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Abstract. Heterogeneous reactions occurring at the surface of atmospheric aerosol particles regulate the production and 15 

lifetime of a wide array of atmospheric gases. Aerosol surface area plays a critical role in setting the rate of heterogeneous 

reactions in the atmosphere. Despite the central role for aerosol surface area, there are few assessments of the accuracy of 

aerosol surface area concentrations in regional and global models. In this study, we compare aerosol surface area concentrations 

in the EPA’s Community Multiscale Air Quality (CMAQ) model with commensurate observations from the 2011 NASA 

flight-based DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved 20 

Observations Relevant to Air Quality) campaign. The study region includes the Baltimore and Washington, DC metropolitan 

area. Dry aerosol surface area was measured aboard the NASA P-3B aircraft using an Ultra-High Sensitivity Aerosol 

Spectrometer (UHSAS). We show that modeled and measured dry aerosol surface area, Sa,mod and Sa,meas respectively, are 

modestly correlated (r2 = 0.52) and on average agree to within a factor of two (Sa,mod/Sa,meas = 0.44) over the course of the 13 

research flights. We show that Sa,mod/Sa,meas does not depend strongly on photochemical age or the concentration of secondary 25 

biogenic aerosol, suggesting that the condensation of low-volatility gas-phase compounds does not strongly affect model-

measurement agreement. In comparison, there is strong agreement between measured and modeled aerosol number 

concentration (Nmod/Nmeas = 0.87, r2 = 0.63). The persistent underestimate of Sa in the model, combined with strong agreement 

in modeled and measured aerosol number concentrations, suggests that model representation of the size distribution of primary 

emissions or secondary aerosol formed at the early stages of oxidation may contribute to the observed differences.  30 

 

For reactions occurring on small particles, the rate of heterogeneous reactions is a linear function of both Sa and the reactive 

uptake coefficient (γ). To assess the importance of uncertainty in modeled Sa for the representation of heterogeneous reactions 

in models, we compare both the mean and the variance in Sa,mod/Sa,meas  to that in γ(N2O5)mod/γ(N2O5)meas. We find that the 
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uncertainty in model representation of heterogeneous reactions is primarily driven by uncertainty in the parametrization of 35 

reactive uptake coefficients, although the discrepancy between Sa,mod and Sa,meas is not insignificant. Our analysis suggests that 

model improvements to aerosol surface area concentrations, in addition to more accurate parameterizations of heterogeneous 

kinetics, will advance the representation of heterogeneous chemistry in regional models.  

1 Introduction 

1.1 The Role of Aerosol Surface Area in Heterogeneous Reaction Kinetics 40 

Reactions occurring at atmospheric interfaces, such as suspended aerosol particles, catalyze the production and loss of key 

gas-phase compounds in Earth’s atmosphere with important implications for regional air quality (Chang et al., 2011). The rate 

of heterogeneous reactions occurring at the surface of aerosol particles is a function of the gas-aerosol collision frequency and 

the per collision reaction probability. Variability in gas-aerosol collision frequency is determined by the aerosol surface area 

concentration. The probability of reaction, or the net reactive uptake coefficient (γ), is reaction specific and dependent on 45 

chemical kinetics, gas accommodation at the surface, and near surface diffusion (Abbatt et al., 2012). Collectively, the first-

order removal rate of a gas-phase species (A) from the atmosphere can be written as: 

𝑑[𝐴]

𝑑𝑡
=  − 𝑘ℎ𝑒𝑡[𝐴]           E1 

where the heterogeneous reaction rate constant (khet), in the absence of gas-phase diffusion limitations, can be written as: 

𝑘ℎ𝑒𝑡 =  
𝛾𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝜔𝑠𝑝𝑒𝑐𝑖𝑒𝑠𝑆𝑎

4
          E2 50 

where 𝜔 is the mean molecular speed of the gas-phase molecule (m s-1) and Sa is the surface area concentration of aerosol 

particles (m2 m-3).  

 

To date, most evaluations of the role of heterogeneous chemistry on gas-phase composition have focused on uncertainty in 

parameterizations of reactive uptake coefficients, such as the reactive uptake of dinitrogen pentoxide (N2O5) due to its role as 55 

a NOx sink (Brown et al., 2009; Evans and Jacob, 2005; MacIntyre and Evans, 2010; McDuffie et al., 2018). In comparison, 

there has been less focus on model representation of aerosol surface area concentrations, despite the fact that khet is linearly 

dependent on Sa. An accurate representation of aerosol surface area in regional and global chemical transport models is 

challenging, as Sa is a complex function of size-dependent aerosol particle emissions, chemical transformations, and removal 
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processes. Here, we directly compare aerosol surface area concentrations in a regional chemical transport model with 60 

commensurate aircraft measurements to assess the representation of Sa in regional air quality models. 

 

1.2 Calculation of Aerosol Surface Area in Regional Air Quality Models 

The total aerosol particle surface area concentration has been calculated in air quality models using a variety of approaches, 

including the discrete representation of the particle size distribution in defined size ranges, known as the sectional method 65 

(Adams and Seinfeld, 2002; Gelbard et al., 1980; Jacobson, 2001; Lee et al., 2009; Lee and Adams, 2012; Luo and Yu, 2011; 

Spracklen et al., 2006; Trivitayanurak et al., 2008; Yu and Luo, 2009), and a continuous modal representation of the particle 

size distribution (Kleeman et al., 1997; Mann et al., 2010; Meng, 1998; Pringle et al., 2010; Sartelet et al., 2006; Stier et al., 

2005; Vignati et al., 2004; Zhang et al., 2010a). Here, we review the modal representation of particle size distributions 

implemented in the Community Multiscale Air Quality (CMAQ) model and the calculation of both wet and dry total aerosol 70 

surface area (Sa). Aerosol particle size distributions in CMAQ follow the method developed for the Regional Particulate Model, 

an extension of the Regional Acid Deposition Model (Binkowski, 1999; Binkowski and Roselle, 2003) where the total particle 

size distribution is treated as the superposition of three separate lognormal distributions (or modes); Aitken, accumulation, and 

coarse modes (Binkowski, 1999; Whitby, 1978). The lognormal particle size distribution for each mode is defined as: 

