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Abstract

The representation of data, whether geophysical observations, numerical model output
or laboratory results, by a best fit straight line is a routine practice in the geosciences
and other fields. While the literature is full of detailed analyses of procedures for fit-
ting straight lines to values with uncertainties, a surprising number of scientists blindly
use the standard least squares method, such as found on calculators and in spread-
sheet programs, that assumes no uncertainties in the x values. Here, the available
procedures for estimating the best fit straight line to data, including those applicable
to situations for uncertainties present in both the x and y variables, are reviewed.
Representative methods that are presented in the literature for bivariate weighted fits
are compared using several sample data sets, and guidance is presented as to when
the somewhat more involved iterative methods are required, or when the standard
least-squares procedure would be expected to be satisfactory. A spreadsheet-based
template is made available that employs one method for bivariate fitting.

1 Introduction

Representation of the relationship between x (independent) and y (dependent) vari-
ables by a straight line (or other function) is a routine process in scientific and other
disciplines. Often the parameters (slope and y-intercept) of such a fitted line can be
related to fundamental physical quantities. It is therefore very important that the param-
eters accurately represent the data collected, and that uncertainties in the parameters
are estimated and applied correctly or the results of the fitting process and thus the
scientific study could be misinterpreted.

The approaches to fitting straight lines to collections of x—y data pairs can be broadly
grouped into two categories: the “standard” least-squares methods in which the dis-
tances between the fitted line and the data in the y-direction are minimized, and the
“bivariate” least-squares methods in which the perpendicular distances between the
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fitted line and the data are minimized. A third method, similar to the second but less
commonly employed, involves minimization of the areas of the right triangles formed
by the data point and the line. In all of these methods, weights may be also applied to
the data to account for the differing uncertainties in the individual points. In “standard”
least-squares, the weighting pertains to the y-variables only, whereas in “bivariate”
methods, weights can be assigned for the x- and y-variables independently. There
is widely varying terminology for these procedures in the literature that can be con-
fusing to the non-expert. Authors have used terms such as major axis regression,
reduced major axis regression, ordinary least-squares, and total least-squares. Herein
the terms “standard” and “bivariate” will be used to denote these two categories of fit-
ting methods. This paper does, however, present a detailed reference list of available
methods and applications presented in the literature.

For demonstration and testing purposes, two data sets from the literature were em-
ployed. First, the well-known data of Pearson (1901) with weights suggested by York
(1966) were used (see Table 1 and Fig. 1). The data values are similar to those that
might be encountered in a laboratory study or acquired in atmospheric measurements,
but with rather extreme weights that range 3 orders of magnitude as the data ranges
about a factor of five. This data set has the advantage that the exact results of the
bivariate fit are known and reported in the literature, and one that is frequently used as
a test for new fitting methods.

A second data set was created by selecting random numbers from Gaussian dis-
tributions and adding them to base values, which were numbers 1 through 100 (see
Fig. 2). Initially, the Gaussian distributions were set with means of zero, and standard
deviations of 10 units plus 30% of the base value, but other tests were performed with
different amounts of constant and proportional uncertainty. These data were meant to
represent those that would result from an intercomparison of two instruments measur-
ing the same quantity, which have baseline noise of 10 units (1 sigma), measurement
uncertainties that are well above the baseline of 30% (1 sigma), and nominal “true”
values from 1 to 100. This data set has the characteristic that in the absence of noise,
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or if the noise is properly dealt with, the best fit line should have a slope of one, and an
intercept of zero.

Next, the methods were applied to two examples of authentic data to demonstrate
specifically the value of bivariate methods, and to point out how and when they should
be applied.

This review and recommendation does not attempt to be mathematically nor sta-
tistically rigorous. The reader is referred to the referenced literature for such details.
The purpose here is to provide operational information for the scientific user of these
routines, and to provide guidance for the choice of routine to be utilized.

Note that there is not universal agreement in the uses of symbols for the measured
x and y values and the calculated slope and intercept that appear in the literature. The
reader is cautioned in this regard. In this paper, x; and y; (lower case italics) refer to
the measured x and y values, m refers to the slope of the best fit line, and b is the
y-axis intercept. Other symbols are defined throughout the paper.

