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Abstract

We explicitly address the fundamental issue of member diversity in multi-model en-
sembles. To date no attempts in this direction are documented within the air quality
(AQ) community, although the extensive use of ensembles in this field. Common bi-
ases and redundancy are the two issues directly deriving from lack of independence,5

undermining the significance of a multi-model ensemble, and are the subject of this
study. Shared biases among models will determine a biased ensemble, making there-
fore essential the errors of the ensemble members to be independent so that bias can
cancel out. Redundancy derives from having too large a portion of common variance
among the members of the ensemble, producing overconfidence in the predictions and10

underestimation of the uncertainty. The two issues of common biases and redundancy
are analysed in detail using the AQMEII ensemble of AQ model results for four air pol-
lutants in two European regions. We show that models share large portions of bias
and variance, extending well beyond those induced by common inputs. We make use
of several techniques to further show that subsets of models can explain the same15

amount of variance as the full ensemble with the advantage of being poorly correlated.
Selecting the members for generating skilful, non-redundant ensembles from such sub-
sets proved, however, non-trivial. We propose and discuss various methods of member
selection and rate the ensemble performance they produce. In most cases, the full en-
semble is outscored by the reduced ones. We conclude that, although independence20

of outputs may not always guarantee enhancement of scores (but this depends upon
the skill being investigated) we discourage selecting the members of the ensemble
simply on the basis of scores, that is, independence and skills need to be considered
disjointly.
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1 Introduction

Geophysical modelling nowadays relies, among other techniques, on ensemble meth-
ods to improve predictive skills, assess performance, and quantify uncertainties. This
is particularly the case for atmospheric sciences, where climate and air quality models
are often treated as ensembles of an arbitrary collection of models results belonging5

to the same family, sharing similar structure and resolution (“ensembles of opportu-
nity”, as defined, e.g. by Tebaldi and Knutti, 2007). Just like human beings normally
consult a number of sources prior to making a decision (see for example the “trillion
dollar garden party” analogy adopted by Knutti, 2010), the advantage of treating the
information from several sources into ensembles relies on the fundamental assump-10

tion that information coming from multiple sources allows an estimation of the quality of
the former, in line with the “Principle of multiple explanations” proposed by the Greek
philosopher Epicurus (341 BC–270 BC) which says that for an optimal solution of a con-
crete problem we have to take into consideration all the hypotheses that are consistent
with the input data. The fundamental aspect that makes multiple estimations a better15

one is the fact that the sources of the former must be independent. In our view, multi-
model (MM) ensembles practices, as they have been developed over the years, lack
of this fundamental consideration due to the fact that models are phenotypically simi-
lar (Potempski and Galmarini, 2009) and need therefore caution in their applications.
Serving the scope of removing misconceptions and ambiguous interpretations of the20

paper, we define here:

– Independence, a formal property, when the joint Probability Distribution Func-
tion (PDF) of two or more model results is derived from the product of single
PDFs (Cover and Thomas, 2006). This is the rigorous definition of independence,
though the joint PDF is difficult to estimate in practice;25

– Un-correlation, referring to the situation when model’s outputs are linearly in-
dependent. This is the most applied proxy to independence. The outputs of
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independent models are un-correlated, but un-correlation does not guarantee in-
dependence;

– Diversity, a qualitative property. Models are said diverse when they are devel-
oped starting from different conceptual basis and are based on different causal
assumptions. Their outputs (and errors) can be correlated. Proving diversity has5

the same practical difficulties than proving independence (in general models are
the numerical coding of fundamental physical processes, and it is likely that all
models have at least this in common). Similarity is the opposite of diversity, and
can be defined when models are developed from the same conceptual basis or
share a number of elements that make them similar. Outputs and errors of similar10

models are expected to be highly correlated;

– Redundancy, when two or more models, dependent or not, have correlated out-
puts. It is more informative than correlation as redundancy is related to the amount
of explained variance (Legendre and Legendre, 1998). In the case of mutual cor-
relations of model pairs, the redundancy reduces to the coefficient of determi-15

nation, R2, the square of the correlation coefficient. Redundancy is the primary
effect of model similarity, and applies to both model outputs and their errors.

The lack of independence of members in ensemble treatment is not at all new. De-
spite the empirical evidence of the superior performance of average of models in some
cases (Fiore et al., 2009; van Loon et al., 2007; Vautard et al., 2009; Pierce et al.,20

2009; Galmarini et al., 2004; Potempski et al., 2008), it is known that models share
similar deficiencies. Several studies have demonstrated that similarities of model er-
rors are statistically significant beyond doubt, thus questioning the effectiveness of
“blindly” combine models into ensembles. Nonetheless, the problem of member (and
error) similarities has received little attention by the climate modelling community, as25

recently recognized by Pirtle et al. (2010), and even less by the air quality community,
where the theoretical work by Potempski and Galmarini (2009) and the attempts by
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Riccio et al. (2012) and Solazzo et al. (2012b) remain the only studies, to the best of
our knowledge, dedicated to the issue.

Independence of models can be sought in the form of different structures (proportion
of parameterisations shared by the models), or, from an information science point of
view, as the possibility to express the combined error PDF in terms of product of sin-5

gle PDFs (Abramowitz, 2010; Potempski and Galmarini, 2009). Ideally, perturbation of
model parameters and associated uncertainty on model output could serve this scope,
as suggested by Tebaldi and Knutti (2007), but this is often impractical. The strategy
common to the (few) studies that directly investigate model diversity consists in attribut-
ing model independence only from the analysis of the output they produce. In partic-10

ular, Potempski and Galmarini (2009) showed that, by relaxing the condition of model
independence to that of model associativity, a robust theoretical framework could be
built from which precise mathematical formulations could be drawn. Associativity is
measured by the covariance or by the correlation of pairs of model outputs. However,
caution is needed as “it is possible that two models could agree with respect to out-15

puts despite being based on different casual assumption” (Pirtle et al., 2010). Thus,
when looking at the correlation of model outputs as metric for defining independence,
different models producing the same output would be erroneously considered as de-
pendant. Further to that, the similarity of the results from two independent models is
a valuable information that tells about model accuracy and uncertainty. Un-correlation20

of the outputs is a necessary but not sufficient condition to guarantee independence.
In the impossibility of an a-priori assessment of ensemble members’ independence,

model biases are excellent parameters to investigate the ensemble member inter-
dependence. Models are intrinsically wrong due to their numerical nature, imprecise
input data and limited understanding of the atmospheric chemical-physical processes.25

What is important is that models have independent systematic errors so the biases
cancel out when combining models into ensembles. Should that not be the case, com-
bining more and more similar models into an ensemble is not a solution, results do not
improve! Moreover, a MM ensemble for which all biases have the same sign and value
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may give the false impression of accuracy, which is often confused with precision. The
agreement of models to precisely predict the same (biased) result is confused with
accuracy of models which implies homogeneously distributed biases around measure-
ments (Potempski and Galmarini, 2009).