 75 

𝑛(ln 𝐷) =  
𝑁

√2𝜋 ln 𝜎𝑔
exp [−0.5 (

ln
𝐷

𝐷𝑔

ln 𝜎𝑔
)

2

]        E3 

where N is the total number concentration, D is the particle diameter, and Dg and g are the geometric mean diameter and 

geometric standard deviation. Under this definition, the Aitken mode describes aerosol particles of diameter smaller than 

approximately 0.1m with a median diameter of 0.03m, while the accumulation mode encompass the diameter range of 0.1 

to 2.5m with a median diameter of 0.3m (Binkowski, 1999). The coarse mode describes particles of diameter 0.3 to about 80 

10m with a median diameter of 6m. It should be noted that there is uncertainty in the exact size distributions within CMAQ 

dependent on emissions parameters, so the median diameters within modes are approximate (Elleman and Covert, 2010). 
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Three integral properties of the aerosol size distribution are calculated in CMAQ: the zeroth (M0), second (M2), and third 

moments (M3), where the kth moment of the size distribution is calculated as:  85 

𝑀𝑘 =  ∫ 𝐷𝑘(𝑙𝑛𝐷)𝑑(𝑙𝑛𝐷) = 𝑁𝐷𝑔
𝑘𝑒𝑥𝑝 [

𝑘2

2
𝑙𝑛2𝜎𝑔]

∞

−∞
       E4 

In this representation, N = M0, 𝑆𝑎 = 𝜋𝑀2, and 𝑉 = (
𝜋

6
) 𝑀3, where V is the total aerosol volume (Binkowski, 1999; Binkowski 

and Roselle, 2003). Though M2 is utilized in CMAQ’s aerosol subroutines, it is multiplied by π prior to use in main CMAQ 

routines, such that it is identified as a modal surface area (Binkowski and Roselle, 2003). 

 90 

The time rate of change of each moment is calculated for each grid box and time interval as: 

𝜕𝑀𝑘

𝜕𝑡
=  𝑃𝑘 −  𝐿𝑘𝑀𝑘          E5 

where P and L represent the production and loss of Mk in each aerosol mode. With respect to Sa (𝑆𝑎 = 𝜋𝑀2), neglecting 

transport terms, P2 includes new particle formation (Aitken mode only), condensational growth, and primary emissions and L2 

includes intramodal coagulation, dry and wet deposition. 95 

 

In the interpretation of model Sa, the following model specific details should be considered: 1) Fine particles (Aitken and 

accumulation modes) do not coagulate with coarse mode particles and coarse mode particles do not coagulate with each other 

(Binkowski and Roselle, 2003). 2) The size distribution for primary PM2.5 emissions are assumed to have a geometric mean 

(Dg = 0.3m) and geometric standard deviation (g = 2) and > 99% of PM2.5 emission are assigned to the accumulation mode 100 

(Binkowski and Roselle, 2003), which may have consequent effects on the aerosol surface area distribution. 3) Particles are 

assumed to be spherical.  

 

The condensation of water is accounted for in the chemical evolution of M2, thus M2 is inherently the wet second moment 

(𝑀2
𝑤) which is used in the calculation of heterogeneous chemical reactions. In addition to 𝑀2

𝑤, a dry second moment (𝑀2
𝑑) is 105 

calculated as a function of the third moment (M3) as: 
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𝑀2
𝑑 =  𝑀2

𝑤 (
𝑀3

𝑑

𝑀3
𝑤)

2

3
           E6

    

In the following analyses, we concentrate on the comparison of modeled and measured Sa to evaluate the relative uncertainty 

associated with model descriptions of heterogeneous kinetic mechanisms (i.e. reactive uptake coefficients, ) and aerosol 110 

particle size distributions (i.e. aerosol surface area, Sa) that combined dictate the fate of reactive gas-phase molecules. 

 

1.3 Previous Model-Measurement Comparisons of Aerosol Surface Area 

Evaluation of regional air quality models has largely focused on criteria air pollutants such as ozone (O3) and particle mass 

(e.g. PM2.5) (Appel et al., 2021). Previous model evaluation of particle mass has focused on an array of metrics including mass 115 

concentration (Gantt et al., 2012; Spak and Holloway, 2009; Wang et al., 2009), number concentration (Park et al., 2006; 

Ranjithkumar et al., 2021; Wang et al., 2009; Zhang et al., 2010b), size distribution (Kelly et al., 2011; Nolte et al., 2015; Park 

et al., 2006; Zhang et al., 2010b), composition (Knote et al., 2011; Nolte et al., 2015; Prank et al., 2016), and aerosol optical 

depth (Ghan et al., 2001; Knote et al., 2011), among others. There has been a very long and detailed history of CMAQ 

evaluation of PM2.5, including both ground-based (Baker et al., 2018; Fan et al., 2005; Ghim et al., 2017; Hogrefe et al., 2009, 120 

2015; Liu and Zhang, 2011; Prank et al., 2016; Smyth et al., 2006; Wang et al., 2021; Yu et al., 2012, 2008b, 2008a; Zhang et 

al., 2019, 2006, 2010c), ship-based (Yu et al., 2012), and aircraft-based measurements (Baker et al., 2018; Chen et al., 2020; 

Yu et al., 2012). For fifteen studies comparing ground-based measurements of PM2.5 to CMAQ outputs between 1999 and 

2018, ten saw an underestimation of PM2.5 by the model ranging between 6-75% (Ghim et al., 2017; Liu and Zhang, 2011; 

Prank et al., 2016; Wang et al., 2021; Yu et al., 2008a, 2012, 2008b; Zhang et al., 2019, 2006, 2010c), dependent on pollution 125 

events and rural versus urban location, while four found that CMAQ predicted observations well (Baker et al., 2018; Fan et 

al., 2005; Hogrefe et al., 2009; Smyth et al., 2006), matching general trends in the observational data, and one saw an 

overestimation of observational data (Hogrefe et al., 2015). Of the three aircraft studies, two saw significant underestimation 

of PM2.5 aloft (Baker et al., 2018; Chen et al., 2020), while one saw overestimation in some PM2.5 compositional components 

and underestimation in others (Yu et al., 2012). 130 
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Particle surface area specifically is not regulated as a criteria air pollutant as standards of measurement and air quality controls 

are determined on a mass per unit volume basis. However, particle surface area indirectly affects the concentration of PM2.5 

and O3 as it can serve to regulate the lifetime of nitrogen oxides (Chang et al., 2011; Geyer and Stutz, 2004; Portmann et al., 