2 Standard least-squares

The equations for a line that best describes x—y data pairs when all of the measure-
ment error may be assumed to reside in the y-variable (i.e. the x values are exact or
nearly so) is readily available and easily derived (e.g. Bevington, 1969). The fitted line
then becomes a “predicted” value for y given a value for x. The usual method involves
minimizing the sum of squares of the differences between the fitted line and the data
points in the y-direction (although minimization of other quantities has been used). The
slope, m, and y-intercept, b, of this best-fit line can be represented in terms of sum-
mations of computations performed on the n measured data pairs, x4, ¥4, X2, Vo, ...,

Xp, Vp-
2
m = N2 Xiyi=2X2Yi b= 22X 2V =2 X 2 XY

ny x2 - (3 x> ny x2 - (3 x)
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The X symbols refer to the summation of the quantity over all n values, and the sub-
script, /, denotes the individual measured x and y values. The uncertainties in the
slope and intercept can also be calculated.

SYP-b3y-m3 Xy
n-2 > x?
/

Op = Op = O
\/’72)(,2 - (X))

Another useful quantity is the correlation coefficient, which provides an index of the
degree of correlation between the x and y data.

2 (N3 Xy 3 X3 y)
(nZx2- @ x?) (nZy?- @)

It is usually the case that not all the data points have the same uncertainty. Thus, it is
desired that data with least uncertainty have the greatest influence on the slope and
intercept of the fitted line. This is accomplished by weighting each of the points with a
factor, w;, which is often assumed equal to the inverse of the variance of the y-values
(of,) which could include estimates of all sources of uncertainty in the y-values. The
formulas for the slope and intercept are modified as shown to include data weights.

()

n

(3)

2
2 Wi D WXy = 2 WX 2 WY, b= 2 WiX; 2 Wiy = 2 WiX; 3 WXy
ZW/ZW/'X,? -(2 W/'Xi)2 ZW/ZW/X,-Z -2 W/Xf)2

These formulas are readily programmed, or exist as available spreadsheet or calculator
functions, and can be routinely applied to fitting of straight lines to x—y data sets.

The standard least-squares method was applied with and without weights, using
Egs. (1) and (4), to the two test data sets (“Pearson-York” and “synthetic data”) for
comparison with the bivariate methods (see Tables 2 and 3). Note that when there are

significant x and y errors, that standard least-squares yields erroneous slopes. For the
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“synthetic data”, the slope was usually too small, whereas for the “Pearson-York” data,
the slope was too large (compared to the Williamson-York and Neri et al. methods,
discussed below).

3 Methods when both x and y have errors

The application of fitting procedures that account for uncertainties in both the x- and
y-variables is somewhat more complex. This is because minimization of the distance
between data points and a fitted line in the x- and y-directions has not yielded to an-
alytical solutions. Iterative approaches are therefore required. Several equation forms
have been proposed and discussed (Barker and Diana, 1974; Borcherds and Sheth,
1995; Bruzzone and Moreno, 1998; Chong, 1991, 1994; Christian and Tucker, 1984;
Christian et al., 1986; Gonzalez et al., 1992; Irwin and Quickenden, 1983; Jones, 1979;
Kalantar, 1990, 1991; Krane and Schecter, 1982; Leduc, 1987; Lybanon, 1984a, b,
1985; Macdonald and Thompson, 1992; MacTaggart and Farwell, 1992; Moreno, 1996;
Neri et al., 1990, 1991; Orear, 1982; Pasachoff, 1980; Pearson, 1901; Reed, 1990; Riu
and Rius, 1995; Squire et al., 1990; Williamson, 1968; York, 1966, 1969; York et al.,
2004). This list is large to provide a comprehensive reference for the reader. While
these approaches are not as convenient as the straightforward equations applicable to
standard least-squares, they can easily be programmed using standard languages or
spreadsheet program routines.

