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Abstract

A neural network algorithm inverting selected channels from the AMSU-A and AMSU-
B instruments was applied to retrieve layer averaged relative humidity. The neural
network was trained with a global synthetic dataset representing clear-sky conditions.
A precision of around 6% was obtained when retrieving global simulated radiances,5

the precision deteriorated less than 1% when real mid-latitude AMSU radiances were
inverted and compared with co-located data from a radiosonde station. The 6% pre-
cision outperforms by 1% the reported precision estimate from a linear single-channel
regression between radiance and weighting function averaged relative humidity, the
more traditional approach to exploit AMSU data. Added advantages are not only a10

better precision; the AMSU-B humidity information is more optimally exploited by in-
cluding temperature information from AMSU-A channels; and the layer averaged hu-
midity is a more physical quantity than the weighted humidity, for comparison with
other datasets. The training dataset proved adequate for inverting real radiances from
a mid-latitude site, but it is limited by not considering the impact of clouds or surface15

emissivity changes, and further work is needed in this direction for further validation of
the precision estimates.

1. Introduction

Upper tropospheric humidity (UTH) is an essential component of the Earth’s climate
system. Apart from having clear implications for the chemistry and dynamics of the20

upper troposphere, it is also recognised a main factor controlling the balance between
incoming short-wave and outgoing long-wave radiation (Held and Soden, 2000). De-
spite this importance, it is admitted that the global, regional and seasonal distribution
of UTH is still not sufficiently well known. Especially for climate studies, there is a clear
need for monitoring UTH with a view to establishing the present mean state and vari-25

ability, and to determining long-term trends (SPARC, 2000), which requires datasets of
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C. Jiménez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

global and continuous measurements of UTH.
Traditionally, global and continuous datasets of UTH have been provided from me-

teorological radiosondes and polar orbiting infrared sensors measuring the 6.7µm re-
gion. However, both sets suffer from problems: radiosondes are known to have dif-
ficulties when measuring in the upper troposphere (Elliot and Gaffen, 1991), while5

the infrared measurements cannot penetrate clouds, restricting the coverage of the
datasets to clear and partially cloudy conditions (Soden and Lanzante, 1996). More
recently, microwave sounders detecting the water vapour transition at 183.3 GHz have
started to provide data with humidity information less degraded by cloud biases. One
of them is the AMSU instrument series, on board the National Oceanic and Atmo-10

spheric Administration (NOAA) satellites. In the future, different versions of AMSU
are expected to fly also in MetOp satellites, Europe’s first polar-orbiting meteorological
satellites, with a predicted dataset of measurement from both missions spanning more
than 20 years. This makes AMSU a very attractive sensor for providing a global and
continuous dataset of UTH if the data can be adequately exploited.15

AMSU data are currently in use for numerical weather prediction, with the radiances
directly assimilated into the forecast models. The data seems less exploited for a
direct estimation of UTH. Temperature and moisture profiles were retrieved by an itera-
tive minimum variance algorithm from measured AMSU-A and AMSU-B in Rosenkranz
(2001), but no derivation of UTH values is reported. Greenwald and Christopher (2002)20

studied the effect of clouds in UTH derived from AMSU-B radiances, with the UTH de-
rived from a simplified relationship between UTH and brightness temperature originally
developed for infrared data (Soden and Bretherton, 1996), but no precision estimates
of the retrieval were given. The same relationship was studied in detail by Buehler
and John (2004) for AMSU-B radiances, where precision estimates of UTH are re-25

ported by using synthetic AMSU-B radiances. However, an estimation of the attainable
UTH precision from a combination of AMSU-A and AMSU-B channels has not been
reported yet. The importance of accurate temperature information to interpret the wa-
ter vapour channels is discussed in e.g. Rosenkranz (1993). Therefore, it is expected
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that AMSU-A channels bring temperature information helping the interpretation of the
humidity information from AMSU-B channels.