1996; Stadtler et al., 2018) and hydrogen oxides (George et al., 2013; Lakey et al., 2015; Martin et al., 2003; Thornton et al., 135 

2008; Thornton and Abbatt, 2005), the production rate of secondary organic aerosol (Gaston et al., 2014), and new particle 

formation and growth rates, as preexisting aerosol surface area serves as a condensation sink for low volatility gas-phase 

compounds (Donahue et al., 2014; Trump et al., 2014). There are few reports of model-measurement comparisons of particle 

surface area, and those that have been reported in the literature have focused on comparisons of heavily spatially and temporally 

averaged concentrations (e.g., field campaign averages). For example, Simon et al. compared ground-based aerosol surface 140 

area concentrations calculated in the CAMx model to measurements made aboard the R.V. Ronald H. Brown in the Gulf of 

Mexico and the Houston Ship Channel with two differential mobility particle sizers and an aerodynamic particle sizer (Bates 

et al., 2008; Simon et al., 2010). The results of these studies are given in Table 1. Model prediction of median Sa in the Gulf 

of Mexico was similar to the measurement data (Sa,mod/Sa,meas = 0.96), with median values and ranges again shown in Table 1. 

In comparison, model prediction of median Sa in the Houston Ship Channel, where there is large spatial and temporal 145 

fluctuation in Sa, yielded Sa,mod/Sa,meas = 1.6. Modeled Sa was also compared to measured Sa aloft on two research flights from 

the TexAQS II/GoMACCS field study in September and October of 2006. The range of measured Sa values (<600 µm2/cm3) 

matched well with the average values predicted in the CAMx model, though the maximum modeled values were much larger 

than those measured (4000-8000µm2/cm3 compared to <600 µm2/cm3), consistent with the R.V. Ronald H. Brown comparisons. 

Overall, it should be noted that on a regional scale, modeled values agree well with measurements of aerosol Sa, however 150 

maximum modeled values were larger than those measured both for ground-based measurements and those aloft. 

 

 

 

https://doi.org/10.5194/acp-2022-340
Preprint. Discussion started: 22 June 2022
c© Author(s) 2022. CC BY 4.0 License.



7 

 

Region  Median 

(µm2/cm3) 

Q1, Q3  

(µm2/cm3) 

Reference 

     

Gulf of Mexico Measured 361 277, 398 Simon et al. 2010 

 CAMx Model 347 298, 394  

     

Houston Ship Channel Measured 592 513, 800 Simon et al. 2010 

 CAMx Model 949 667, 1760  

     

Northeast U.S. 

(surface - 0.1km) 

Measured 135 0.91, 2.23 Jaeglé et al., 2018 

 GEOS-Chem Model 169 -   

 

Northeast U.S. 

(3.5 - 4.5 km) 

 

Measured 

 

4.4 

 

0.03, 0.17 

 

Jaeglé et al., 2018 

 GEOS-Chem Model 3.8 -   

Table 1: Comparison of model and measured aerosol surface area concentrations. Simon et al. (2010) compared CAMx model results 155 
with ground-based measurements in the Gulf of Mexico and the Houston Ship Channel. Jaeglé et al. (2018) compared measurements 

from the WINTER campaign and GEOS-Chem modeled data at the surface and aloft between 3.5 and 4.5km. 

 

More recently, modeled dry surface area concentrations were assessed over the northeast US during the 2015 Wintertime 

INvestigation of Transport, Emissions, and Reactivity (WINTER) aircraft campaign (Jaeglé et al., 2018). While quantitative 160 

assessment of aerosol surface area was not the focus of this study, dry aerosol Sa was calculated by combining dry aerosol size 

distribution observations from a Passive Cavity Aerosol Spectrometer Probe and Ultra-High Sensitivity Aerosol Spectrometer 

and comparing to the GEOS-Chem chemical transport model. Two versions of the model, a reference and improved model 

were compared to the observations within 13 altitude bins, ranging from surface to 4.5km, here we focus on the improved 

model results. The GEOS-Chem model medians were encompassed by the observed interquartile ranges in each altitude bin. 165 

The improved model showed excellent agreement with measurements when compiled over large spatial and temporal scales, 

where Sa,mod/Sa,meas was 1.25 and 0.68 for the surface and 4.5km comparisons, respectively. 
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Given the importance of accurate model representation of aerosol surface area to multiple atmospheric processes, and the 

limited number of prior studies conducted in urban environments, we revisit this comparison using a regional air quality model 170 

aerosol and commensurate aircraft observations conducted in an urban environment. 

2 Methods and Models 

2.1 Aerosol Evaluation in the CMAQ Model 

CMAQ simulations were performed as described by Abel et al. 2018, Abel et al. 2019, and Harkey et al. 2021, with carbon 

bond 5 chemistry, anthropogenic emissions from the 2011 National Emissions Inventory, and input meteorology constrained 175 

to the North American Regional Reanalysis (NARR; Messinger et al., 2006). The CMAQ simulation utilized here employed 

CMAQ version 5.2.1 (Byun and Schere, 2006; Nolte et al., 2015), and was run with 25 vertical layers from the surface to 100 

hPa, a 12 × 12km latitude and longitude grid, and hourly temporal resolution. The meteorology is from the Weather Research 

and Forecasting (WRF) version 3.2.1 (Skamarock et al., 2008), run including temperature, humidity, and wind from NARR. 