Some representative examples of exact and approximate procedures (discussed be-
low) from the literature were applied to the sample data sets, and the results of the
fits are shown in Tables 2 and 3. In each case, slopes and intercepts were derived by
fitting y on x, and by exchanging the x and y variables, thus fitting x on y. The slopes
and intercepts for the latter case were made comparable to those of the former case
by calculating the equivalent values for y=mx+b (since x=y/m-b/m, then m’=1/m
and b'=—b/m). For methods that properly account for errors in both variables, the fit
parameters by these two approaches should be identical (i.e. m' from fitting x on y
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should equal m from fitting y on x, and similarly for b" and b). Several numerical digits
are shown in Tables 2 and 3, not all significant, so that the results from the various
methods can be accurately compared.

The method described by York (1966; 1968) and York et al. (2004) was applied to
the sample data sets. This involves iteratively solving the following equations (Eq. 5).
This method allows for correlation between the x and y errors, indicated by r; (different
than the r in Eq. (3)), which is set to zero in the present case (i.e. errors are assumed
to be uncorrelated).

- — WB.V,
b=y -mx  m=ygy
X=3Wix,[S W, y=3Wy,[SW, = U=xi=x V=y-y (5)
XI 1 U
W= W, +va12mr01 Bi=W; [_y+__(mU +V) ] ;= \/WxiWy;

The procedure is to assume a starting value for m, calculate W;,U,, V;, a;, and §;, and
then calculate a revised value for m. This process is repeated until m changes by some
small increment according to the accuracy desired. This is a simpler implementation
of an earlier method of York (1966), which was described in York (1969) and York et
al. (2004), and is the same as the method of Williamson (1968), if the x and y errors
are uncorrelated (i.e. r;=0). The method of Williamson (1968) has been praised in the
literature (MacTaggert and Farwell, 1992; Kalantar, 1990) as being efficiently able to
converge to the correct answer. Other approaches (including the earlier York method),
may not always converge or may be slow to do so, depending on the specific data set.

The uncertainties in the slope and intercept can also be calculated. Among various
methods discussed in the literature (Cecchi, 1991; Kalantar, 1992; Kalantar et al.,
1995; Moreno and Bruzzone, 1993; Reed, 1990, 1992; Sheth et al., 1996; Williamson,
1968; York et al., 2004), the following forms appear to lead to correct estimates of the
fit parameter uncertainties (after York et al. (2004) with some algebraic manipulation).

op = Z_W <X+ﬁ) 057=W B=3WB/IW, (6)
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Another straightforward method is that of Neri et al. (1989). This involves minimization
of the shortest distance between the fitted line and that data points, and assumes the
x and y errors are uncorrelated. The following equations are utilized.
w? i+b- i2
ZW,-X,-(mx,-+b—y,-)—Z%;y)=0 @)
WyiWy;
b=ZW,-(y,-—mx,-)/ZW,- W; = 3

Wyj+m2w,,
In this method, an initial m is guessed (such as from standard least-squares or by
inspection), b is calculated (second equation in (Eq. 7)), and then m is adjusted to
minimize the left hand side of the first equation in Eq. (7). The process is repeated until
the left side of the first equation in Eq. (7) is satisfactorily close to zero. The Williamson-
York and Neri et al. methods give identical results for the slope and intercept of the two
test data sets.

Four other methods give results that are reasonably close to the above results, but
are not exactly the same, and do not always give the same slope on exchange of the
x and y variables. These approximate methods may be satisfactory for many applica-
tions.

Reed (1992) suggests finding roots of the following quadratic expression.

g(m):Am2+Bm+C:0
WEUY,

A=2 = — B=ZW,'2(

v w2u,, (8)
w,

+) C=-2-%

yi Wy yi

This equation is solved for m by the quadratic formula, m= (—Bi\/B2 - 4AC) /2A,

where the choice of roots is refined by comparison with standard least-squares or by
inspection.