The objective of this paper is to give a first estimation of retrieval precision for UTH
values derived by inverting radiances from a selected number of AMSU channels. A
non-linear regression approach implemented by neural networks was judged sufficient5

to model the inverse mapping between AMSU radiances and UTH values. Neural
networks were already used in Cabrera-Mercader and Staelin (1995) for retrievals of
moisture profiles from synthetic radiances at channels resembling the AMSU channels,
with performance comparable or superior to a complex physical and iterative retrieval
algorithm. Physical iterative inversions, such as Rosenkranz (2001), are also valid10

inversion tools, but the non-linearity of the mapping between radiances and UTH makes
them computationally expensive. The neural network approach is very efficient as a
whole set of measurements can be retrieved at once. But, as in other regression tools,
caution has to be taken regarding the regression dataset employed, as its quality will
reflect on the quality of the regressions obtained.15

The neural networks are here trained with a dataset consisting of atmospheric states
from the assimilation-forecast system of the European Centre for Medium-Range
Weather Forecasts (ECMWF) and corresponding simulated radiances from a forward
model. As mentioned before, the radiosonde humidity data suffer from problems, so a
regression dataset based on co-locations of radiosondes and AMSU pixels will clearly20

be suffering from biases. Nevertheless, some radiosonde stations have made an effort
to improve their humidity data, allowing the data to be used for validation if a reason-
able co-location between radiosonde launches and AMSU pixels can be achieved, as
was the case in Buehler et al. (2004b). Here we will follow the same approach and use
high quality data from the same radiosonde station to check the precision when using25

measured AMSU radiances.
To make this work as general as possible, a simple average value of relative humidi-

ties in a fixed layer between 500 and 200 HPa will be retrieved. This is in contrast to
Greenwald and Christopher (2002) and Buehler and John (2004), where the parame-
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ter retrieved is calculated by weighting the relative humidity with the radiance weighting
function with respect to relative humidity. This results in measurements with poor reg-
istration, as there is a significant uncertainty regarding the height range for the UTH
values derived. For instance, the drier the atmopshere the lowest the altitudes that
are sampled, this because the weighting function shape changes with changes in the5

relative humidity. Despite these limitations, regressions based on the simplified rela-
tionship of Soden and Bretherton (1996) use weighted humidity as the approximations
involved work better than when using layer averaged humidity. Here, we will use layer
averaged humidity as the precision reported will be related to a more physical quan-
tity, in the sense of depending less on the instrument performance, making it easier to10

compare with humidty reported from other inversion approaches or instruments.
The paper is organised as follows: first, the AMSU instrument and the sources of

data are presented in Sect. 2. This is followed by a description of the training sets
and retrieval algorithm in Sect. 3. Then retrieval precisions, inversion approaches and
validation of the precision estimates are commented in Sect. 4. Finally, Sect. 5 gives15

the main conclusions.

2. Data

2.1. AMSU-A and AMSU-B

AMSU data from the instruments on board the satellite NOAA-15 is used here. De-
tails on AMSU-A and AMSU-B instruments can be found in Mo (1996) and Saunders20

et al. (1995), respectively. They are cross-track scanning microwave sensors with a
swath width of approximately 2300 km. These instruments measure microwave ther-
mal emission emitted by the atmosphere in the oxygen band of 50–58 GHz (AMSU-A),
the two water vapour lines at 22 GHz (AMSU-A) and 183 GHZ (AMSU-B), and window
regions (both). AMSU has 20 channels, where channels 1–15 are part of AMSU-A and25

channels 16–20 are part of AMSU-B. Temperature information of the atmosphere can
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be obtained from the channels 4–14 of AMSU-A, where channels 6–8 give information
on the upper troposphere as shown in the left panel of Fig. 1. The three channels 18,
19, and 20 of AMSU-B which are centred around 183.31 GHz water vapour line can
give humidity information on the upper, middle, and lower troposphere, respectively as
displayed in the right panel of Fig. 1.5

AMSU-A and AMSU-B scan the atmosphere with different footprints. AMSU-A sam-
ples the atmosphere in 30 scan positions across the track with a footprint size of
50×50 km2 for the innermost scan position. This size increases to 150×80 km2 for the
outermost position from nadir. AMSU-B samples the atmosphere in 90 scan positions
with footprint size varies from 20×16 km2 to 64×52 km2.10

