pools gain more carbon than 

they held at preindustrial (figure 6). 

 

The “Ramp-down – Zeroemit” approach removes the initial carbon increase (decrease) in the “CDR-reversibility” BGC (RAD) 

mode, reducing the width of the hysteresis (figure 6). Zickfeld et al. (2016) used zero emissions to isolate the response to 365 

negative emissions and observed a reduction in the initial carbon change at the beginning of the ramp-down phase consistent 

with our results. One possible reason why the hysteresis persists may be irreversible changes in vegetation distribution in the 

“CDR-reversibility” ramp-down phase that are caused by state changes rather than inertia. Alternatively, the hysteresis may 
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show that the linearity assumption made in this experiment, that is, the assumption that the committed carbon cycle response 

to past positive emissions and the carbon cycle response to negative emissions combine linearly to the total carbon cycle 370 

response in the ramp-down phase in this experimental design, is not satisfied. 

 

Isolating the response to negative emissions alone in the “Ramp-down – Zeroemit” approach, the magnitudes of  bL and bO 

are smaller under negative emissions as compared to their respective magnitudes under positive emissions, but the magnitudes 

of gL and gO become larger under negative emissions (Table 1). Under negative emissions, the magnitudes of b and g from our 375 

novel approach are larger compared to those from the “CDR-reversibility” simulation, implying greater carbon loss due to the 

concentration-carbon feedback and greater carbon gain due to the climate-carbon feedback under negative emissions. For 

example, a decrease in atmospheric CO2 of one ppm would result in the loss of 0.68 PgC of land carbon in the standard 

approach and 0.80 PgC of land carbon in our approach due to the concentration-carbon feedback whereas, cooling by one 

degree, would result in land carbon gain of 56.4 PgC in the standard approach and almost three times as much (157.1 PgC) in 380 

our approach due to the climate-carbon feedback. 

4 Discussion and conclusions 

Our results from the “CDR-reversibility” simulation show that, due to the concentration-carbon feedback, carbon pools take 

up carbon in the ramp-up phase, continue to take up carbon in the early ramp-down phase, then switch into sources of carbon. 

Due to the climate-carbon feedback, carbon pools lose carbon in the ramp-up phase, continue to lose carbon in the ramp-down 385 

phase, then switch into carbon sinks. Furthermore, the land and ocean carbon pools do not return to their preindustrial states 

at the end of both modes, suggesting that land and ocean carbon changes due to carbon cycle feedbacks in the ramp-up phase 

are irreversible on centennial timescales. The differences in the magnitudes of carbon cycle feedbacks in the ramp-up and 

ramp-down phases, as quantified by feedback parameters, are likely largely due to climate system inertia. This inertia reduces 

the magnitude of both feedbacks under negative emissions relative to feedbacks under positive emissions, implying reduced 390 

carbon loss due to the concentration-carbon feedback and reduced carbon gain due to the climate-carbon feedback. 

 

To quantify the carbon cycle inertia, that is, the response to prior positive emissions, we ran zero emissions simulations in fully 

coupled, biogeochemically coupled and radiatively coupled modes.  Consistent with previous studies, the ocean continues to 

sequester carbon in the fully coupled zero emissions simulation (MacDougall et al., 2020). The terrestrial biosphere switches 395 

into a carbon source after emissions cease, consistent with the behaviour of the UVic ESCM in the Zero Emissions 

Commitment Model Intercomparison Project (ZECMIP) (MacDougall et al., 2020). Carbon uptake, largely by the ocean sink, 

decreases the atmospheric CO2 concentration. Surface air temperature increases due to the interplay between declining CO2 

concentration and ocean heat uptake (Matthews & Caldeira, 2008; Solomon et al., 2009; Arora et al., 2013). The carbon pools 

in the biogeochemically coupled and radiative coupled zero emissions simulations also exhibit inertia: the land and ocean 400 
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continue to sequester carbon after cessation of emissions in the biogeochemically coupled simulation, whereas both carbon 

pools release CO2 in the radiatively coupled simulation.  

 

Assuming linearity in the response to prior positive emissions and negative emissions, we subtract the zero emissions 

simulations from the “CDR-reversibility” simulations, to isolate the response to negative emissions alone. We find that under 405 

negative emissions, the magnitudes of b and g from our novel approach are larger as compared to those from the “CDR-

reversibility” simulation, implying greater carbon loss and carbon gain due to the concentration-carbon and climate-carbon 

feedbacks respectively if feedback parameters from our approach are applied instead. Furthermore, land and ocean carbon 

changes in the ramp-up phase remain irreversible in our approach. 

 410 

A similar feedback analysis was conducted for ocean carbon cycle feedbacks using the Norwegian Earth System Model 

(NorESM) (Schwinger & Tjiputra, 2018). Schwinger and Tjiputra calculated ocean concentration-carbon and climate-carbon 

feedback parameters using the same carbon cycle feedback framework and “CDR-reversibility” simulations used here. Their 

results also show a lagged ocean carbon response to positive emissions in the ramp-down phase, and as a result, the magnitude 

of both carbon cycle feedbacks is smaller under negative missions than under positive emissions. 415 

 

We compare carbon cycle feedback parameters under positive emissions quantified from the “CDR-reversibility” simulation 

to model means and standard deviations from CMIP5 and CMIP6 – the fifth and sixth phases of the Coupled Model 

Intercomparison Project – respectively (Arora et al., 2020) (see supplementary table 2). The concentration-carbon feedback 

parameter for land (bL) is generally consistent with those from CMIP5 and CMIP6, while the ocean concentration-carbon 420 

feedback parameter (bO) lies slightly above the CMIP6 range. The land climate-carbon feedback parameter (gL) lies well above 

the CMIP5 and CMIP6 ranges, implying a stronger sensitivity to warming relative to CMIP5 and CMIP6 models. The ocean 

climate-carbon feedback parameter (gO) is consistent with those from CMIP5 and CMIP6. 