Macdonald and Thompson (1992) describe a number of cases for which their method
is applicable. They have made available a FORTRAN program that applies their pro-
cedures, which provides nearly exact results for the Pearson-York data set. Similarly,
Lybanon (1984) presents a detailed method that also yields results very close to those
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of the “exact” methods. Krane and Schecter (1982) put forward a method proposed by
Barker and Diana (1974) and discussed by others (Irwin and Quickenden, 1983; Orear,
1984; Lybanon, 1984b) that is called “effective variance”. One begins with Eq. (4), but
the weights, w;, are adjusted to the following form.

Wy yi

Wy = ———— (9)
Wy + M2w,,

This is same as York’s W; value with uncorrelated errors. Since m appears in the
formula for the weight, an iterative process is required, in which an initial m value is
guessed, w; is calculated, followed by calculation of a revised m. The result differs
from the “exact” methods for the Pearson-York data set by a few percent, but it is more
accurate than the standard least-squares. This method does not retrieve the same
slope and intercept when the x- and y-variables are switched. The errors are larger
with the “synthetic” data set.

The methods of Williamson (1968), York (1969), York et al. (2004) and Neri et
al. (1989) all agree and appear to provide the exact answer to the best fit for the
Pearson-York data set. The approaches of Reed (1992), Macdonald and Thompson
(1992), and Lybanon (1984) provide results very close to the exact ones. The “effective
variance” method performs reasonably well for the Pearson-York data set, but poorer
for the synthetic data. Because of this variability in performance, it should be used with
caution.

4 Comparing the methods

A more detailed examination of the behavior of bivariate and standard least-squares

as a function of the random noise added in the “synthetic data” was performed. The

purpose here is to advise the reader when the more involved bivariate methods should

be used or when the standard least-squares are expected to provide satisfactory val-

ues for the fit parameters. A series of calculations was performed in which random
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noise was sampled from Gaussian distributions with varying constant and proportional
standard deviations (like the second test data set used above). Standard least-squares
(without weights) were applied to the data sets, as was the method of Williamson-York.
The values of r? (Eq. 3) were also calculated.

Figure 3 shows myi/Meypectea VErsus r of the best fit lines using standard least-
squares when proportional uncertainties of zero to 50% and/or constant uncertainties
of up to 50 units were applied to the x-data, the y-data, or both. Standard least-squares
performs well by retrieving slopes close to unity (the expected value) when errors are
applied to the y-data only. However, when errors are added to the x-variable either
alone or with errors added to the y-variable, the slopes of the best fit lines are signif-
icantly less than unity. The ratio of the fitted slope to that expected is approximately
equal to |r].

Applying the Williamson-York bivariate method to the same data sets, leads to slopes
within about 20% of the expected value of unity. Note that this is the case even when
the data are very noisy and thus correlation coefficients are small. Values much closer
to the expected value are retrieved when the data is less noisy (see inset in Fig. 3).
These fits were performed with 100 data points. If the sizes of the data sets are in-
creased, the error (scatter) in the slope decreases accordingly. As an example, for a
constant error of 28 units, the average error in the slope (5 repetitions) decreases from
19% to 6% to less than 1% as the number of data points goes from 100 to 1000 to
10000 (an approximate \/n relationship).

Knowing that the bivariate methods are an improvement over standard least-squares
when there are errors in the x-variable is a start, but can the information gathered be
used to indicate when the extra trouble of the bivariate fit is called for, and when stan-
dard least-squares will suffice. Figure 3 shows that there is a rather robust relationship
between the systematic error in the slope from standard least-squares and the ab-
solute value of the correlation coefficient (as expected, comparing Egs. (1) and (3)).
For errors in both variables, the fractional error in the standard least-squares slope is
approximately 1-|r|. Thus, a quick calculation of the correlation coefficient can give a
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rough indication of the error in the derived standard least-squares slope for data with
comparable errors in both variables. If this error in the slope is outside the needs of the
task at hand, then a bivariate approach should be employed. For unusual weighting
situations (such as the Pearson-York data), it is probably best to always use robust bi-
variate methods, since the impact of such weights on the fit parameters is not intuitive
(although the standard least-squares slope is only in error by 12%). When the error in
the y-variable is much greater than the error in x-variable, then standard least-squares
performs better than indicated by the calculated r value.