A further fundamental aspect is that of the uncertainty of the measurements used5

to calculate the bias, to evaluate the models, and/or to weight the ensemble members.
Annan and Hargreaves (2010, 2011) have shown that, due to the uncertainties in the
measurements, model’s deviations from the observations can be strongly correlated,
even in case of independent models. Thus, the independence of models does not
necessarily translate into independence of their deviations from observations. At the10

same time, similar models have correlated errors but correlation of errors does not
imply similarity of models. Furthermore, the conceptual assumption that models are
drawn from a distribution centered around the truth (meaning that measurements and
model output are not biased, or biased-corrected) might lead to wrong conclusions as
recently reported by Annan and Hargreaves (2010, 2011).15

To date, the link between ensemble accuracy and diversity of members is still un-
clear, the reason being that there is no unique way to decompose the ensemble’s error
in terms of bias and variance (Potempski and Galmarini, 2009). This is the funda-
mental problem of the ensemble techniques, whose error obeys to the bias-variance-
covariance decomposition (e.g. Brown et al., 2005). The trade-off between bias and20

variance involves indeed three terms, and there is no way to simply minimize the co-
variance without affecting other component of the error. The error of the ensemble
mean increases linearly with the correlation of the members through the co-variance
term. Techniques promoting diversity (or penalizing commonalities) do exist (negative
correlation and other, Liu and Xao, 1999) and are an active area of research in the field25

of information science, though they are not the goal of this study.
The Latin expression Pauci ex tanto numero is extracted from the De Bello Gallico

(The Gallic wars, book 7, chapter 88) by G. J. Ceasar (100 BC–44 BC) and refers to
the battle of the roman army against the Gauls. The complete citation reads “pauci
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ex tanto numero incolumes se in castra recipient” and that translates “few [Gauls] from
a large number returned safely back to the camps”. More peacefully we decided to take
the first part of the citation to stress the fact that only few from a multitude of models
will be the ones that will make the ensemble result and will metaphorically survive the
treatment in the end. Unfortunately the Gauls shared a different destiny.5

The paper is structured as follow. In Sect. 2 the scopes are highlighted and the
dataset and methodology are presented. In Sect. 3 we introduce an appropriate metric
that allows detecting similarities beyond the overarching ones, and use this metric to
quantify the level of redundancy of the dataset. To reduce the redundancy we then
apply several techniques of dimension reduction (Sect. 4), which serve the scope of10

identifying the minimum number of elements necessary to explain the variance of the
observational data. Once the dimension of the minimum set is established, we apply
a number of member selection criterion (Sect. 5). The methods of member selection
have the purposes of identifying the members (or the weights) that (i) have poorly
correlated errors (thus non- redundant) and (ii) whose ensemble mean is skilful in15

terms of accuracy and precision. Conclusions are drawn in Sect. 6.

2 Scopes, data and method

We want to address here some fundamental questions: to what extent an ensemble of
different models put together on the grounds of opportunity and convenience is indeed
producing a better result? How can one quantify the information in MM ensembles that20

is necessary and relevant for the final result? Answers to these questions were already
anticipated by Potempski and Galmarini (2009), where the angle of attack was more on
whether the composition of the ensemble could be investigated a-priori. A theoretical
framework and conditions were indeed identified but cannot be put in practice for all
cases. Solazzo et al. (2012b) clarified the necessity of a posterior screening of the data25

and heuristically identified a possible methodology. In this paper we analyse various
techniques available to address the following issues:

4995

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/4989/2013/acpd-13-4989-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/4989/2013/acpd-13-4989-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 4989–5038, 2013

Pauci ex tanto
numero

E. Solazzo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

1. Determine the ensemble redundancy: i.e. the minimum set of members that ex-
plains the variance of the observations and maximise the accuracy;

2. Reduce the ensemble redundancy: if two models, or their errors, are highly cor-
related one can be expressed in terms of the other by a simple scaling factor. If
many redundant models are combined together, there would be loss of valuable5

information due to dependant biases.

The fundamental idea is thus to investigate different methodologies viable to achieve
the above mentioned goals and verify the pros and the cons of each of them trying
to produce a generalized concept and methodology applicable to any other kind of
ensemble and variable.10

For our analysis we will investigate the correlation between errors produced by AQ
models run by twelve groups in the context of the Air Quality Modeling Evaluation
International Initiative (AQMEII) (Rao et al., 2011; Galmarini et al., 2012). For all of the
analyses presented in this study we use hourly time series for the months of June July
August (JJA) of the year 2006 of the gaseous species of O3, CO, NO2, SO2. We apply15

the analysis to two distinct regions of Europe:

– region 1 (−10, 5)◦ W; (42, 60)◦ N, including the UK, France, northern Spain and
Belgium;

– region 2 (5, 24.5)◦ W; (46, 60)◦ N, the continental Europe, including Germany,
Poland, Austria, and Czeck Republic.20

The modelled and observed time series have been spatially averaged over the region 1
and 2 defined above. These two regions have been the subjects of in-depth investiga-
tion in other AQMEII studies (Solazzo et al., 2012a,b; Vautard et al., 2012). The num-
ber of receptors – by species – in each region is reported in Table 1. The participating
models are summarized in Table 2. Details about the model settings and operational25

evaluation against observational data can be found in Solazzo et al. (2012a,b) and Vau-
tard et al. (2012), with the exception of the GEM-AQ model (Côté et al., 1998; Kaminsli
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et al., 2008), which did not take part of the previous AQMEII analysis. The AQMEII
ensemble of models is indeed a genuine ensemble of opportunity, with a good level
of diversity in terms of AQ models and meteorological drivers. Emission and boundary
conditions are, however, largely shared, making the distribution of model errors neither
systematic nor random. The history of regional scale modelling has also forcibly pro-5

duced a number of common elements to all the models, which should be considered
an a-priori contaminating element of the ensemble results.

Since an accurate estimation of multivariate a PDF is hard to achieve due to the
computational cost it entails even for a small number of models (Peng et al., 2005), we
decide to focus on quantifying the amount of information two models share, measured10

by the redundancy which can be computed more easily in this case. Given the output
from two models, x,y organized as a two-columns table, said Σxy their covariance
and p(·) their joint PDF, the redundancy can be defined either through the redundancy
index ρI(x,y) (Stewart and Love, 1968), which is a metric for quantifying the portion of
variance already being accounted for by other members of the ensemble (Eq. 1), or by15

the mutual information among models I(x,y) (Peng et al., 2005; Ding and Peng., 2005)
(Eq. 1):

ρI(x,y) =
trace(ΣxyΣ

−1
yyΣyx)

trace(Σxx)
(1)

I (x,y) =
∫ ∫

p (x,y) log
p(x,y)

p (x)p(y)
dxdy (2)

20

Eq. (1) is related to the prediction of x by y by multiple linear regression. ρI(x,y) is
a weighted average of the squared multiple correlation coefficient between all pairs of
variables of x and y. It is a measure of the quality of the prediction of x by y and
represents the proportion of explained variance in the regression of x by y (see e.g.
Youness and Saporta, 2010). In the case of x and y one-dimensional vectors ρI re-25

turns R2, the squared correlation coefficient. The mutual information in Eq. (2) is more
complex and involves the PDFs of multivariate variables. In practical terms I is the level
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of repetition of two datasets, and the PDFs are computed as the frequency of unique
elements belonging to both x and y. Details about the implementation of Eq. (2) are
given in Peng et al. (2005) and Yoon and Kim (2009).

3 A metric for model similarities and comparability of errors

Common biases are difficult to detect, especially for AQ models where the variance of5

the noise can be comparable with that of the signal, in particular for low concentrations.
The AQMEII database includes results from ensemble members sharing meteorologi-
cal drivers, emissions, chemical boundary conditions (Table 2). It was proven that these
input fields introduce systematic biases in the model results (Solazzo et al., 2012a,b).
A simple error metric would not be adequate to detect any type of underlying common-10

ality other than these overarching biases. For this reason we have to find out a metric
that (a) explores hidden similarities, i.e. those underlying common modules and pa-
rameters in the model, and that (b) is robust enough to be used under a number of
scenarios. Having in mind that no wonder metric exists and that different metrics pro-
duce different results (Gleckler et al., 2008), we opted for the metric dm proposed by15

Pennel and Reichler (2011) (hereafter referred to as PR2011), which explores the bi-
ases of models and removes from each model the dominating similarities, thus making
individual model errors more dissimilar and unveiling “hidden” trends that are masked
by overarching commonalities.