Anthropogenic emissions and emissions from fires (both prescribed and not) were based on the 2011 National Emissions 180 

Inventory, with in-line estimates of NO and NO2 produced by lightning, boundary conditions from the Model for Ozone and 

Related Chemical Tracers version 4, and biogenic emissions from WRF output in the Model of Emissions of Gases and 

Aerosols from Nature version 2.1 (Guenther et al., 2012). The model was run from 20 May through 31 August 2011, to include 

11 days of spin-up (Harkey et al., 2021). The data set utilized in this analysis is only a subset of the model data set originally 

run at UW-Madison.  185 

 

CMAQ was also run for the time period of the 2015 WINTER field campaign for comparison of modelled and measured N2O5 

uptake coefficients. This CMAQ simulation also employs input meteorology constrained to NARR, calculated using WRF 

version 3.8.1 (Skamarock et al., 2008).  Anthropogenic emissions, emissions from fires, and boundary conditions from the 

EPA Air QUAlity TimE Series (EQUATES) project (https://www.epa.gov/cmaq/equates). Biogenic emissions and lightning 190 

NOx emissions were both calculated in-line. This simulation employed CMAQ version 5.3.2 (Appel et al., 2021), with carbon 

bond 6 chemistry (Emery et al., 2015; Luecken et al., 2019). The WINTER-period simulation was run from 21 January through 
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16 March 2015, to include 11 days of spin-up, with hourly output on a 12 x 12 km grid and on 35 vertical levels from the 

surface to 100 hPa.  

 195 

The CMAQ simulation for the 2011 DISCOVER-AQ period employed the “AERO6” aerosol module (Binkowski and Roselle, 

2003; Carlton et al., 2010; Foley et al., 2010; Sonntag et al., 2014), where primary and secondary aerosols are characterized 

by bimodal lognormal size distributions, and the total size distribution is the sum of three aerosol size modes: Aitken, 

accumulation, and coarse modes with median diameters of 0.03, 0.3, and 6µm respectively. The CMAQ simulation for the 

2015 WINTER period employed the “AERO7” aerosol module, which builds on the AERO6 module, with updates to aerosols 200 

formed by monoterpene oxidation, anthropogenic volatile organic compounds, and to aerosol liquid water (Pye et al., 2015; 

Pye et al., 2017; Qin et al., 2021; Xu et al., 2018). The CMAQ simulation for the DISCOVER-AQ period employed the default 

heterogeneous N2O5 uptake (Davis et al., 2008), while the simulation covering the WINTER period employed a N2O5 uptake 

modified per Bertram and Thornton (2009). 

 205 

Due to the modality of the CMAQ representation of aerosols, we calculate each parameter relating to the aerosol data set 

separately for each mode, and these are then combined to result in a total value that can be directly compared to the 

DISCOVER-AQ observational data. The total CMAQ dry surface area is computed as the sum of the modal dry surface areas. 

The variable SRF is an output of CMAQ but is defined as SRF = π M2
d. SRF is a modal variable like each moment, such that 

total surface area = SRFATKN + SRFACC +SRFCOR (dry surface area in the Aitken, accumulation, and coarse modes, 210 

respectively).  

 

2.2 DISCOVER-AQ 2011 Campaign 

Research flights conducted during the NASA DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn 

and VERtically Resolved Observations Relevant to Air Quality) campaigns were designed to measure the vertical and spatial 215 

distribution of key air pollutants in urban environments, with a focus on connecting surface measurements with vertically 

integrating satellite observations. The first DISCOVER-AQ campaign, conducted aboard the NASA P-3B aircraft during July 
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2011, comprised of 14 science flights in the Baltimore and Washington, DC area (Crawford et al., 2014; Crawford and 

Pickering, 2014; NASA, 2012). The 2011 DISCOVER-AQ campaign was the first of a series of flights with an objective of 

narrowing the gap of satellite and observational data and air quality utilizing near-surface air pollution measurements. Science 220 

flights concentrated on high time resolution measurements of atmospheric composition in the convective boundary layer. Here, 

we focus on measurements of dry aerosol surface area concentration (Sa), determined from high time resolution (1Hz) size 

distributions made using an Ultra-High Sensitivity Aerosol Spectrometer (Droplet Measurement Technologies, UHSAS) 

integrating between 60 < dp < 1000 nm, which captures the peak of the surface area distribution, shown in Figure 1 below. The 

UHSAS measures the particle size from optical light scattering, which was calibrated during DISCOVER-AQ using NIST-225 

traceable polystyrene latex spheres whose refractive index may differ slightly from that of real-world, aerosols that may result 

in a slight under-sizing bias (Moore et al., 2021). the particle mobility size from 10-310 nm diameters was measured with a 

TSI Scanning Mobility Particle Sizer (SMPS) with 45-second time resolution and the particle aerodynamic size from 500-

4000 nm diameters was measured with a TSI Aerodynamic Particle Sizer (APS) at 1 Hz. On the representative day shown in 

Figure 1, SMPS data showed that approximately 5.8% of the surface area fell below the 60nm threshold of the UHSAS 230 

measurement for an average surface area distribution, while the APS indicated that supermicron particles did not contribute to 

the particle surface area. For simplicity, we choose to focus exclusively on the UHSAS size distribution data given their high 

frequency and wide size range of particle diameter, but it is important to note that not all of the particle surface area is captured 

by the UHSAS instrument. UHSAS data is available to the public at the NASA Langley Atmospheric Science’s Data Center 

and Distributed Active Archive Center (http://doi.org/10.5067/Aircraft/DISCOVER-AQ/Aerosol-TraceGas). In the following 235 

analysis we utilize observations of nitric oxide (NO) and nitrogen dioxide (NO2) measured with the NCAR four channel 

chemiluminescence instrument (Ridley and Grahek, 1990) and carbon monoxide (CO) measured via Differential Absorption 

CO Measurement (DACOM) (Sachse et al., 1987) to assess differences in modeled and measured aerosol surface area.   
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 240 

Figure 1: Modeled (blue) and measured (orange) dry aerosol surface area distributions averaged over the DISCOVER-AQ sampling 

domain of Baltimore and Washington, DC for 1 July 2011.  