5 Application to actual observations

Two authentic sets of data from the TRACE-P campaign (TRansport And Chemistry Ex-
periment — Pacific) were selected for application of these fitting procedures. TRACE-P
involved two aircraft (the NASA DC-8 and P3-B) as platforms for observations pri-
marily in the western Pacific Ocean basic. The observations used here are gas-
phase formaldehyde (CH,O) concentrations collected by Alan Fried and colleagues
aboard the NASA DC-8 aircraft (Fried et al., 2003), and peroxy radical concentrations
(HO,+RO,) collected by the author and colleagues aboard the NASA P-3B aircraft
(Cantrell et al., 2003). These data represent very typical situations that might require
the fitting procedures discussed here.

The details of the measurement techniques and the modeling approaches can be
found in the references cited above. Briefly, CH,O was measured in the NASA DC-8
aircraft in a low-pressure cell with multi-pass optics (100 m path total optical path) using
a tunable lead salt diode infrared laser as the source. A spectral line near 2831.6 cm™
was scanned and the second harmonic spectrum (after subtraction of the background)
was related to the ambient concentration through addition of known mixtures of CH,O
in zero air to the instrument inlet. The measurements were corrected for a small in-
terference from methanol. The estimated uncertainty of the measurements was 15%,
and detection limits typically ranged from 50 to 80 pptv (parts per trillion by volume).
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One minute average retrieved concentrations ranged from —47 to 10665 pptv.

HO,+RO, concentrations were measured on the NASA P-3B aircraft and were deter-
mined by conversion to gas-phase sulfuric acid through the addition of reagent gases
NO and SO, to the instrument inlet. The sulfuric acid product was ionized by reaction
with negatively charged nitrate ions. The product and reagent ions were quantified by
quadrupole mass spectrometry. Calibrations were performed using quantitative pho-
tolysis of water vapor at 184.9 nm. The estimated uncertainty for these data was 17%
and the detection limits were 2-5 pptv.

CH,0 and HO,+RO, concentrations were estimated by a photochemical box model
with inputs of key parameters constrained by the observations (Crawford et al., 1999;
Olson et al., 2004). The time-dependent model is run for several days to diurnal steady
state. Monte Carlo calculations yielded uncertainty estimates of 20% for modeled
CH,0 and 30% for HO,+RO,.

Figure 4 shows the measured CH,O concentrations versus those estimated by the
constrained box model on linear scales (4466 data pairs). The inset plots show the
high range of concentrations (>500 pptv, lower right) and the data plotted on logarith-
mic scales (upper left). The lines represent different methods of fitting the data. The
solid line is a weighted bivariate fit to all of the data with the measurements weighted
using a variance of the square of 15% of the concentration plus 50 pptv, and the model
results using a variance of the square of 20% of the concentration. The slope is near
unity (1.054) and the y-intercept is small (1.283), in agreement with assessments by
Fried et al., 2003 and Olson et al., 2004. The long dashed line is a standard un-
weighted least-squares fit which yields a slope of 1.462 and a y-intercept of —44.6. It
appears that the line is being unduly weighted by the handful of points at high concen-
trations in which the model systematically underestimates the observations, leading
to a larger slope than the bivariate method. The medium dashed line is a weighted
least squares fit (Eq. 4), with weights calculated using the “effective variance” method
(Eqg. 9). Its slope is 0.873 and the y-intercept is 20.1. Finally, the short dashed line is
a weighted least-squares fit (Eq. 4) with weights in the y-direction only (i.e. w;=w,;).
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The slope for this fit is 0.811 and the y-intercept is 22.4. These fits mostly have slopes
of unity within the combined measurement-model uncertainties, with the exception of
the standard unweighted least squares fit. The intercepts are all within the detection
limit of the measurements. The large slope retrieved with the standard unweighted
approach could lead one to make the assessment that there are missing processes in
the model, errors in the measurements, or both. While it does appear that there are
statistically significant differences between the measurements and the model at high
concentrations, the small number of outliers should not significantly change the fit of
the entire data set. Eliminating data pairs with measurements greater than 4000 pptv,
results in bivariate fit slope and y-intercept values of 1.041 and 2.476, respectively. The
weighted standard fits change by small amounts as well. The unweighted standard fit,
though, yields slope and y-intercept values of 1.248 and -5.744, respectively. This is a
significant change and shows how susceptible the standard fit is to a small number of
outliers (the term outlier is used here to mean data that are not described well by the
bivariate fit line).