2.2. ECMWF data

The ECMWF dataset consists of 13 495 atmospheric profiles of temperature, water
vapour and ozone. The dataset is described in Chevalier (2001). The profiles are
vertically sampled in 60 pressure-levels, while globally the profiles are distributed in
order to cover the atmospheric variability as much as possible. This makes the dataset15

specially suitable for regression applications. Examples of its application are given, for
instance, in Chevalier and Mahfouf (2001) and Buehler and John (2004). Here the UTH
from the dataset is calculated from the corresponding humidity profiles in the dataset
as the layer averaged relative humidity between 500 and 200 HPa.

2.3. Radiosonde data20

In this study we used radiosonde data measured at the Meteorological Observatory
Lindenberg, located at 52◦ 22′ N, 14◦ 12′ E, obtained through the British Atmospheric
Data Centre (BADC). The humidity data from Lindenberg have undergone several cor-
rections and quality control (Leiterer et al., 1997; Buehler et al., 2004b). Typical tem-
perature and relative humidity profiles are shown in Fig. 2. The UTH is defined as in25

Sect. 2.2, this time calculated from each radiosonde humidity profile measured at the
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C. Jiménez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Print Version

Interactive Discussion

© EGU 2004

station from the year 2000 to 2004.

3. Methodology

UTH retrievals are produced here by a regression algorithm based on feed-forward
multi-layer perceptrons (MLPs), a type of neural network broadly used for non-linear
regressions. The MLPs are used to construct a model of the distribution underlined by5

a set of training data. The reader is referred to Bishop (1995a) for a general introduction
to MLPs. An introduction to MLPs in the context of atmospheric inversions is given
in Jiménez and Eriksson (2001). Here we concentrate on the specific details of the
practical implementation, first the construction of the training set is presented, followed
by a description of the topology of the MLPs and the training algorithm.10

3.1. Training sets

3.1.1. ECMWF dataset

AMSU radiances are simulated by running the forward model ARTS (Buehler et al.,
2004a) on the atmospheric states of the ECMWF dataset. These are clear sky simula-
tions, only gaseous absorption from water vapour, oxygen, and nitrogen was included15

in the calculations, and no liquid absorption or scattering effects are considered. The
input to the forward model was the humidity and temperature profiles from the dataset.
The surface emissivity was fixed at 0.95 over land and 0.6 over sea. As it can be
seen in Fig. 1, the channels used in the study normally are not severely affected by
the properties of the surface, but this is not the case under dry conditions, specially20

for channel 20. Following Buehler and John (2004), the cases where the brightness
temperature of channel 20 was colder than that of channel 18 are discarded. This is
implemented as a rough filter against these conditions, as this seems to be the case
when both channels see the surface, see Buehler and John (2004) for more details.
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The monochromatic calculations were convolved with the sensor bandpass, and ran-
dom noise similar to the expected noise of the sensor added to the radiances. The
radiances were calculated for different nadir angles, to include the effects of varying ob-
servation geometry. The same nadir angle was assumed for the AMSU-A and AMSU-B
instruments.5

The training set is formed by the AMSU radiances and the UTH values derived from
the humidity profiles. The AMSU data are the channels selected for the regression
plus the instrument looking nadir angles. The later is needed to correct for the limb
darkening or brightening at off-nadir radiances. The dataset consist of 12 053 UTH
values and the corresponding ARTS radiances, once the filtering for transmission to10

the surface was applied. The training set uses two thirds of the data, randomly selected
from the total dataset. The remaining data are used to estimate the retrieval precision
by applying the trained MLP to the radiances from this validation set.

3.1.2. Lindenberg dataset

A validation dataset is built by matching radiosonde profiles with measured radiances15

from a number of AMSU pixels. A single AMSU pixel can not be matched to a given
radiosonde. The satellite over-pass time can be up to three hours before or after the
radiosonde launch. In addition, the sonde drifts during its ascent, so the radiosonde
data might not be representative of the launch site. The issue of matching radiosondes
and AMSU-B pixels at Lindenberg was also discussed by Buehler et al. (2004b), the20

selection of the training set follows some of the ideas presented there. The basic idea is
to select a set of pixels within 50 km of the radiosonde launch based on considerations
of atmospheric homogeneity and time differences. We then average the radiances from
these pixels to obtain a one to one mapping between radiosondes and UTH values.