2.3 Model-Measurement Comparison 

To compare measured and modeled Sa, we sample the hourly 12km × 12 km CMAQ output at the time and location of each 

DISCOVER-AQ sampling point. The spatial resolution of CMAQ, relative the DISCOVER-AQ flight, is shown in Figure 2 245 

for the 28 July 2011 research flight, where the color corresponds to the modeled surface-level dry Sa (in µm2 cm-3) at noon 

EST. Indexing and analysis of the two aforementioned data sets was completed in MATLAB. Each 1s data point from the 

DISCOVER-AQ 2011 campaign was mapped to the nearest (as described below) 4D index (time of day, latitude, longitude, 

and altitude) in the lower time and spatial resolution CMAQ model for direct comparison. The nearest 1hr averaged CMAQ 

time point was selected based on the time window that encompassed the aircraft flight time, i.e. a flight time of 09:16:00 was 250 

mapped to CMAQ time period of 9:00 – 9:59. The nearest 12km × 12km CMAQ grid box was also selected based on the grid 

box that encompassed the aircraft location at the time of sampling. The nearest CMAQ altitude (or layer) was identified by 

locating the aircraft height within one of the 25 indexes in which the altitude was encompassed. With all four CMAQ indexes 

assigned to each data point, the 1s DISCOVER-AQ data set could be fully mapped and compared to that from the CMAQ 

https://doi.org/10.5194/acp-2022-340
Preprint. Discussion started: 22 June 2022
c© Author(s) 2022. CC BY 4.0 License.



12 

 

model. It should be noted that there are far more data points in the observed data than in the model due to resolution constraints, 255 

and thus the model is being oversampled. Each of the four indexes were concatenated together in the order defined in CMAQ, 

namely latitude, longitude, layer (altitude), and time. This process was utilized for each data point for an entire flight of 

DISCOVER-AQ and was then replicated for each subsequent flight. The result of this approach is shown in Figure 3, for the 

comparison of modeled and measured carbon monoxide (CO). The coefficient of determination (r2) for the linear regression 

of modeled vs measured CO concentration (COmod / COmeas) was 0.44 with a slope of 1.0499 ± 0.0007. The large variance 260 

highlights the spatial and temporal mismatch of model sampling and measurement, while the near unit correlation coefficient 

indicates that on average modeled and measured CO agree. This agreement implies that the model-measurement comparison 

of many well-understood parameters should be accurate and that there is not a fundamental issue in comparing modeled and 

measured data between the two datasets.  

 265 

Figure 2: Map of the Baltimore-Washington DC area representative of the July 2011 DISCOVER-AQ flights with an example flight 

path from 28 July 2011. The flight path is overlayed on the CMAQ model grid, showing the modeled surface area in each 12km × 

12km grid box at noon EST (UTC 16).  
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 270 

 

Figure 3: a) Linear regression of modeled vs measured carbon monoxide (CO) mixing ratio in ppbv and b) histogram of the modeled-

measured CO for the entire DISCOVER-AQ campaign. 

3 Results 

3.1 Campaign Averaged Comparison of Aerosol Surface Area Concentrations 275 

First, we assess general agreement between campaign averaged modeled and measured surface area concentrations. The 

observational data is from the 13 DISCOVER-AQ flights during July 2011 (1-29 July). The final research flight consisted of 

a dual highway leg conducted south along the Baltimore-Washington Parkway and north along I-95 at low altitude to compare 

the two roadways. Given the proximity to a large point source, this research flight was not included in the following analysis. 

The observational data from the UHSAS included number, surface area, and volume measurements, though the focus of this 280 

study is primarily surface area (Sa).  

  

In this analysis, we compare dry surface area concentrations as the DISCOVER-AQ measurements were made dry and we do 

not have direct measurements of particle growth factors for comparison of wet Sa. However, it is important to note that Sa used 

in E2 is the surface area concentration at ambient humidity and any uncertainty in modeled aerosol hygroscopicity will 285 

propagate to the aerosol surface area concentration used in E2. Figure 4 shows the campaign-averaged vertical profile of both 
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the measured dry UHSAS surface area (Sa,meas) as well as the modeled dry CMAQ surface area (Sa,mod), along with the 

interquartile ranges separated into 1km altitude bins. Since the UHSAS measurement frequency is 1 Hz and the CMAQ 

modeled data is at one-hour time resolution, and the model samples a full domain in 12km grid boxes compared to the smaller 

domain sampled by aircraft, there are many more measurement data points (N = 330204) than comparable modeled data points 290 

(N = 5196) over the course of the flight campaign. In Figure 4, the UHSAS measurements have been averaged to the spatial 

and temporal resolution of the model, such that the number of observational points is the same as the number of model points. 

The light gray error bars shown in Figure 4a reflect the standard deviation of the data from the mean at that point in time and 

space. It should be noted that the error bars on this dataset are large, due to the spatial and temporal mismatch between model 

and measurement in a highly heterogeneous sampling domain. For both model and measurement, the surface area increases 295 

towards the surface, as is to be expected, and decreases with altitude. The vertical profile is well captured by the CMAQ model, 

however, there is a larger range of measured surface area concentrations than is seen in the corresponding model altitude bin.  

 

Figure 4: Average vertical profile of a) measured DISCOVER-AQ aerosol surface area concentration (Sa,meas) and b) CMAQ aerosol 

surface area concentration (Sa,mod) over the entirety of the DISCOVER-AQ campaign. Each measured point is an average of the 300 
points included in that 4D index corresponding to CMAQ. The overlayed boxplots show the median (red line within blue box), and 

interquartile ranges (blue box with the 25th percentile at the left end and 75th percentile at the right end) in 1km altitude bins. The 

labels on the altitude axis lie at the midpoint of the 1km altitude bin, and red crosses indicate outliers from the majority of the dataset 

at that altitude portion. 
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As shown in Figure 4, measured Sa is on average larger than modeled Sa, particularly at low altitude, where the ratio of the 305 

median, modeled Sa to measured Sa near the surface (z < 1 km) is 0.47. This contrasts with what has been reported previously 

in the literature. For example, both Jaeglé et al and Simon et al. found that the median modeled near-surface Sa was consistently 

larger than measured Sa (Sa,mod/Sa,meas = 1.04 – 1.6) (Simon et al., 2010).  