Let us start by defining the standardized deviation of models (mod) from observations20

(obs) for the species of as:

ei ,m,s =
modi ,m,s −obsi ,s

σs
(3)

where σs is the standard deviation of the observed chemical species and i = 1, . . . ,N
is the index of the time series, m is the model index and s that of the species being
considered (O3, CO, NO2, SO2). The normalisation in Eq. (3) makes more comparable25
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the errors for different chemical species and units. We now define the MM-error pattern
(MME) as

MMEi ,s =
1
M

M∑
m=1

ei ,m,s (4)

which contains the “bulk” of bias among models. To eliminate the dominating model
similarities, we remove from all model’s errors the portion of MME associated with5

each individual model error. Accordingly to PR2011, the removal of the portion of MME
relevant to an individual model can be accomplished by calculating the difference dm
between the standardised model error and the weighted standardised MME, with the
weight being the correlation coefficient R between the m-th model error and MME:

dm,s = e∗
m,s −R ·MME∗

s (5)10

where the “*” indicates standardised vectors, calculated, for each time series, by sub-
tracting the corresponding mean value em and dividing by the standard deviation σem
(we have now get rid of the index i for a more compact notation). Note that the
normalisation serves the only purposes of making the results for different species
inter-comparable, as the correlation is bias- and normalisation-independent. Also note15

that the normalisation makes the correlation and covariance interchangeable. As said
above, removal of MME makes model errors more dissimilar and uncovers “hidden”
trends that are outweighed by overarching commonalities. For example, corr(e∗

FR3,O3,
e∗

FI1,O3) = 0.73, while corr(dFR3,O3, dFI1,O3) = 0.36. The subtraction of the correlated por-
tion of the bulk error from the individual error emphasizes the real differences among20

models. On the other hand, in the case of two highly similar models, such as DE2 and
US4 the correlation among e∗

i is approximately the same as that among the di .
We provide two graphical examples of the efficacy of dm vs. em. The correlation

between individual model error and the MME (corr(ei , MME)), averaged over all mod-
els as a function of variable is reported in Fig. 1. The correlations are highly positive,25
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demonstrating the extent of large commonalities, and also show dependence on the re-
gion (correlations for SO2 are quite different over the two regions). In Fig. 1 the correla-
tion corr(di ,dj ) is also shown, averaged over all model pairs. The values for the curves
for the two regions are very similar and small, indicating that the effect of MME has been
largely mitigated. By removing the MME, model errors become region-independent, as5

shown by the similar curves of corr(di ,dj ). In Fig. 2 we report the associativity tree (the
dendrogram, see details in Sect. 4.4) of cov(di ,dj ) and cov(ei ,ej ) for the joint time se-
ries of the four pollutants in region 2. While em-associations are based on the species
(model errors for each species are the most correlated), dm-associations are drasti-
cally diverse, and unexpected patterns emerge. Models are grouped by the bias un-10

derlying modules and/or parameters strictly associated with the physics and chemistry
of a given compound; the diversity for dm is higher with respect to the em-dendrogram
and the number of disjoint clusters is, at least, of six (distance level of ∼0.9), while four
em-clusters were identified (at an even smaller distance of ∼0.7).

3.1 Ensemble redundancy through error analysis15

In Fig. 3 a graphical representation of the covariance cov(di,dj)is shown for the species
of the European region 2 (plots for region 1 are omitted for brevity). Mutual model
covariance is indicated by the positioning of the model codes in black with respect to
models on the horizontal axis. Because the covariance matrix is symmetric, we display
only half of it, for clarity. The model codes in red indicate the variance (cov(di ,di )). In20

these plots we also report

– the redundancy measured by R2 (blue crosses), the square of corr(di ,dj ). R2

represents the amount of variance already explained by the regressor model and,
for model pairs, corresponds to the redundancy index ρI ;

– the mutual information I (vertical segments in orange).25

5000

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/4989/2013/acpd-13-4989-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/4989/2013/acpd-13-4989-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 4989–5038, 2013

Pauci ex tanto
numero

E. Solazzo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Because of the normalisation of the metric dm, the covariance and redundancy can be
expressed on the same scale, between −1 and 1.

Depending on the species, the mutual relationships among members vary greatly,
proving that for AQ models many factors (chemistry and dispersion modules, meteo-
rology, grid resolution) contribute to the final outcome. This was also found to be the5

case for climate models (PR2011; Annan and Hargreaves, 2010). Overall, errors do
not seem to co-vary more in the case of two instances of the same AQ model (DE3
and UK2 for example) than for different combination of meteo-dispersion models (FR4,
DE1 for O3 and CO; HR1 and UK2 for SO2; and many others). The sharing of routines
specifically designed for certain pollutants and process could be a possible cause for10

this. It is often the case that model developers borrow entire model components as their
use was demonstrated to be an improved, or sometimes the only, solution for simulat-
ing a process. For example, the ISORROPIA module (Nenes et al., 1998) for inorganic
pollutants, the resistive scheme by Zhang et al. (2001) for dry deposition, the scaveng-
ing parameterisation for wet deposition are all examples of shared routines among the15

majority of the AQMEII models (see Table 1 of Solazzo et al., 2012a).
Because the redundancy measured by R2 is simply the ratio of the squared covari-

ance to the variance, models with a large spectrum of covariance are also the more
redundant (DK1 and DE1 for O3; US3 and US4 for CO; DK1 and DE3 for SO2; NL1,
DE2, US4 for NO2). The redundancy measured by the mutual information is often in20

line with that of R2, although in some cases higher values are estimated. For example
DE2 and US4 (same models run by different groups), but also US3 for CO and NO2,
FR4 and PL1 for SO2, due to I being calculated as a raw frequency count, whilst R
derives from a regression analysis.

A further aspect of error redundancy is the amount of the observed variance ex-25

plained by the MM ensemble. Following the methodology proposed by Annan and Har-
greaves (2011) we projected the observation anomalies onto the principal components
(PCs) of the covariance matrix of the deviation of the ensemble of models around the
MM mean. We found that just the first (or the first two for ozone) component already
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exceeds the observed variance. When all components are taken into account, it re-
sults that the MM mean for the EU region 1 (region 2) can explain as much as 1.2
(1.7), 2 (4.8), 2.1 (9), 7 (18), times of the observed variability for O3, CO, SO2, NO2,
respectively (the large difference between region 1 and 2 for NO2 and SO2 is due to
the much smaller variance of the observed values of these two compounds in region5

2 (∼ 4 and 12 times smaller for NO2 and SO2, respectively)). This case is depicted as
a “wide ensemble” by Annan and Hargreaves (2010). A wide ensemble can be inter-
preted also in terms of lack of reliability with a rank-histogram (Talagrand et al., 1998)
exhibiting a “central dome” pattern: the ensemble performs poorly in predicting less
frequent episodes (both high and low concentrations) and lacks sharpness. Given the10

massive application of AQ models in regulatory applications and the more and more
stringent AQ targets, the detected overconfidence can cost considerably. Dealing with
a wide ensemble implies that there is a substantial amount of redundant variability al-
ready accounted for by other models. One plausible explanation is that the ensemble
size, constrained by the available members, is simply too large.15

4 Quantifying ensemble redundancy through dimensionality

The foremost advantage of reducing the dimensionality of large datasets by discarding
redundant information is that lower dimensionality means reduced computational costs
and noise, improving the accuracy of the ensemble. Data mining and data reduction
are active areas of research in various fields, from genetics to ecology to machine20

learning. There exist a plethora of methods aiming at detecting commonalities, most
of which developed ad-hoc for a specific application, such as Independent Component
Analysis (Kong et al., 2008), Maximum-Relevence-Minimum-Redundancy (Peng at al.,
2005), the methods reviewed by Grömping et al. (2007), and others. Though, is seldom
the case that a method developed by a community passes the barrier to be adopted in25

a field other than the one it was originally developed for.
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Here we explore some analytical techniques proposed in various flavours in the cli-
mate modelling community. Note that the outcome of dimension-reduction methods is
simply a number, that is, the dimension of the subspace sought. Selecting the members
belonging to that subspace is a different problem, and is addressed in Sect. 5.