The selection of pixels was done as follows:25

1. To assure representative matchings in time and location, an estimate of the dis-
placement of the air mass measured by the sonde with respect to the satellite
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over-pass time was compared with a threshold value. The displacement was
estimated by multiplying the average wind speed from the sonde by the time dif-
ference between the satellite over-pass and the sonde launch. The threshold was
set to 50 km, as it was estimated that the radiosonde can drift around 50 km during
its ascent to tropopause levels. Then AMSU-B pixels, where the sonde estimated5

displacement was larger than 50 km, were discarded to increase the likelihood of
the AMSU-B pixel measuring the same air mass as the radiosonde.

2. Atmospheric inhomogeneity was estimated by calculating the standard deviation
of the channel-18 pixel radiances. In situations of large atmospheric inhomo-
geneity, even the average of pixel radiances could be a poor matching for the10

given radiosonde. This is because the whole air mass measured by the satellite
might be not representative of the air masses measured by the radiosonde. To
filter out these poor matches, the standard deviation was compared with a thresh-
old limit. Setting the threshold limit is somewhat arbitrary. On one hand, a very
small value will assure very representative matches. On the other hand, it could15

discard matches that could be of interest for representing the mapping. A value
of 1.6 K has been used here, as a compromise to remove the worst cases of
inhomogeneity, but leaving a sufficiently large dataset.

3. For each AMSU-B pixel selected by the previous criteria the closest AMSU-A pixel
is selected. The footprints of AMSU-A and AMSU-B are different, as commented20

in Sect. 2, but no effort has been made to find an optimal convolution of AMSU-A
to AMSU-B pixels. This approach is clearly non-optimal, but it was found adequate
for the purpose of this exercise.

4. The selected AMSU-B and AMSU-A pixels are radiance-averaged for all channels
and associated to the UTH values derived from the corresponding radiosonde25

profiles.

Once the filter criteria were applied to the radiosondes and corresponding AMSU pix-
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els, the dataset consisted of 895 cases.

3.2. Topology

The neural network algorithm is based on training a MLP with one hidden layer. The
number of input nodes is the number of inputs to the MLP: in this case the number
of AMSU channels used in the regression, plus the instrument looking nadir angles.5

There is one hidden layer consisting of a number of neurons with hyperbolic tangent
activation functions, followed by an output neuron with also a hyperbolic tangent activa-
tion function. This was preferred to the most commonly used linear activation function,
as it allows us to limit the output of the MLP to the output range given in the train-
ing set. This is done by linearly transforming the training outputs of the MLP into the10

range [−1,1] before the data is applied to the MLP. As the hyperbolic tangent function
returns values in the range [−1,1], the limitation to the original output range of val-
ues is achieved. The weights of the MLP are initialised following the Nguyen-Widrow
method (Nguyen and Widrow, 1990). Before training, inputs to the MLPs are also lin-
early transformed into the range [−1,1] to make the initialisation of the weights more15

effective.

3.3. Training algorithm

As stated before, the MLP is trained to provide a model of the probability distribu-
tion underlined by the training data. Here this will be the a posteriori distribution of
the retrieved state given a measurement, and the MLP will be trained to provide the20

most probable solution of this a posteriori distribution. Previously, a distribution for the
weights is set favouring small values. This is done to improve the generalisation ca-
pacity of the MLP, as small weights encourage smoother mapping less likely to over-fit
to the training set.

Finding the maximum a posteriori solution is equivalent to minimising the error func-25
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tion

β
L∑

l=1

‖u(xl ,w) − tl ‖2 + α ‖ w ‖2= βED + αEW , (1)

where {xl , tl }l=1···L is the training set of radiances (x) and corresponding humidity values
(t), L is the number of cases in the training set, w is a vector with the weights of the
MLP, u represents the output of the MLP, β and α are parameters setting a trade-off5

between both terms of the error function, and ‖ · ‖ is the Euclidean norm (see, e.g.
Bishop, 1995b).