 

The comparison between modeled and measured Sa is also shown with histograms in Figure 5 for all altitudes (5a,b) and for 310 

the surface level measurements (0-1km; 5c,d). While the number of points is not consistent between the model and 

measurement datasets due to the 12km grid box constraint and time frequency in CMAQ, differences in the range in surface 

area concentrations are observed. Measured surface area concentrations range between 0 - 1.87 × 103 µm2/cm3 with the vast 

majority of data below 420 µm2/cm3, while modeled Sa ranges between 0-300µm2/cm3.  

 315 

Figure 5: Histograms of a) measured aerosol surface area concentration (DISCOVER-AQ), b) modeled aerosol surface area 

concentration (CMAQ), c) measured aerosol surface area in the 0 to 1km altitude bin, and d) modeled aerosol surface area in the 0 

to 1km altitude bin over the entirety of the DISCOVER-AQ campaign.  
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3.2 Direct Model-Measurement Comparison 

A linear regression of CMAQ modeled dry aerosol surface area concentration and measured aerosol surface area concentration 320 

is shown in Figure 6. The measured data has been averaged to the space and time domain of CMAQ (latitude, longitude, 

altitude, and time). The coefficient of determination (r2) for the linear regression of modeled and measured Sa was 0.52 with a 

slope of 0.437 ± 0.004, indicating that the measured Sa is on average twice that of the model value. 

 

Figure 6: Comparison of Sa,mod and Sa,meas over the full DISCOVER-AQ campaign with measurement data averaged to the 325 
corresponding model latitude, longitude, altitude, and time point. 

 

The histogram of the surface area ratio (Sa,mod /Sa,meas) throughout the campaign in Figure 7 shows that the model underpredicts 

the measured surface area ratio in 81% of the comparison points. The model underpredicts Sa by a factor of two 44% of the 

time. In the following section, we explore potential causes for model-measurement disagreement, including model-330 
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measurement spatial and temporal differences, the spatial distribution of primary emissions, and/or treatment of secondary 

aerosol formation. 

 

Figure 7: Histogram of the ratio of model to measured aerosol surface area concentration (Sa,mod /Sa,meas) over the full DISCOVER-

AQ campaign. 335 

4 Discussion 

In the following section, we explore the source of model-measurement discrepancy in Sa discussed in section 3. We begin by 

investigating the dependence of Sa,mod / Sa,meas on altitude and proximity to primary aerosol sources. We then investigate the 

role of temporal and spatial resolution as CMAQ has a much coarser resolution, both spatially and temporally, than the 

measured data. Finally, we investigate the possibility of impacts on Sa,mod / Sa,meas from anthropogenic and biogenic indicators 340 

as they are tied to aerosol emissions.  
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4.1 Dependence of Sa,mod/Sa,meas on Altitude 

Given the strong dependence of Sa on altitude as shown in Figure 4, we first explore if part of the variance in Sa,mod /Sa,meas 

shown in Figure 6 can be explained by altitude. In Figure 8, we show Sa,mod /Sa,meas as a function of altitude. As shown, there is 

an altitude dependence in Sa,mod /Sa,meas, where the mean, median, and interquartile range (25th to 75th percentile) are given in 345 

Table 2 for the 1km altitude bins from 0-5km. Model-measurement discrepancy in Sa is largest at low altitude, where particle 

number concentrations are highest, proximity to particle sources is close, and heterogeneity in particle number concentrations 

are largest. 

 

Figure 8: Ratio of modeled to measured aerosol surface area concentration (Sa,mod /Sa,meas) including median (red line within blue 350 
box), and interquartile ranges (blue box with the 25th percentile at the left end and 75th percentile at the right end) in 1km altitude 

bins. The red crosses outside of the bounds of the plot note outliers. The labels on the altitude axis lie at the midpoint of the 1km 

altitude bin.  

 

 0-1km 1-2km 2-3km 3-4km 4-5km 

Sa,mod / Sa,meas (mean) 0.56 0.97 0.89 1.05 1.42 

Sa,mod / Sa,meas (median) 0.47 0.51 0.63 0.82 0.75 

Sa,mod / Sa,meas (interquartile range) 0.33-0.65 0.33-0.80 0.37-0.97 0.56-1.31 0.53-2.14 

Table 2: Mean, median, and interquartile range (range of 25th to 75th percentile) surface area ratio (Sa,mod / Sa,meas) for each 1km 355 
altitude bin from 0-5km. 
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4.2 Dependence of Sa,mod/Sa,meas on Spatial and Temporal Resolution 

The 12 km ×12 km spatial resolution and 1 hour temporal resolution of CMAQ is significantly larger and longer than the 

spatial and temporal resolution of the aircraft data, resulting in an inherent contrast in resolution between model and 

measurement that may play a role in the variance in Sa,mod /Sa,meas. Within any individual 12 km ×12 km model pixel, in the 360 

Baltimore-Washington sampling area, there is heterogeneity in Sa as shown in Figure 9. Sub grid scale variability in Sa would 

lead to increased variance in Sa,mod /Sa,meas, but likely with a mean and median close to 1 if the domain sampling was not biased, 

comparable to what is observed in the CO comparison (Figure 3), where the histogram of the CO data showcases a clear center 

around 1, with very few data points beyond a COmod/COmeas value of 2.  

 365 

Figure 9: Flight path from 28 July with overlayed UHSAS Sa data within the 10th layer of CMAQ altitude (~850-1000m) and gridded 

CMAQ Sa from layer 10 in the background. The CMAQ data is specifically at noon EST (UTC 16). 

 

To investigate the discrepancy more quantitatively, we compare the probability density functions (PDF) of the model-to-

measured CO, NOx, particle number concentration and particle surface area concentrations. We use the PDF to characterize 370 

the population of data based on the standard deviation and mean, which provides a quantitative and comparable assessment of 

the variability in the comparison. Assuming that the research flights sampled the CMAQ model domain in an unbiased way 

(i.e. flights did not target or avoid point sources) we would expect that the PDFs of the model-to-measured ratio in CO, NOx, 
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number concentration, and surface area concentration would all center at 1 (or log10(1) = 0 as shown in Figure 10) and the 

standard deviation of the distribution () would reflect heterogeneity in the scalar concentration at scales smaller than the 375 

model spatial or temporal domain. The histogram, PDF, and cumulative distribution function (CDF) for log10(Sa, mod./Sa, meas.) 

is shown in Figure 10. The PDF of the histogram of log10(Sa, mod./Sa, meas.) has a mean (µ) of -0.26 and standard deviation (σ) of 

0.34.  