4.1 Eigenvalue methods5

We calculated the effective number of models (also known as the effective number of
Degree of Freedom) sufficient to reproduce the variability of the full ensemble (the MM
ensemble generated with all available members) as:

Meff =

( M∑
k=1

λk

)2

M∑
k=1

λ2
k

(6)

with λ eigenvalue of the corr(di ,dj ) matrix. Theoretical derivation of Eq. (6) can be10

found in Bretherton et al. (1999). Under the assumption that the modelled and observed
fields are normally distributed, the fraction of the overall variance expressed by the first
Meff eigenvalues is of 86 % (Eq. 8 of Bretherton et al., 1999).

Results for Meff are reported in Table 4. The sum over all eigenvalues at the nomina-
tor of Eq. (6) expresses all the variability that is attainable in a M-dimensional vectorial15

base of orthogonal vectors (M = 13). By construction
M∑
k=1

λk =M and only if all eigen-

values were equal to unity, and in this case Eq. (6) would return Meff =M, that is all
directions are equally important. In reality there exist eigenvalues that are larger than
unity, and consequently other that are less than unity, and since these are squared
(denominator of Eq. 6) the contribution of the former outweighs that of the latter so20

that Meff <M approximately in the amount of the number of eigenvalues larger than
unity (Guttman (1954) and Kaiser (1960) indeed proposed to adopt this as rule for
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determining the number of factors to retain, supposing that it makes no sense to retain
components that explain less variance than the original standardized variables). Thus,
we can think of replicating the full variability of the M-members by an Meff-dimensional
subset of these in a vectorial space whose base is generated by the eigenvectors of
the largest eigenvalues. On the other hand, if all error fields were similar, only one5

eigenvalue would be non-zero and Meff = 1.
By applying Eq. (6) to the datasets of model errors (corr(di ,dj )) we find that Meff is

in the range 5 to 6.5 (Table 3). If the MME term is retained (that is, Meff is calculated
from corr(ei ,ej )) we find much lower values for Meff (Table 3) as consequence of most
of the similarity among models being expressed by the MME term.10

4.2 Principal Components Analysis (PCA)

PCs analysis (PCA) (Jolliffe, 2002) is probably the most well known and wide-spread
unsupervised dimension-reduction technique. It is based on eigenanalysis to select un-
correlated directions associated with the largest variances. Relationships between PCA
and clustering (Ding and He, 2004), redundancy (Jolliffe, 2002), Multi-Dimensional15

Scaling (Groenen and van de Velden, 2004), and regression analysis (Jong and Kotz,
1999) have been documented, proving the versatility of this method. For example, the
ratio of the sum of leading eigenvalues to the sum of all eigenvalues obtained by means
of PCA is proportional to the ratio of the regression sum of squares (SSreg) (explained
or signal variance) and the total sum of squares (SStot) (the total variance) in regres-20

sion analysis. This latter ratio is the coefficient of determination R2, the redundancy
index (Jun et al., 2008).

The relationship 6 provides an analytical estimate of the dimensionality of the sub-
space of models to produce the information of the whole ensemble. Graphically, the
“scree test” (Cattell, 1966) is often applied in problems of dimension reduction. We first25

produce a plot of the number of dimensions vs. quantities related to the amount of vari-
ability or independence, measured by appropriate metrics. Then, we use the “elbow
criterion” by seeking the point at which the curve levels off to a plateau. To produce
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a scree plot from Eq. (6), we look at Meff as a dependent variable of N, the number
of models. Curves are reported in Fig. 4 for the four pollutants and the two European
regions. The variability scale is calculated as the cumulative variability, for each N. As
for Table 3, curves have been derived from corr(di ,dj ) and from corr(ei ,ej ). We notice
that in both sub-regions Meff from corr(ei ,ej ) is much lower and that variability above5

80 % is reached by the first 2–3 leading eigenvalues. As noted by PR2011, the con-
cavity of the curves over N indicates that the addition of more models to the ensemble
is not compensated by a linear increase in the overall information. This is a straight
consequence of commonalities among members: chances that a new member shares
features with an existing one increases as the ensemble size does. This would not10

happen in the case of independent models.

4.3 Multi-Dimensional Scaling (MDS)

Another method, among the many, to create a scree plot is to use Multi-Dimensional
Scaling (MDS) algorithm (Borg and Groenen, 2005) for determining the relationships
between model errors. MDS basically searches for a spatial configuration of the objects15

such that the mutual Euclidean distance among them matches their proximities as
closely as possible. Here, we use the corr(di ,dj ) matrix as proximities. The degree
of correspondence between the distances among points implied by MDS map and
the input matrix is measured by a suitably defined stress function, the minimisation of
which also provides information about the dimensionality of the subspace covering the20

whole variability of the data. Avoiding detailing too much, in MDS theory the Euclidean
distance si j between two rows of a matrix X is defined as:

si j =

( p∑
k=1

(
xik −xjk

)2)1/2

(7)
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The objective of MDS is to find the elements of X minimising the difference between si j
and di j (the elements of the proximity matrix corr(di ,dj )):

σ2(X) =
n∑

i=2

i−1∑
j=1

wi j (di j − si j (X))2 (8)

σ2 is the raw stress function (with wi j non-negative weights, set to unity). Minimisation
of the stress function is not trivial, and thus numerical iterative methods are employed5

(Borg and Groenen, 2005). By running the minimisation problem for different values of
p in Eq. (8), we plot the stress against the dimension. Results for the European region
2 are reported in Fig. 5 (results for region 1 are very similar and therefore not shown).
The “elbow” in the scree plot indicates when more dimensions only yield a negligible
improvement in terms of stress. The trend of the curves in Fig. 5 (similar for all pollu-10

tants) indicates four as the number of independent components that best fit the data,
i.e. about one third of the whole sample size.

4.4 Hierarchical clustering (HC)

Given a data set of M instances X = {X1,X2, · · · ,XM}, a clustering algorithm generates
m disjoint clusters based on a distance metric, represented as Π= {π1,π2, · · · ,πr} .15

Each clustering solution πi is a partition of the data set X into K i (i = 1, . . . ,r) disjoint
clusters of instances, represented as πi = {ci

1,ci
2, . . . ,ci

K i }, where ∪kc
i
k = X (Fern and

Brodley, 2004). A typical output of HC is a dendrogram or associativity tree, where
redundant models are gropued together and the level of similarity among groups is
reported based on the distance between the elements of the input matrix. Here, we use20

the Euclidean as distance metric and the corr(di ,dj ) as input matrix. Applications of
HC and dendrogram representation for air quality ensemble modelling are documented
in Riccio et al. (2012) and Solazzo et al. (2012b).