The practical implementation follows the work of Foresee and Hagan (1997), where
the parameters β and α are estimated to produce a MLP with good generalisation.
Generalisation and model complexity are then regulated by the training algorithm and10

no other methods such as structural stabilisation or cross-validation are used here.
This makes the choice of the number of nodes in the hidden layer not too critical,
though a reasonable number has to be selected by taking into account the number of
MLP inputs. Here 2 to 6 nodes in the hidden layer are used, depending on the number
of MLP inputs.15

4. Results and discussion

4.1. Retrieval precision

MLPs with different AMSU channels as inputs were trained with the ECMWF training
set and then used to invert the radiances from the ECMWF validation set. The retrieval
error is the difference between the UTH from the dataset and the UTH derived from20

the MLP, and it is calculated as an absolute error, the differences in relative humidity
over water without any normalisation to true values or a mean value. The correlation
coefficient between both UTH values was also estimated.
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During the training it was observed that the division of the dataset into training and
validation sets slightly affected the results. This is unavoidable due to the limited num-
ber of cases available, making the sets to represent slightly different mappings due to
the specific data included after each random selection. In order to give representative
results, for each regression 10 independent trainings with different training and valida-5

tion sets were performed, reporting the results as a mean of the results obtained for
the individual trainings.

First, regressions with AMSU-B radiances were performed for different combinations
of channels. The results are given in Table 1. Using channel 18 and 19 clearly outper-
forms using only channel 18. This is not surprising. The humidity weighting functions10

in Fig. 1 show that channel 19 can provide valuable information at the pressure levels
where the UTH is averaged. Adding channel 20 further improves the retrievals, but
channel 20 is likely to be influenced by the surface. As no surface emissivity variability
was introduced in the training mapping, the results are likely to overestimate the real
retrieval precision.15

To further improve the retrieval performance, regressions including AMSU-A chan-
nels were performed. Having temperature information should help interpretation of the
humidity information. This is clearly shown in the regressions, also shown in Table 1.
Adding channels 6 and 7 brought the larger improvements. Looking at the temperature
weighting functions in Fig. 1, it is clear that both channels, specially channel 6, con-20

tribute with temperature information in the pressure range where the UTH was defined.
As with channel 20, channel 6 could be affected by the surface emission, so some
poorer results might be possible due to ground contamination.

The MLPs with the combination of all channels 6, 7, 8, 18, 19, and 20 only brought
a very marginal improvement, so the combination of channels 6, 7, 18 and 19 was25

judged sufficient to exploit the data. A scatter plot showing the correlation between
true (ECMWF dataset) and estimated (MLP) UTH values is plotted in Fig. 3. The
points scatter nicely around the diagonal, the best linear fit is plotted, deviating only
slightly from the diagonal. The attainable retrieval precision of this combination is ap-
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proximately 6%. This figure corresponds to regression with a global dataset, but no
clouds were included in the simulations. Although the microwave observations have an
advantage over infrared measurements concerning the impact of clouds, they are not
completely free from cloud effects, specially at tropical latitudes were strong convec-
tive clouds and thick cirrus clouds produce observable scattering of the AMSU radiance5

(Greenwald and Christopher, 2002). A poorer precision might be expected for these
scenarios, as the mapping uncertainties due to clouds will map into retrieval errors, but
its impact on the error budget remains to be quantified.

4.2. Retrieval approaches

The traditional way of exploiting these datasets is to do a linear regression between10

the radiance from the most sensitive channel and the logarithm of weighting function
averaged relative humidity (Soden and Bretherton, 1996). Here we use channel 18 for
the regression and the layer averaged humidity from our dataset, not weighted humidity,
in order to compare with the MLP results. The regression takes the form

ln
(

UTH
cosθ

)
= a + bTb, (2)

15

where θ is the nadir angle of the instrument, a and b are the regression coefficients,
and Tb is the channel 18 radiance. The regression coefficients are a=27.47 and
b=−0.097K−1, and the statistics of the retrieval error are given in Table 1.