 

Figure 10: Normalized histogram, probability density function (PDF), and cumulative distribution function (CDF) for the model-to-380 
measuremed aerosol surface area (Sa, mod./Sa, meas.). The histogram and PDF serve to indicate the median and spread of the dataset, 

while the CDF indicates the percentage of data encompassed at a certain data threshold. 

 

Comparison of the peak and width of the PDF of the model-to-measuered ratios of CO, particle number concentration (N), and 

NOx provides an objective measure for assessing the impact of spatial and temporal resolution on the comparison. As shown 385 

in Figure 11 and Table 3, the mean of each PDF is -0.0029, 0.047, and -0.14 for CO, N, and NOx. Each of these values is 

significantly closer to 0 than that measured for Sa (-0.26), suggesting that the methodology for assessing model-measurement 

agreement should not be significantly impacted by model resolution, especially given the large range in atmospheric lifetimes 

for CO, N, and NOx. Interestingly, the mean Nmod./Nmeas is close to 1 (100.047  = 1.11), where a value closer to 1 indicates 

agreement between model and measurement and that closer to zero indicates a large discrepancy between datasets. The mean 390 

Nmod./Nmeas is significantly different than that observed for Sa, mod/Sa,meas (10-0.26 = 0.55), perhaps suggesting that the model-
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measurement disagreement is related to the shape of the size distribution either due to the a priori emissions size distribution 

or secondary aerosol processes. 

 

Figure 11: Normalized probability density functions for the log10 of the model to measurement ratio in particle number concentration 395 
(yellow), carbon monoxide (red), NOx (purple), and particle surface area concentration (blue). 

 

 

Table 3: Probability Density Function (PDF) fit parameters for the distributions shown in Figure 11.  

 400 

Also shown in Figure 11 and Table 3 the standard deviation (σ) of the PDF for the CO, N, and NOx model-to-measurement 

ratios, is 0.15, 0.27, and 0.34 respectively. The standard deviation of the PDF of [CO]mod/[CO]meas is the narrowest, likely 

reflecting the longer lifetime of CO and a damping of sub grid scale variability of CO in each pixel. The width of the N and Sa 

 mean () standard deviation () 

log10(Sa,mod / Sa,meas) -0.26 0.34 

log10(N,mod / N,meas) 0.047 0.27 

log10([CO]mod / [CO]meas) -0.0029 0.15 

log10([NOx]mod / [NOx]meas) -0.14 0.34 
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ratio distributions are comparable, again highlighting that the deviation of Sa,mod/Sa,meas from 1 may reflect differences in the 

model-measured aerosol size distribution (as shown in Figure 1). Collectively, this analysis suggests that there is not a 405 

significant bias on average in the methodology based on model resolution and that the apparent differences in the number and 

surface area model-measurement ratios are most likely driven by the shape of the underlying aerosol size distribution. 

 

It is interesting to note that the model-measurement agreement in particle number concentrations is significantly better than 

that of particle surface area concentrations, implying that the differences in Sa may be related to the shape of the aerosol size 410 

distribution. There have been numerous analyses of model-measurement comparison of the aerosol number concentration and 

size distributions specific to CMAQ (Elleman and Covert, 2009, 2010; Kelly et al., 2011; Zhang et al., 2010b). Elleman and 

Covert compared the 4km CMAQ v4.4 model’s size distributions to measurement data from the 2001 Pacific Northwest and 

Pacific field campaigns. The Pacific Northwest field campaign (PNW2001) was conducted in August 2001 with both airborne 

and ground-based measurements of pollution in the Puget Sound urban area around Seattle, Washington, and included 415 

northwest Oregon, western Washington, and southwest British Columbia. PNW2001 was conducted to complement that of the 

Pacific 2001 field campaign, which was a major regional air pollution study in the Lower Fraser Valley of metropolitan 

Vancouver, British Columbia focusing on ground-based observations, conducted from 10 August to 2 September 2001. 

Analyses of these two campaigns and model predictions found that CMAQ underpredicted airborne particle number 

concentrations by a factor of 10-100 and was least accurate in the smallest size mode: the Aitken mode (Elleman and Covert, 420 

2009). The underprediction was consistent between measurement studies and did not depend on time and location. Zhang et 

al compared CMAQ v4.4 to the 1999 Southern Oxidants Study and corroborated the findings of Elleman and Covert, that the 

Aitken mode was significantly underpredicted in total number concentration (varying by up to 3 orders of magnitude), yielding 

an overall underprediction of PM2.5 in Atlanta (Zhang et al., 2010b). 

 425 

In a follow-up analysis, Elleman and Covert used updated emissions size distributions to compare a summer 2001 case study 

comprising data from a period of August 2001 with airborne and surface measurements from Pacific 2001 and PNW2001, as 

was used in the original base case to CMAQ (Elleman and Covert, 2010). CMAQ still underpredicted the observable aerosol 
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number concentrations by about one order of magnitude with updated emission size distributions, which was an improvement 

from the 1-2 orders of magnitude previously but pointed to issues within the model’s prediction of aerosol number. Kelly et 430 

al. then utilized the updated emissions size distributions from Elleman and Covert as well as the original distributions with in 

CMAQ to compare to the 1998 California Regional PM10/PM2.5 Air Quality Study (CRPAQS) (Kelly et al., 2011). It was noted 

that the simulated number size distributions from the improved emission simulation were about 20% lower than the 

observations, while the standard-emission simulation was about a factor of 5 lower than the observations, confirming that the 

updated emissions improved model-measurement agreement. The observed shape of the distributions also better matched the 435 

updated emissions simulations. The improvement in model-measurement agreement showcases the necessity for accurate size 

distributions and emissions within CMAQ and the impact on Sa data.  