A fundamental challenge of the HC method is that different grouping is obtained by
slightly changing some of the options underlying the HC algorithms (Fern and Brodley,25
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2004). The agglomerative method, the distance metric, the number of clusters, and the
cut-off distance are aspects that need to be determined case by case. In particular, the
cut-off (the threshold similarity above which clusters are to be considered disjointed)
determines the dimension of the sub-space of non-redundant models and is decided
by visual inspection of the dendrogram. After numerous tests, in this study the un-5

weighted pair-group average was selected as agglomeration method (Murtagh, 1984)
with the cut-off value set between 0.10 and 0.15 (1 being the maximum similarity) for
all pollutants in both regions, which produced five disjointed clusters (Figs. 6) for all
species. The cut-off value is chosen by looking at the structure of the dendrogram: it is
convenient to break structures that are obviously disjointed, and within each structure10

avoid separating highly connected groups, or groups of only two models. Looking at the
dendrogram for ozone for example, the two main branches at the top further split into
two more at a relatively low similarity level, suggesting a plausible way to proceed. At
a ∼10 to 15 % similarity level five clusters are detected for all species in both regions.

4.5 Comparing the different methods: discussion15

Given the normalisation implied by the metric dm, we found Meff to range between 5.2
(ozone in region 2) and 6, with only NO2 and CO in region 1 requiring 6.5 components
(Table 3). Meff based on dm is between 1.5 (SO2 region 2) and 5 (CO region 1) times
higher than the values based on em (values in parenthesis in Table 3). The variabil-
ity of Meff among species depends on the heterogeneity of processes and sources20

within the two regions, as well as on the receptors coverage. Despite having removed
the commonalities among models encapsulated by the MME, we still found a level of
redundancy above 50 %, being Meff less than half of the size of sample.

As said above, results of HC analysis indicates that at a ∼15 % similarity level five
clusters are detected. The between-classes variance (weighted average of the mean25

distance of each cluster and the mean distance of the whole dendrogram) detected by
the five components generated by the HC method is between 70 % and 80 % of the
total variance (depending on the variable), which would be totally reproduced only in
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the case of a cut-off level at the root of the dendrogram tree (one cluster only). On the
other hand, the within-classes variance (average distance within each cluster) is an
estimate of the redundancy, as it is proportional to the cluster-averaged coefficient of
determination R2 (Moesa et al., 2005). This result is in line of that obtained by applying
PCA: Meff in that case explained 86 % of the total variance (Sect. 4.2) with a slightly5

larger number of models. Thus the two techniques are consistent for similar amount
of variance. Dimensionality through MDS and the minimization of the stress function
has returned a number of components of four. In general though, MDS fit indexes
are descriptive and do not always provide an absolute criterion for selecting the best
dimensionality (Tinsley and Brown, 2000).10

Summarising, the ensemble of models is highly redundant even after having removed
the MM error. It is possible to reduce the full datasets of more than 50 %, down to five to
six components. As discussed next, this allows reducing noise and improving accuracy.
The methods adopted give consistent results.

5 Identifying the members of the reduced ensembles15

As many as
∑

i=1,m

(M
i

)
subspaces with dimension smaller than m are identified by the M

members (M is the total number of available members). It is therefore difficult to univo-
cally identify a subset of members systematically outscoring all the others for a large
number of skills. Furthermore countless methods for selecting members have been de-
veloped by different communities, testifying that available methods are “fit for purpose”20

rather than of general applicability. Ideally, once a skill or feature is identified, one could
select the best performing ensemble by extracting from the group of M members only
those m that are individually performing at best when compared with the measure-
ments. However, combinations of individually good models do not necessarily produce
a good ensemble for a given feature: the m best models are not necessarily the best25

m (Cover, 1974). Although the selection of members based on performance might be
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justified in some cases (e.g. McSweeney et al., 2012), we discourage this approach
where no assumptions about the redundancy of the information is provided (Solazzo
et al., 2012b).

A number of data reduction and member selection/weighting techniques exist that
could be useful to our goal, some of which have been already discussed in Sect. 4 and5

that will be to adopted reduce the ensemble. Further to that we will compare the new
ensembles to the full ensemble mean, taken here as benchmark. Member selection
techniques applied are:

– Hierarchical Clustering (HC);

– Multi-Dimensional Scaling (MDS);10

– minimization of the Mean Square Error (minMSE);

– Principal Component Analysis (PCA);

– Correlation-Adjusted (marginal) coRrelation (CAR).

Not all of the methods above take into account the redundancy of members. The first
two (HC and MDS) provide ensembles of low-redundant members; the minMSE tech-15

nique is a heuristic method based on the minimisation of the error and thus selection
is skill-driven (Solazzo et al., 2012b; Riccio et al., 2012; Knutti et al., 2010); PCA pro-
vides weights to the models along the directions of maximum variance; finally CAR
is a score-based member selection method developed by Zuber and Strimmer (2011)
that is hybrid of marginal correlation and regression analysis and is shortly discussed20

in Sect. 5.5.1.

5.1 Hierarchical clustering (HC)

With reference to Fig. 6, members from each cluster are selected according to the
individual model scores for bias: the model ranked best for bias, among the models of
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each cluster, was the one chosen to represent the cluster. The bias was selected since
it is the metric underlying dm, the metric used to build the dendrogram. The members
are reported in Table 4. Other options have been taken into account, such as selecting
the model closer to the centre of each cluster, and the model whose MSE with respect
to the cluster’s centroid is minimum. However, the reduced ensembles generated with5

these selection criteria were outperformed by that of members of minimum bias (see
Sect. 5.5.2) and are therefore not shown.

5.2 Multi-Dimensional Scaling (MDS)

In MDS the distance among models can be used as proxy for independence, provid-
ing the visual aid needed for interpreting the grouping and selecting the more diverse10

member. MDS transforms the correlation between members into a reciprocal distance,
allowing a visual inspection of the mutual model positioning into a two-dimensional
plane. The reciprocal distance among members is the only information this methodol-
ogy offers. Application of MDS for member selection in climate ensemble modelling can
be found in Jun et al. (2008); the model space of Abramowitz (2010) is an extension of15

MDS, where the observations are treated as a de-facto model. Figure 7 summarises
the mutual model distance in 2-D for the species of region 2.

5.3 Minimum error (minMSE)

Solazzo et al. (2012b) show that the ensemble mean minimizing the MSE has also su-
perior skills with respect to the full ensemble, both in terms of variance and, of course,20

error. We ran similar analysis for the present datasets. Application of this analysis
yields (i) the number of dimensions to retain (the dimension of the subset), and (ii)
the members to retain (the component of the subset, reported in Table 4). Finding the
subset of models minimising the MSE is a heuristic practice based on the evidence
that a MM ensemble whose mean minimize the error is likely to have small covariance25

(from the variance-bias-covariance relationship, minimum error is more probable from
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un-correlated members, so that the covariance term is null). Knutti et al. (2010) and
Annan and Hargreaves (2010) also explained the behaviour of the curves of MSE ob-
tained by randomly sampling the ensemble of members. In particular, when the mean
of the MSE distribution decays proportionally to σobs(1+1/m)0.5, as in the present
study, indicates that observations and model results are extracted from distributions5

having the same variance (the authors refer to this case as exchangeable or indistin-
guishable ensembles). Moreover, the fact that the MSE, no matter how large is M, can
never reaches zero, is a consequence of the variability affecting the observations (from
the error decomposition relationship, the variance of the observation is the lower bound
for the error). Plot of RMSE for ozone (region 2) of the mean of random subsets of the10

ensemble members, plotted as function of subset size, is reported in Fig. 8 (for brevity,
plots for the other species are omitted). The curves show the maximum, mean and
minimum of RMSE. The dash-dotted curve decays as m−0.5 that would be the trend is
the models errors were independent (Knutti et al., 2010; Annan and Hargreaves 2010).
For ozone we find a minimum for m = 3, where the RMSE is ∼37 % smaller than the15

full ensemble mean. Adding more members to the ensemble increases the noise and
deteriorates the accuracy. This would not happen if the model errors were independent
as the curve in that case would decay monotonically.