The impact of outliers on the various fit methods is demonstrated further. To the
full data set are added numbers of data pairs (up to 1000) for which x is 50 and y is
5000. A second trial added data pairs with x values of 5000 and y values of 50. These
results are summarized in Fig. 5. It can be seen that outliers above the fit line have
little impact on the bivariate and the other weighted fit slopes, even when the number
of outliers approaches 20% of the data. The standard unweighted least squares fit is
affected moderately by outliers above the fit line. Outliers below the fit line impact all of
the fits greatly except the bivariate. In fact, as shown before, the bivariate fit procedure
continues to perform well even when the r? parameter indicates that the x and y data
are completely uncorrelated.

As mentioned earlier, and discussed by Fried et al. (2003), there appears to be a
change in the ratio of measurement to model values from near unity at lower concen-
trations to well above unity at higher concentrations. As one approach, the data were
separated into two groups for measured values below and above 500 pptv, and each
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group was fit separately. The bivariate slope of the low concentration group is 0.789,
while the bivariate slope of the high concentration group is 1.403. An alternate method
is to fit the ratio of measurement to model versus measurement value. Separating into
two groups as before leads to a bivariate slope of 0.00607 for the low concentration
group (i.e. moderate dependence of the ratio on the concentration) and an intercept of
0.797 (the ratio at the limit of zero concentration). The slope for the high concentration
group is 0.000679 and the intercept is 1.290. It seems that there could be atmospheric
processes missing from the model or instrumental issues affecting the measurements
in the high concentration regime that need to be addressed.

Fits of measured versus modeled HO,+RO, are shown along with the data in Fig. 6.
The inset plot (upper left) shows the same data and fit lines on logarithmic scales.
The solid line is a bivariate fit weighted using variances for the measurements that are
the square of 20% of the concentration plus 5, and using variances for the model re-
sults that are the square of 30% of model values. Its slope is 0.961 and the intercept
is —2.96. The other methods (effective variance, y-weighting only, and no weighting)
yield smaller slopes (0.63 to .71). There are some noticeable outliers in which the mea-
sured concentrations are systematically higher than the modeled ones at low modeled
concentrations. Elimination of these data does not greatly affect the bivariate fit. A
fit of the measured to model ratios versus measured values yields a moderate slope
(—0.00864) and an intercept near unity (1.053).

It has been reported (Faloona et al., 2000) that measured peroxy radical concentra-
tions are systematically greater than model values at high NO, concentrations. This
is observed for TRACE-P HO,+RO, data as well. For NO concentrations less than
500 pptv, the measured to modeled ratios are close to unity with no significant de-
pendence on NO concentration. The bivariate fit yields a slope of —0.00145 and a
y-intercept of 0.77. For NO concentrations greater than 500 pptv, there is a systematic
dependence of the measured-modeled ratio on the NO concentration. The bivariate
fit slope is 0.00317 and the y-intercept is —0.785. It has been suggested (Olson et
al., 2006) that this phenomenon could be the result of short term large spikes in the
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NO concentration that impact the average NO concentration, but have little impact on
the average peroxy radical concentration. Without high rate NO and peroxy radical
data, we cannot rule out such an explanation. Alternatively, there could be unknown
photochemical processes or instrumental issues that occur in the presence of high NO
concentrations. The measurement and modeling communities continue to search for
satisfactory explanations of these observations under high NO conditions.