 

The version of the UVic ESCM used here does not represent the nitrogen cycle on land and its coupling to the carbon cycle, 425 

which has ramifications for the estimated magnitude of carbon cycle feedbacks. Models without a nitrogen cycle exhibit greater 

land carbon gain under positive emissions relative to other CMIP5 and CMIP6 models, that is, the concentration-carbon 

feedback parameter is more positive (Table S2). They also exhibit greater carbon loss under positive emissions, that is, the 

climate-carbon feedback parameter is more negative. Therefore, the magnitude of both carbon cycle feedbacks in this study is 

generally larger under positive emissions relative to other CMIP5 and CMIP6 models with a nitrogen cycle. Due to the 430 

exclusion of the nitrogen cycle, the UVic ESCM is expected to exhibit smaller carbon losses due to the concentration-carbon 

feedback and greater carbon gain due to the climate-carbon feedback under negative emissions relative to CMIP5 and CMIP6 

models with a nitrogen cycle. With the consideration of nitrogen limitation, the already weakened CO2 fertilization effect 
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under declining CO2 concentrations would be further constrained, exacerbating the carbon loss due to the concentration-carbon 

feedback. On the contrary, nitrogen remineralization would decline as surface air temperature declines, reducing the carbon 435 

gain due to the climate-carbon feedback.  

 

Each of the two approaches used here to quantify carbon cycle feedback parameters has its benefits and drawbacks. Because 

the “CDR-reversibility” simulation is commonly used in literature (Schwinger & Tjiputra, 2018; Keller et al., 2018; Zickfeld 

et al., 2016), it allows easier comparison of results across models. However, research shows that this idealized scenario may 440 

delay the land sink-to-source transition, and underestimate ocean carbon uptake and the strength of the permafrost carbon 

feedback (MacDougall, 2019). The main limitation is that carbon cycle feedback parameters quantified for the ramp-down 

phase include carbon cycle inertia effects, making this approach inaccurate for quantifying carbon cycle feedbacks under 

negative emissions. 

 445 

In their 2016 paper, Zickfeld et al. used zero emissions simulations to correct for the thermal and carbon cycle inertia in a suite 

of “CDR-reversibility” simulations, similar to our novel approach in this study. This reduced, but did not eliminate the climate 

system inertia, consistent with our results. Although our approach does not eliminate the inertia, it provides a more accurate 

estimate of the magnitude of carbon cycle feedbacks under negative emissions by reducing the response to prior positive 

emissions, bringing the estimate closer to a quantification of carbon cycle feedbacks under negative emissions alone. We 450 

hypothesize that the remaining inertia may be related to irreversible changes in vegetation distribution in the “CDR-

reversibility” simulations. Alternatively, the linearity assumption made in this experimental design may not hold. If the 

responses to prior positive emissions and negative emissions are not additive, then the zero emissions simulations may not 

quantify and remove all the inertia in the “CDR-reversibility” simulations. Lastly, the remaining inertia may be associated 

with the different configurations in which the “CDR-reversibility” and “Zeroemit” simulations were run: the former were run 455 

in concentration-driven mode whereas, the latter were emissions-driven. Therefore, changes in land and ocean carbon fluxes 

affect the atmospheric CO2 concentration in the zero emissions simulations, but not in the “CDR-reversibility” simulations.  

 

Carbon cycle feedbacks under negative emissions are currently quantified from the ramp-down phase of the “CDR-

reversibility” simulation. However, this approach underestimates the magnitudes of carbon cycle feedbacks because the 460 

response in the ramp-down phase includes climate system inertia effects that weaken both feedbacks. Our novel approach aims 

to reduce the inertia in the ramp-down phase, thereby improving the quantification of carbon cycle feedbacks under negative 

emissions. We find that the magnitudes of the concentration-carbon and climate-carbon feedbacks under negative emissions 

are larger in our approach as compared to the standard approach. This has two implications: using feedback parameters from 

the standard approach will (1) underestimate carbon release under negative emissions due to the concentration-carbon 465 

feedback, and (2) underestimate carbon gain due to the climate-carbon feedback. Given that the concentration-carbon feedback 

is the dominant feedback, quantifying carbon cycle feedbacks under negative emissions from the “CDR-reversibility” 
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simulation will result in the underestimation of carbon loss under negative emissions, thereby overestimating the effectiveness 

of negative emissions in drawing down CO2. 

 470 

Future research should test the robustness of these results in a multi-model framework. A first step could be analyzing the 

“CDR-reversibility” simulations in three modes (biogeochemically coupled, radiatively coupled and fully coupled) in the next 

CMIP phase. In addition, positive and negative CO2 emissions could be applied from an equilibrium state to overcome issues 

related to climate system inertia. 

5 Code/Data Availability 475 

The UVic ESCM data will be made available after publishing and the model code for UVic ESCM 2.10 is available at 

http://terra.seos.uvic.ca/model/2.10/. 
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