5.4 Principal Components Analysis (PCA)

Although PCA cannot be applied for selecting individual, independent, members, it can20

be nonetheless used to generate an artificial time series modPC obtained by projecting
the original data onto its PCs. This generates a weighted ensemble, the weights be-
ing the projections of the model components onto the eigenvectors associated to the
leading m eigenvalues. We have applied PCA to the matrix of covariance cov(di ,dj ),
to disclose redundancy patterns (see Sect. 4.2). The reduced matrix dmred is obtained25

by projecting dm onto PCm, the subspace of the first m eigenvectors:

dmred = dm ·PCm (9)
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We have discussed the scree plot of Eq. (9) (Sect. 4.2) and the dimensionality of the
subspace PCm. Ideally now we should be in a position to score the weighted ensemble
obtained by retaining m components. Getting the time series back from Eq. (9) is not
trivial though, since dm is a composite metric, and no similar applications of PCA have
been found in the literature. The reduced time series is given by:5

modPC = σobs
(
σem (dmred + r ·MME∗)+em

)
+obs (10)

Some assumptions are necessary, as for example how to obtain the MME and the
em (the mean error of each model) for the reduced space. The assumption we made
consists in projecting these quantities onto PCm too, as it is no possible to associate
them to their original time series.10

The use of the observational data for recreating the time series is a major shortcom-
ing of this methodology, which can be moderated in case of applications to forecasting.
In that case we could use a portion of the data to generate back modPC, and another
portion for verification of the forecast. Current work is devoted to this aspect.

5.5 Comparing the different methods: discussion15

5.5.1 Member selection

Members selected with MDS, HC, minMSE and CAR score are reported in Table 4,
where the redundancy index ρI of each reduced ensemble is also reported.

HC analysis of region 1 highlights that there is group of two models common to
the four pollutants (FI1 and FR3), and with the exception of ozone DE1 and HR1 are20

also in common. Furthermore, given the high level of similarity between DE2 and US4,
NO2 and SO2 are represented by the same members (Table 4). The outputs of these
models have therefore the least correlated bias, and in this sense can be considered
not redundant. For region 2 we found the selection to be more sensitive to the species,
with only US3 and DE1 common to three species. The spatial dependence of the bias25

is not entirely removed by the metric dm, as members of region 1 and 2 are quite
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different, with only three members in common for ozone (FI1, FR4, UK2) and CO (FI1,
DE1, HR1). Members selected by HC and MDS are, in general, different.

The combination of minimum MSE for region 1 is often achieved by combining the
members that individually performs best. For example, for NO2 and SO2 the two models
whose mean produce the minimum MSE have the highest rank, individually, in terms of5

error. This is not the case for O3 and CO. For the former we need to combine the first
three ranked (FR4, PL1, US3) with the last one (DE1) and a middle ranked one (DK1),
whilst for the latter the combination is composed by the best individual model (US4)
with two middle ranked ones (FI1 and UK2). We should point out, however, that the
combination of the first three MSE-ranked models produces, for all pollutants, a MSE10

very close to the global minimum, as already demonstrated by Knutti et al. (2010). It
remains to be explained, though, why the ensemble of global minimum for ozone en-
compasses the worst performing models along with the best ones. Pierce et al. (2009),
in the context of climate modeling, showed that the mean of the best and that of the
worst models that could be built out a large ensemble were statistically indistinguish-15

able, and that the rank of the ensemble did not reflect that of the individual models.
Similar conclusions were drawn by Solazzo et al. (2012b) for ozone in Europe and
North America. The reason for this is an open issue.

Further to that, for some species, the minimum error is obtained by combining highly
redundant members (Table 4), as for example SO2 and NO2 in EU region 2, where20

the two instances of WRF/Chem run by DE2 and US4 both participate to minimize the
MSE. As we can see from Fig. 4, these members (in the red square) are often those
maximizing the variance of the error. The presence of two highly similar models is dif-
ficult to interpret. If we look at the individual model performance for SO2 and NO2 we
find that DE2 and US4 are not individually ranked the highest for error and variance. In25

general, minMSE is achieved by combining redundant and less redundant models. For
example, DE3 errors are uncorrelated with the quintuplet of models minimizing MSE
for SO2 in region 2, while FR3 (which also belongs to the quintuplet) is highly redun-
dant with respect to the others. Similar patterns are detected for the other compounds
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too. This is an additional indication that independence and skills need be investigated
separately (Abramowitz, 2010).

Two similar, high redundant models are bound to score likewise under a variety of
member selection techniques. This could be a possible way to read the combination
of redundant members optimizing the MSE. We have applied the CAR score recently5

developed by Zuber and Strimmer (2011) to our dataset (available in the package “re-
laimpo” for the R statistical software (www.r-project.org)). This method provides a rank-
ing based on the partial correlation between model and the observations, conditioned
to all other models. The CAR methodology is related to the amount of explained vari-
ance, enforces the simultaneous selection of highly correlated predictors and penalises10

variables correlating with opposite signs with the observations. Models with a small
CAR score contribute little to improve the prediction error or to reduce the unexplained
variance. Interestingly, for the species O3 and NO2 of region 1 and O3, CO, and NO2
of region 2 two of the selected models using CAR are in common with the minMSE
selection (the first four CAR-ranked models are reported in Table 4). Further to that,15

the overall redundancy of the ensemble built by the mean of the first four CAR-ranked
models is, in some occasion, even lower than that of HC selection (O3, SO2, and NO2
in region 1; CO and NO2 in region 2). We shall further notice that the minMSE having
lower redundancy than any other method is related to the fact that the subspace has
dimensionality of two (SO2 and CO region 1) and three (NO2 region 1 and O3 region20

2). As noted above, from the error decomposition theorem in the case of low dimen-
sionality it is straightforward to assess that the error in minimised by low redundant
members, as the covariance term is null.

5.5.2 Skill scores

In Table 5 we report the scores of the reduced ensemble generated with the meth-25

ods discussed above. The full-member ensemble mean is also included as reference.
With few exceptions, the reduced ensembles score better than, or as well as, the full
ensemble, especially in terms of variability. Overall, the minMSE selection seems to
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outperform the other techniques for a number of pollutants in both regions. It gives the
best accuracy (lowest error) by definition, but scores among the best also for variability.
Good performance do not seem to be related to the redundancy of the ensembles,
as to low redundancy values (SO2, CO, NO2 of region 1) do not systematically corre-
spond the best scores. This aspect deserves future investigations. HC, MDS and CAR5

methods do not consistently score high, although performing best in some occasions.
The overwhelming strength of the weighted PCA ensemble derives from having used

the observations to rebuild the time series, as discussed in Sect. 5.4. In general,
though, one the main drawbacks of weighted ensembles is that they are not robust
enough to be applied under a variety of scenarios (species, temporal, and spatial), and10

in practical applications MM mean is often preferred (Pierce et al., 2009; Knutti et al.,
2010).

5.6 Implications for AQ forecasting

We outline here some considerations about applying the techniques of dimension re-
duction and member selection to periods of time other than those used for selecting15

the members. It is in the ensemble forecasting applications that the low redundancy
of the bias plays the most important role: since observations are not available to pro-
vide evaluation, averaging out of errors is the only means to avoid common, redundant
biases to determine the direction of the (biased) agreement.