Comparing with the MLP regression using channel 18 and the nadir angle, the linear
regression has a 1% poorer precision, with a larger bias. Even if the assumption of a20

logarithm relation between radiances and humidity is a reasonable approximation, the
MLP has the capacity of modelling a more complex relation, which should bring it closer
to the the true mapping between radiances and humidity. The differences in precision
get significantly larger when the MLP starts to use more inputs, showing the advantage
of the neural network approach in combining the information from other channels for a25

better exploitation of the data.
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Regression with the same ECMWF dataset and weighted humidity are reported in
Buehler and John (2004). The advantage of using weighted humidity instead of layer
averaged humidity for the linear regression approach is demonstrated there, as they
report a precision of 7%, much smaller than the 13% obtained here. However, as
commented in Sect. 1, we prefer the layer averaged humidity as it gives a more physical5

retrieval parameter, even at the cost of a poorer performance. Nevertheless, the MLP
regression with temperature channels outperforms by 1% in precision the results of the
linear regression in Buehler and John (2004), with much smaller bias. The advantage
of the neural network approach is also clear in this comparison, as the neural network
can retrieve a humidity parameter easier to interpret than the weighted humidity of the10

linear regression, with a slightly better precision.

4.3. Retrieval validation

The AMSU radiances from the Lindenberg dataset were inverted by the MLP with chan-
nels 6, 7, 18 and 19 trained with the ECMWF dataset. The statistics of the retrieval
error, difference between UTH from the radiosonde and retrieved UTH from the MLP,15

are also given in Table 1. The results are in good agreement with the precision given
by the ECMWF dataset. They have only 0.8% poorer precision, and slightly higher
bias. A higher error for the Lindenberg data can be expected, considering the problem
of co-locating radiosonde and AMSU observations, possible instrumental biases, and
that the synthetic training set assumed a constant surface emissivity and cloud-free20

conditions. The surface effects might have not had a large impact here, as the value of
surface emissivity used over land in the simulations seems to agree well with an esti-
mate of surface emissivity around Lindenberg area (Buehler et al., 2004b). The cloud
effects also seems not too critical here, as the differences between precisions for sim-
ulated and validated datasets are small. But it should be noted that scattering or liquid25

absorption from clouds at this mid-latitude site are not as critical as if the validation
were done, for instance, for more tropical conditions.

Examples of the retrieval performance are given in Figs. 4–6. The distribution of the
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retrieval error can be seen in Fig. 4. The error distribution is not far from a Gaussian
distribution, though some larger than expected underestimation of values is observed in
the left tail of the distribution. A scatter plot showing the correlation between radiosonde
and retrieved UTH values is plotted in Fig. 5. A simple least mean square error fit shows
that the regression is somehow overestimating low UTH values and underestimating5

high UTH values, a tendency that was already observed in Buehler and John (2004).
As this tendency is not so marked for the synthetic dataset (see Fig. 5), this behaviour
should be related to differences between both datasets. The radiosondes seem to
underestimate the UTH for very dry conditions, as shown in Buehler et al. (2004b), so
this partially explains the slope of the linear fit. But there is no indication of the opposite10

happening at very humid conditions, so the overestimation is more difficult to explain.
Finally, a time series showing the individual retrieval errors for the validation data in
the year 2001 in shown Fig. 6. The retrieved UTH values track reasonably well the
radiosonde UTH values, in accordance with the estimated retrieval error.

5. Conclusions15

A practical demonstration of the precision for retrievals of UTH from AMSU data when
using a non-linear multi-channel regression method has been presented. The retrieval
algorithm was based on neural networks trained with a global dataset of atmospheric
states and simulated radiances. For a better exploitation of the data, inversions includ-
ing both AMSU-A and AMSU-B radiances from selected channels were performed.20