Does the quality of fits obtained with the bivariate methods depend strongly on
the selection of weights? This was examined using the CH,O measurements
and model results. The best estimate for the variance of the measurements is
(O.15x[CH20]meaS+50)2, and for the model values is (0.20x[CH20]mode|)2. Varying the
measured variance values from (0.1Ox[CHZO]me‘,ﬂS+50)2 to (0.30x[CHQO]meaS+200)2
results in bivariate fitted slopes ranging from 0.88 to 1.15. Thus, while there is some
impact on the fit parameters by the choice of weights, the dependence is not strong.
Obviously, every effort should be made to correctly estimate the weights, but small
errors in these parameters are not likely to invalidate the fit results.

6 Summary

Scientists need to use care in applying fitting programs to derive parameters that sum-
marize their observations. In the case of linear fits, significant errors in slopes and
intercepts can result using standard least-squares methods if there are uncertainties in
the x-values (as cautioned many times in the literature). If the x- and y-variable errors
are comparable, 1-|r| may give an indication of the fractional error of the derived stan-
dard least-squares slope. If a more accurate slope is desired, then bivariate methods
such as those reported by Williamson et al., York et al., or Neri et al. are recommended.
For these methods, the accuracy of the slope improves with the number of data points
(not so with the standard least-squares with significant errors in the x-variable).
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7 Supplemental material

The Williamson-York method has been incorporated into a Microsoft Excel spreadsheet
that is available from the author on request.http://www.atmos-chem-phys-discuss.net/
8/6409/2008/acpd-8-6409-2008-supplement.zip
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Table 1. Example data “Pearson’s data with York’s weights” for comparison of fitting procedures

described in the text.
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X w, Yy w,
1 0.0 1000.0 5.9 1.0
2 09 10000 54 1.8
3 1.8 500.0 44 4.0
4 26 8000 4.6 8.0
5 33 2000 35 20.0
6 44 80.0 3.7 20.0
7 52 600 2.8 70.0
8 6.1 200 2.8 70.0
9 6.5 1.8 24 100.0
1 7.4 1.0 1.5 500.0
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Table 2. Corpparison of fit parameters using various weighting and fitting procedures for Pear- Least squares fitting
son’s data with York’s weights (reproduced in Table 1).
C. A. Cantrell
Reference Data order Slope % diff Intercept % diff
1 y—x -053957727498 12.3 576118519044 5.1 . TilePage
Std Least Squares 4y, _056588892540 17.8  5.86169569504 7.0
1 y-x -0.61081295658 27.1  6.10010931667  11.3 ! !
StdLstSarswiwgts {4, _0@6171422835 377 6.44111325438 17.5 Gonclsions Reeronces.
Williamson-York 1 y-x —0.48053340745 0 5.47991022403 0
- 1 x-y —0.48053340745 0 5.47991022403 0
: 1 x-y -0.48053340745 0 5.47991022403 0
Reed 1 y-x -0.48053340810 1x107’ 5.47991022723 6x107° ! !
ee 1 x-y -0.48053340596 3x107’ 547991021675 1x107’ ! !
Macdonald 1 y-x -0.4805334319 5x10° 5.479910343 2x107°
acdona 1 x—y —0.4805331548 5x107° 5479909773 8x107° . Back  Close
1 y-x  -0.480533415 2x10® 547991025 5x107’
Lybanon P : i - | FulSereen/Esc
1 y-x -0.46344892509 3.6  5.39605229900 1.5
Krane & Schecter 1 x-y -0.55048728995 14.6 581627060475 6.1  Printer-friendly Version
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Table 3. Comparison of fit parameters using various weighting and fitting procedures for syn- C. A. Cantrell
thetic data with random errors (see text).