We thus ask whether any associativity among members can be inferred in the case20

observational data were not available. In other words, knowing the associativity among
the errors, what can be deducted about the associativity of the models underlining
those errors? This problem is of direct relevance to forecasting, thus worth investigat-
ing. The starting point is as usual the covariance matrix of the errors cov(di ,dj ), which
we assume it is known. After some basic manipulation we get:25

cov(di ,dj ) = cov(mi ,mj )− (cov(mi ,obs)+ cov(mj ,obs))− var(obs)

= cov(mi ,mj )− (var(di )+ var(dj ))− var(obs)
(11)
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The model errors covariance and the model covariance are strictly related, thus we
cannot prescind from the observations. All we can do is to infer some consideration
about the covariance of the model errors for short periods of time ahead. In practical
terms, we first derive a reduced ensemble from the matrix of errors cov(di ,dj ). Then,
if we trend of the error does not change drastically for a few hours or days ahead, we5

can deduce that the association among them does not change either, thus the reduced
ensemble is still the best option. Exploitation of reducing ensembles and member se-
lection for forecasting applications is a topical argument and a matter of ongoing work.

Recently, Galmarini et al. (2013) have investigated the possibility of forecasting air
quality starting from the combination of well-behaved spectral properties extracted from10

the AQMEII ensemble. The results show that the approach outruns even the ensemble
median. Further investigation will be devoted to determine the correspondence be-
tween the reduced set obtained here and the properties of the ensemble put together
by Galmarini et al. (2013) for the sake of identifying a deeper structure inside in the
model behaviour and performance.15

6 Conclusions

That of the similarity of members in ensemble modelling is an outstanding issue which
has recently raised awareness in the ensemble climate community but not in the air
quality one. In this study we explain the risks of combining models sharing high corre-
lated bias into ensembles. We apply our analysis to a high resolution dataset covering20

two regions of EU for 3 months. Along with observational data, we have treated results
of 13 AQ models for four air pollutants: CO, O3, NO2 and SO2.

We have provided definitions for the concepts of independence, diversity/similarity,
redundancy of models and their errors, which are often used interchangeably, giving
raise to misconception. Due to practical difficulties in computing independency, we25

used the redundancy instead, which is simpler to handle and has the advantage of
expressing the amount of the accounted-for variance, regardless of the diversity of
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models. Conceptually we believe this is very important, as it allows to univocally inter-
preting the results.

We started by applying the metric dm introduced in climate modelling studies to our
ensemble of regional-scale pollutant concentrations. dm serves the scope of eliminat-
ing overarching commonalities among members and to explore hidden similarities, i.e.5

those underlying common modules and parameters in the models. Some main results
and considerations:

1. The correlation among the majority of models remained a constant feature across
the two examined regions, but varied from species to species. In fact it is generally
not possible to identify model similarities common to the four species. This implies10

a large spectrum of partially shared modules and parameterisations within the
AQ modelling systems which are invoked depending on the species and on other
inputs, such as meteorology and emissions. Indeed, although most of the model
similarities encapsulated by the multi-model ensemble mean error were removed
by calculating dm, similarities among model errors were still found significant;15

2. By projecting the observational values into the eigenvectors of the anomalies of
the models about the MM ensemble, we found that the ensemble is wide, that is,
accounts for more variability than that of the observations. We concluded that the
ensemble size, constrained by the available members, was too large. Given the
massive application of AQ models in regulatory applications and the more and20

more stringent AQ targets, the detected overconfidence can cost greatly. This,
together with item 1 above, justify the need for the analysis of the redundancy of
the datasets;

3. We therefore explored some dimension-reduction methods:

– Eigenvalue methods – number of effective models and Principal Component25

Analysis;

– Clustering analysis and dendrogram representation;
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– Multi-dimensional Scaling and graphical representation of model similarities
as mutual distance among models;

– minMSE heuristic investigation, determining the size of the ensemble of mod-
els whose mean minimize the MSE.

None of the aforementioned method is new, they are all well-established techniques5

used, in many flavours, in various branches of science. They have not been used before
in an AQ ensemble context, neither compared. We also introduce, where possible, the
nexus between these techniques and redundancy. We found that the optimal size of an
ensemble of poorly correlated members is of about 4–6, implying that more than half
of the information of the full MM ensemble is redundant.10

1. We continued the investigation by applying member-selection techniques and
scoring to the reduced ensembles against simple operational metrics, taking the
scores of the full member ensemble mean as benchmark. We prove that subsets
of models outperform the full ensemble. The minMSE selection seems to out-
perform the other techniques for a number of pollutants in both regions. It gives15

the best accuracy (lowest error) by definition, but scores among the best also for
variability. HC, MDS and CAR methods do not consistently score high, although
performing best in some occasions.

2. The error being minimized by highly redundant members does not justify, in our
view, the use of the ensemble of those members. Skills and diversity need to be20

analysed in separation. This is because redundant members might share com-
mon biases which will force the agreement to be directed towards the same direc-
tion, with the risk of misjudging the results. These aspects are likely to be detected
by diagnostic-type of analysis (rather that by simple operational scores based
on distance metrics) and may often reveal more about the causes of model er-25

rors and the processes responsible for those errors (Dennis et al., 2010; Gleckler
et al., 2008). The combination of minimum error might just arise from a favourable
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numeric combination in the trade-off between covariance and bias. Indeed, if all
mutual covariances between the models are negative then the optimal MSE is
less than for un-correlated models. It remains to be explained why also high re-
dundant ensembles produced high scores; a further open issue is why ensembles
of individually high-ranked members might be outperformed by ensembles of high5

and low ranking members.

3. Application of PCA to the matrix of errors for the purpose of data reduction has
proved successful. By contrast, generating the reduced time series (the time se-
ries projected on the leading eigenvectors) is not trivial and requires the use of
the observational data, which masks the outcome of the procedure. As no ap-10

plications of this sort have been found in the literature, our intention is to devote
future work to this aspect which might be relevant in the realm of forecasting;

4. Finally, we have highlighted the steps for applying the methods of dimension re-
duction and member selection to a forecasting context.

We also believe the effort we spent to migrate some of the knowledge and techniques15

developed in other scientific areas (especially computer science, genetics, and climate
modelling) will contribute to raise awareness in the ensemble AQ community about the
dependency of models and the meaning of model agreement.

Acknowledgements. The AQMEII community (http://aqmeii.jrc.ec.europa.eu/) is kindly ac-
knowledged for providing the data used in the analysis.20
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Table 1. Number of rural receptors by species and regions.

Europe O3 SO2 NO2 CO

region 1 199 34 56 23
region 2 225 131 136 54
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Table 2. Participating models and features.

Model Res No. Emissions Chemical BC
Code Met AQ (km) Vertical

layers

DK1 MM5 DEHM 50 29 (top: 100 hPa) Global emission
databases, EMEP

Satellite measurements

FR3 MM5 Polyphemus 24 9 (top: 12 km) Standarda Standard
HR1 PARLAM-PS EMEP 50 20 EMEP model From ECMWF and fore-

casts
UK2 WRF CMAQ 18 34 (up to 50 hPa) Standarda Standard
DE2 WRF WRF/Chem 22.5 36 (top: 22.5 km) Standarda Standard
US4 WRF WRF/Chem 22.5 36 (top: 22.5 km) Standarda Standard
FI1 ECMWF SILAM 24 9 (top: 10 km) Standard anthropogenic

In-house biogenic
Standard

FR4 MM5 Chimere 25 9 (up to 500 hPa) MEGAN, Standard Standard
PL1 GEM GEM-AQ 0.2 degreeb 28 (up to 10 mb) Standard over AQMEII re-

gion;
Global EDGAR/GEIA over
the rest of the global do-
main

Global variable grid setup
(no lateral boundary condi-
tions)

NL1 ECMWF Lotos-EUROS 25 4 (top: 25 km) Standarda Standard
DE1 COSMO Muscat 24 40 (top: 24 km) Standarda Standard
US3 MM5 CAMx 15 20 (top: 24 km) MEGAN, Standard Standard
DE3 COSMO-CLM CMAQ 24 30 (up to 100 hPa) Standarda Standard

a Standard anthropogenic emission and biogenic emission derived from meteorology (temperature and solar radiation) and land use distribution implemented in the
meteorological driver (Guenther et al., 1994; Simpson et al., 1995).
b Corresponding to 22.2 km at the domain center.
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Table 3. Meff from Eq. (6). Values have been calculated using corr(di ,dj ) (corr(ei ,ej )).