 

4.3 Dependence of Sa,mod/Sa,meas on Secondary Aerosol Production 

Two potential reasons for the discrepancy between mean Sa,mod. /Sa,meas (0.55) and mean Nmod. /Nmeas (1.11) are: 1) uncertainty 440 

in the size distribution of primary aerosol particles, and 2) uncertainty in secondary aerosol production (i.e. the condensation 

of low volatility material to existing aerosol particles). To investigate these two potential sources, we investigate the response 

of Sa,mod. /Sa,meas to photochemical age. We start by looking at the response of Sa,mod /Sa,meas to the NOx/HNO3 ratio (Figure 12), 

where high NOx/HNO3 in this sampling region is indicative of air masses near an anthropogenic source, similar to that of a 

NOx/NOy clock (Kleinman et al., 2008; Pan et al., 2015; Tie et al., 2009). If the aerosol surface area of primary emissions is 445 

underestimated in the model, we would expect Sa,mod. /Sa,meas to be biased low at high NOx/HNO3. If the condensation rate of 

low volatility anthropogenic species is underestimated in the model, we would expect Sa,mod /Sa,meas to decrease with a 

decreasing NOx/HNO3 ratio as the airmass ages. As shown in Figure 12, Sa,mod. /Sa,meas is remarkably constant over a wide span 

of NOx/HNO3 ratios (0.5-10), before tending to larger values at low NOx/HNO3. This trend is also seen in the dependence of 

N,mod. /N,meas on NOx/HNO3, suggesting a potential discrepancy in the model-measured lifetime of aerosol or treatment of 450 

background aerosol particles in the region. This trend suggests that an underestimate in the condensation of low-volatility gas-

phase compounds of anthropogenic origin are not a significant driver of model-measurement discrepancy in Sa. Rather, the 
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persistent underestimate of Sa in the model at high NOx/HNO3 points to uncertainty in the size distribution of primary emissions 

or secondary aerosol formed at the early stages of oxidation. 

 455 

Figure 12: Interquartile ranges in Sa,mod. /Sa,meas  as a function of the modeled (CMAQ) NOx/HNO3 concentration ratio. 

 

To address secondary aerosol formation more generally, we also assessed the response of Sa,mod. /Sa,meas to temperature as 

equilibrium partitioning in the gas-phase based on temperature and RH is a primary driver of secondary aerosol formation. No 

statistically significant trend in Sa,mod. /Sa,meas was observed over the range of temperatures observed during DISCOVER-AQ. 460 

 

To further investigate secondary aerosol formation as a factor in driving the discrepancy in modeled Sa, we assess the response 

of Sa,mod. /Sa,meas to isoprene oxidation products in the aerosol phase as an example of biogenic VOC oxidation. As shown in 

Figure 13, there does not appear to be a trend with concentration of isoprene SOA. Though we cannot test for all biogenic 

oxidation products, the lack of a trend with isoprene SOA in the aerosol phase may mean that the discrepancy in Sa,mod. /Sa,meas 465 

is not biogenic in nature. 
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Figure 13: Interquartile ranges in Sa,mod. /Sa,meas  as a function of the modeled (CMAQ) isoprene SOA concentration. 

5 Implications for the Treatment of Heterogeneous Reactions in Air Quality Models 

As shown in E2, the rate constant for the heterogeneous loss of gas-phase compounds to aerosol (khet) is linearly dependent on 470 

both aerosol surface area concentration (Sa) and the reactive uptake coefficient (). In section 3, we showed that the average 

Sa,mod. /Sa,meas, determined from the regression of the average model and measurement Sa was 0.437, which would result in 

approximately a factor of 2 underestimate in khet. A similar underestimation has been seen previously in select ground (Ghim 

et al., 2017; Liu and Zhang, 2011; Prank et al., 2016; Wang et al., 2021; Yu et al., 2008a, 2012, 2008b; Zhang et al., 2019, 

2006, 2010c) and aircraft-based (Baker et al., 2018; Chen et al., 2020) studies of CMAQ prediction of PM2.5, which may point 475 

to a larger issue in model representation of particle mass. For some heterogeneous reactions, where the reactive uptake 

coefficients are well parameterized in model (e.g., extremely low volatility species) uncertainty in Sa likely determines 

uncertainty in khet. To assess the dominant source of uncertainty in model derive khet, we focus on the N2O5 system as an 

example. Recently, McDuffie et al. (2018) assessed the accuracy of model parameterizations of (N2O5) using ambient 

observations from the WINTER campaign. In Figure 14a, we show the histogram and PDF of the ratio of (N2O5)mod calculated 480 

in CMAQ using the Bertram and Thornton parameterization for the WINTER campaign, compared with (N2O5)meas, which 
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was determined in McDuffie et al. from an observationally constrained analysis of flight data (McDuffie et al., 2018). The 

PDF of the directly compared model-measurement ratio is centered above zero (µ = 0.22 or (N2O5)mod/(N2O5)meas = 1.65) 

(Figure 14, Table 3). Interestingly, since khet(N2O5) is proportional to the product of Sa and (N2O5), the underestimate in model 

Sa, which we assume would be consistent for WINTER, is compensated by an overestimate in (N2O5) in the mean state. While 485 

the width of the PDF of log10((N2O5)mod./(N2O5)meas.) for WINTER is similar to that seen for Sa for DISCOVER-AQ, it should 

be noted that neither the histogram of the (N2O5) ratio or the Sa ratio is easily fit to a gaussian peak shape. As shown in Figure 

14, the histogram of the log10((N2O5)mod./(N2O5)meas.) for WINTER has a broader range of values than that of Sa in this study. 

Collectively, this analysis highlights that while model uncertainty in khet(N2O5) is largely a function of quality of the (N2O5) 

parameterization, future improvements in modeled surface area concentrations, particularly in urban environments, will also 490 

result in more accurate representations of heterogeneous chemical reactions.  

 

Figure 14: Normalized probability density functions for the log10 of the model to measurement ratio in (a) (N2O5) from the WINTER 

campaign and (b) particle surface area concentration, Sa from this study.  
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Data Availability 495 

Data from the 2011 DISCOVER-AQ Campaign is publicly available at http://doi.org/10.5067/Aircraft/DISCOVER-

AQ/Aerosol-TraceGas CMAQ output data will be made available on the University of Wisconsin – Madison MINDS database 

at https://minds.wisconsin.edu/handle/1793/76304.  
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