Reference Data order Slope % diff Intercept % diff
1 x-y 162394698993 57.0 —-33.2653035107 810

1 y—x 051687669770 50.0  3.12329574639 185 R =5

StdLstSarsw/wgts 4 ) 145083541868 40.3 -25.7368705811 604 | Tables  Figues
Williamson-York 1 y-x 103409357517 0  -3.65745494979 0
- 1 x—y 103409357517 0  —-3.65745494979 0
: 1 x—y 103409357517 0  —-3.65745494979 0

. T Tostarety 0 oeomeisasrs o B .

ee 1 x-y 103409357517 0  -3.65745494980 1x10°° ~ Back  Close
1 y-x 063716256863 38.4  3.73640490263 202

Krane & Schecter 1 x-y 169288068334 63.7 -16.2079343388 343 | FulSoreen/Esc

©)
S)
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Pearson's Data with York's Weights

8
[ ] data
— ——— standard least squares
— — — standard least squares w/ weights
Williamson-York, Neri et al.
64 e | mm—_—— Krane and Schecter
©
©
o 41
>
2 ~N
~, S~ ~
~ -
o T T T T T
0 2 4 6 8
X Data

Fig. 1. Linear fits to the data of Pearson (1901) with weights suggested by York (1966)
(“Pearson-York” data set, shown in Table 1). The weights have been plotted as o values
(w,-=1/a,2). Fit parameters are shown in Table 2.
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Y Data

Fig. 2. Linear fits to data generated by sampling a Gaussian function with standard deviation
of 10 units plus 30%, and adding the noise to the numbers 1 through 100. Fit parameters are

shown in Table 3.
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1.6 T T T T

O Bivariate

O Standard LS, x &y errors
14 Vv Standard LS, y errors only []

B Pearson-York std LS
12 %06 v o O ©Co o

mﬁt / mexpected

Least squares fitting

C. A. Cantrell

Fig. 3. Ratio of fitted to expected slopes (my/ Meypecteq) from standard least-squares and the
Williamson-York bivariate method versus r-values from Eq. (3). Errors in both the x and y
variables lead to systematic errors the slope from standard least squares. Slopes from the

bivariate method show no such systematic variation with r.
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CH,0 measurement-model comparison
1000

800 [ -]

CH,0, pptv (measurement)
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i

0 200 400 600 800 1000
CH,0, pptv (model)

Fig. 4. Comparison of measured formaldehyde concentrations with those estimated from a
constrained box model during the TRACE-P campaign (after Fried et al., 2003; Olson et al.,
2004). The data points are divided into two groups: those corresponding to measurements
below 500 pptv (small points), and those for measurements above 500 pptv (large points). The
main window (on linear scales) shows results of linear fits using four approaches: solid line,
bivariate weighted fit to all data; long dash, standard unweighted least squares fit; medium
dash, fit using weighted standard least squares (Eq. 4) with weights calculated using effective
variance; and short dash, fit using weighted standard least squares with weights in the y-
direction only. The lower right inset shows the fit lines and data on expanded x- and y-scales
(linear). The upper left inset shows the full range of data on logarithmic scales. See text for fit
parameters and discussion.
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Fig. 5. Impacts of added data outliers to the formaldehyde dataset presented in Fig. 4. Shown
are slopes (top panel), intercepts (middle panel), and correlation coefficients (bottom panel)
of various fits as impacted by adding extra points, in amounts indicated on the x-axis, to the
dataset that are clearly outliers. Eight collections of fit parameters are shown for 1, 10, 100, and
1000 outliers added. Four collections had outliers equal to x=50, y=5000 (dark gray); the other
four had outliers equal to x=5000, y=50 (light gray). The circles in the top two panels repre-
sent parameters derived from weighted bivariate fits; the downward pointing triangles represent
parameters derived from Eq. (4) using effective variance; the squares represent parameters de-
rived from Eq. (4) with weights in the y-direction only; and the diamonds represent parameters
derived from unweighted standard least squares. The values on the y-axis (corresponding to
x=0.8) are those derived from the original formaldehyde data with no added outliers.
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HO,+RO, measurement-model comparison
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Fig. 6. Fits of HO,+RO, measurements versus constrained box model estimates. The lines
are four different fit approaches: solid line, bivariate weighted fit to all data; long dash, standard
unweighted least squares fit; medium dash, fit using weighted standard least squares (Eq. 4)
with weights calculated using effective variance; and short dash, fit using weighted standard
least squares with weights in the y-direction only.
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