Europe O3 SO2 NO2 CO

region 1 5.8 (2.3) 5.7 (1.3) 6.5 (2.2) 6.5 (1.3)
region 2 5.2 (2.5) 5.3 (3.2) 5.9 (2.5) 5.6 (1.9)
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Table 4. Representative models (corr(di ,dj ) for the months of JJA). The number in parenthesis
is the redundancy index ρI for each ensemble.

EU region 1
MDS HC (min bias) MinMSE CAR

O3 DE2;NL1;DK1;DE1 (0.27) FI1,FR3,FR4,UK2,US4 (0.12) FR4,PL1,US3,DE1,DK1 (0.53) PL1,US3,HR1,UK2 (0.07)
SO2 US4;US3;FI1;NL1 (0.29) FI1,FR3,DE1,HR1,US4 (0.22) HR1,DE1 (FI1, UK2) (0.007) FR3,DK1,FR4,UK2 (0.15)
CO DK1;FR3;HR1;US3 (0.25) FI1,FR3,DE1,DK1,HR1 (0.17) FI1,DE1 (NL1, US3) (0.02) FR4,UK2,FI1,US4 (0.29)
NO2 FR4;FR3;PL1;DK1 (0.27) FI1,FR3,DE1,DE2,HR1 (0.21) FI1,UK2,US4 (DE2) (0.13) UK2,FI1,DE3,HR1 (0.15)

EU region 2
O3 US4;US3;FI1;HR1 (0.31) FI1;FR4;UK2;US3;DE3 (0.30) FR4;US3;DE1 (FI1) (0.23) DE1,US3,PL1,DE2 (0.35)
SO2 DK1;UK2;US4;FR3 (0.29) DE3;US3;DE1;NL1;US4 (0.28) DE3,FR3,US3,US4,DE2 (0.47) DE3,DK1,UK2,NL1 (0.45)
CO US3;DK1;DE1;NL1 (0.60) FI1;DE1;NL1;PL1;HR1 (0.15) FI1,NL1,US3,HR1,DE1 (0.59) UK2,DE3,HR1,NL1 (0.20)
NO2 US4;FI1;FR4;HR1 (0.29) US3;DE1;PL1;DK1;DE2 (0.18) NL1,US4,HR1,DE2,DE3 (0.55) UK2,DE3,DE1,NL1 (0.08)
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Table 5. Ensemble skills for regions 1 and 2 of Europe (JJA). (RMSE: root mean square error;
R: Pearson correlation coefficient; NMB: Normalised Mean Bias; STDEV ratio: modeled to ob-
served standard deviation). Results in italic are those for which the selected ensemble scores
better or as good as the full member ensemble (vice versa for the values in bold).

EU region 1 RMSE R NMB STDEV ratio

CO

PCA 0.03 0.65 0.25 5.20
HC 0.06 0.36 −0.22 0.39
minMSE 0.05 0.36 −0.09 0.45
MDS 0.06 0.28 −0.19 0.51
CAR 0.06 0.41 −0.29 0.44
Full Ensemble 0.06 0.38 −0.26 0.39

O3

PCA 2.5 0.99 0.04 0.99
HC 12.0 0.96 0.003 0.63
minMSE 8.1 0.96 0.03 0.81
MDS 11.2 0.94 0.04 0.70
CAR 10.8 0.97 −0.05 0.71
Full Ensemble 10.9 0.96 0.002 0.67

SO2

PCA 0.9 0.96 0.12 1.12
HC 2.0 0.17 −0.07 0.57
minMSE 1.9 0.27 −0.11 0.55
MDS 2.1 0.16 0.12 0.60
CAR 2.2 < 0.1 −0.03 0.75
Full ensemble 2.2 0.17 0.26 0.49

NO2

PCA 1.0 0.99 0.20 1.09
HC 3.5 0.68 −0.09 1.05
minMSE 3.0 0.74 −0.09 0.96
MDS 4.7 0.61 0.20 1.43
CAR 3.6 0.74 −0.24 0.95
Full Ensemble 3.7 0.67 0.18 1.06
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Table 5. Continued.

EU region 2 RMSE R NMB STDEV ratio

CO

PCA 0.04 0.99 0.18 0.98
HC 0.05 0.48 −0.21 0.68
minMSE 0.03 0.38 0.02 0.83
MDS 0.04 0.45 −0.17 0.67
CAR 0.07 0.58 −0.38 0.57
Full Ensemble 0.07 0.50 −0.35 0.57

O3

PCA 2.5 0.98 −0.005 0.99
HC 11.6 0.92 0.005 0.81
minMSE 7.8 0.95 0.02 0.91
MDS 15.3 0.93 −0.14 0.73
CAR 7.8 0.95 0.02 0.84
Full Ensemble 12.3 0.93 −0.06 0.71

SO2

PCA 0.7 0.74 0.03 1.4
HC 0.7 0.73 −0.13 3.3
minMSE 0.5 0.59 −0.07 1.08
MDS 0.8 0.53 −0.3 0.86
CAR 0.8 0.76 −0.4 1.11
Full ensemble 0.8 0.59 −0.4 0.77

NO2

PCA 1.0 0.99 0.5 1.03
HC 3.4 0.66 0.05 2.12
minMSE 1.9 0.70 −0.07 1.32
MDS 3.6 0.67 0.06 2.12
CAR 2.2 0.75 −0.26 1.38
Full Ensemble 2.5 0.59 −0.16 1.47
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Fig. 1. Correlation of errors (between individual model and MME and between d for all model
pairs) for region 1 and region 2 of Europe for the months of JJA of 2006.
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Fig. 2. Associativity trees for all models and species (European region 2) using (a) the
cov(di ,dj ) and (b) the cov(ei ,ej ) as distance matrix.
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Fig. 3. cov(di ,dj ) by species for European region 2. In red the variance (cov(di ,di )), in blue the
range of redundancy (corr2(di ,dj )) and in green the range of redundancy measured by means
of the mutual information (see text).The models in the square are those whose ensemble mean
produces the minimum MSE (see Sect. 5.5.1).

5033

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/4989/2013/acpd-13-4989-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/4989/2013/acpd-13-4989-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 4989–5038, 2013

Pauci ex tanto
numero

E. Solazzo et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(a) (b)

Fig. 4. Meff (Eq. 6) as function of the number of models for EU region 1 and region 2. The two
sets of curves have been generated from the corr(di ,dj ) (top curves) and the corr(ei ,ej ) (lower
curves) matrixes. The cumulative variability is color coded. In grey is the one-to-one line.
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Fig. 5. Sub-space dimension calculated by minimising the stress function in the MDS method-
ology. The corr(di ,dj ) matrix is used as similarity criteria.
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Fig. 6. Hierarchical clustering of corr(di ,dj ) for EU region 2. The dotted horizontal line defines
the level of similarity. Disjoint clusters are identified by different colors.
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Fig. 7. 2D MDS of corr(di ,dj ) for EU region 2. Models underlined are those selected to gener-
ate the reduced ensemble.
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Fig. 8. Curves of maximum, mean and minimum RMSE for ozone in EU region 2. The curves
are obtained by calculating the mean of randomly sampled subsets of models, as function of
dimension of the subsets m. The theoretical decay that would occur if the model errors were
independent, ∼m−0.5 is also reported.
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