The traditional way of exploiting this data only considers a linear regression with an
AMSU-B channel sensitive to tropospheric humidity. Here AMSU-A channels sensitive
to temperature were also included as inputs to the neural network, to help interpret
the humidity information. Also, the parameter to be retrieved was a layer averaged
relative humidity, instead of the weighting function averaged humidity of the traditional25

approach, in order to derive a more physical parameter from the ASMU data.
The attainable precision derived from the simulated dataset is approximately 6%.
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The retrieval bias was very small. Compared with previous precision figures reported
from the traditional approach on the same dataset, the neural network algorithm out-
performed the linear regression approach by 1% in precision, with the large advantage
of deriving a measurement of UTH which registration (altitude range where the average
or weighting is done) does not depend on the atmospheric conditions.5

This precision estimate was validated by retrieving UTH from a dataset of real AMSU
radiances over the mid-latitude radiosonde station of Lindenberg. The retrieved values
were compared with UTH values derived from radiosondes co-located with the AMSU
pixels. The agreement was good, with the precision deteriorating by less than 1%. This
was expected, not only because of the co-location errors, but because the synthetic10

training dataset will always be a limited representation of the real mapping between
radiances and humidity.

The training dataset used was very suitable for regressions, due to the global cover-
age and the consequent large atmospheric variability, but the corresponding simulated
radiances were limited in the sense of not including liquid absorption from clouds, scat-15

tering effects or surface emissivity variations. As the validation with Lindenberg data
proved, these are not severe limitation for mid-latitude scenarios, but for more tropical
conditions these factors cannot be neglected in the simulations. The 6% precision is
expected to deteriorate due to the new sources of errors, but to what extent remains
to be seen. Future work is aiming in this direction, building a more realistic training20

dataset to allow the validation of the precision estimates in other scenarios where scat-
tering effects, absorption from liquid clouds, or more changing surface conditions, could
have a larger impact in the measurements.
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Table 1. Statistics of the retrieval error for different combinations of MLP inputs. The MLPs
were trained with the ECMWF dataset and inverted independent cases from the same dataset.
Reported are the bias and standard deviation of the retrieval error in % (relative humidity over
water) and the correlation coefficient (r) between true and retrieved UTH values. The MLP
inputs also include the instrument nadir angle. Reported also are the same statistics for a
linear regression (lin-reg), and the MLP statistics for the retrieval of the Lindenberg validation
dataset. See text for details.

AMSU channels bias std r
ECMWF dataset

MLP
18 0.2 11.8 0.81
18–19 0.2 9.3 0.89
18–19–20 0.2 8.6 0.90
7–8–18–19 0.1 6.5 0.94
6–7–18–19 0.1 6.0 0.95
6–7–8–18–19–20 0.1 5.8 0.96

lin-reg
18 1.0 12.8 0.77

Lindenberg dataset
MLP

6–7–18–19 −0.3 6.6 0.91
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Fig. 1. Example of temperature and water vapour weighting functions of selected AMSU chan-
nels for a mid-latitude summer scenario (Anderson et al., 1986). Temperature weighting func-
tions correspond to the change in brightness temperature for a delta perturbation of 1 K in-
crease in temperature at one grid point (grid points separated approximatley 0.3 km). Water
vapour weighting functions are in fractional units, the change in brightness temperature for a
doubling of volume mixing ratio at one grid point.
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Fig. 2. Typical temperature (solid) and relative humidity (dashed) profiles from Lindenberg ra-
diosonde data. Note the vertical structures in the relative humidity profile. The UTH considered
here is the layer averaged relative humidity between 500 and 200 HPa.
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Fig. 3. Scatter plot for the true (ECMWF dataset) and retrieved (MLP with channels 6, 7, 18
and 19) UTH values. The solid line plots the best linear fit to the data.
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Fig. 4. Histogram of the retrieval error, difference between true (radiosonde) and retrieved
(MLP) UTH values for the Lindenberg dataset. The solid curve plots the Gaussian fit to the
estimated distribution.
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Fig. 5. Scatter plot for the true (radiosonde) and retrieved (MLP) UTH values from the Linden-
berg dataset. The solid line plots the best linear fit to the data.
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Fig. 6. Time series of individual UTH retrievals in the year 2001 from the Lindenberg dataset.
The figure shows how the true (radiosonde) values are tracked by the retrieved (MLP) values.
The true vales are plotted as a dotted line, the retrieved as a solid line.
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