Supporting Information for

A mass balance-based emission inventory of non-methane volatile organic compounds (NMVOCs) for solvent use in China

Ziwei Mo^{1,2#}, Ru Cui^{1,2#}, Bin Yuan^{1,2*}, Huihua Cai³, Brian C. McDonald⁴, Meng Li^{4,5}, Junyu Zheng^{1,2} Min Shao^{1,2*}

¹ Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China.

² Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 511443, China.

³ Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China

⁴ Chemical Sciences Laboratory, NOAA Earth System Research Laboratories, Boulder, CO, USA

⁵ Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

*Correspondance to

Prof. Bin Yuan (byuan@jnu.edu.cn) and Prof. Min Shao (mshao@pku.edu.cn)

[#]These authors contributed equally to this work

Contents

Text S1. Source profiles used in this study.

Table S1-S5 Data source for VOC content of coating, ink, adhesive, insecticide, cleaner and personal care.

Table S6. The parameters for calculating emission of various solvent product.

Table S7. Proxy variables for allocating national emissions to provincial level.

Table S8. Market share of NMVOCs control technologies and their control efficiency.

Table S9. Annual value of production about organic waste gas treatment industry, percentage

with NMVOCs treatment facilities and effective control efficiency in 2000-2017.

Table S10. Solvent use emissions from various categories in 2000-2017.

Table S11. Major policies promulgated by the state to control NMVOCs

Table S12. NMVOCs emission source classification in MEIC and the adjusted classification in this study.

Table S13. Information on the main solvent sources and their emission factors in different studies.

Figure S1. Sources of pesticide consumption data.

Figure S2. Formaldehyde-type adhesive consumption during seventeen years.

Figure S3-S12. The procedure of source profiles for coating, ink, adhesive and herbicide.

Figure S13. NMVOCs group emission from various solvent categories in 2017.

Text S1. Source profiles used in this study.

Source profiles of solvents use used in this study are obtained by combining the domestic and foreign profiles. The procedure involves four steps. Firstly, a new domestic profile is formed by calculating the average weight percentage of NMVOCs groups from multiple domestic source profiles. If some source profiles have OVOC, the treatment of OVOC is similar to Wu and Xie (2017) and Li et al. (2014). Secondly, common species in the domestic and foreign profiles were identified, respectively. Common species may account for different proportions in domestic and foreign profiles. Thirdly, we calculate proportions of common species in domestic profiles scaling to proportions of common species in foreign profiles. At the same time, we scale unique species in domestic profiles. Lastly, we integrated proportions of common species, unique species in domestic profiles and unique species in foreign profiles into a new and complete source profile. Figure S3-S12 show procedure of source profiles for architectural coating, furniture coating, automobile coating, other coating, offset printing ink, letterpress printing ink, gravure printing ink, other printing ink, shoemaking adhesive and herbicide.

Products	s	Jiangsu	Shandong	Zhejiang	Guangdong	Shanghai	Beijing	GB18582-2008	GB24408-2009	Mea
									68	
	Solvent-based								70	71
Architectural coating									76	
	Water-based							12	12	12
	water-based								15	13
		80	65	75	66		60			
	Solvent-based			80	50					69
Furniture coating					75					
	Water-based	15	10	30	14		5			1:
	UV		10		14					12
		80	45	45	50	45				
	Solvent-based		80	80	45	80				6
	Solvent bused		55	55	80	55				0
					55					
Automotive coating		15			5					
	Water-based				15					1
	Water-based				15					1
					20					
	UV		10		14					12
		0	0	2						
Powder coating			0							1
			5							
		80	70	65	70	65				
	Solvent-based			60	40					67
Other coating				80	70					
	Water-based	15	10	30						18
	UV		10		14					12

Table S1 Data source for VOC content of coating (%).

a. GB18582-2008, Limit of harmful substances of interior architectural coatings; b. GB24408-2009, Limit of harmful substances of exterior wall coatings.

	Products	Jiangsu	Zhejiang	Guangdong	Shanghai	BJX ^a	HJ 2542-2016 ^b	Mean
	Sheet-fed offset Ink	5	5	5	5	2	3	4
Offset ink	Cold set web-fed-offset ink			5		2	3	3
	Heat set web-fed-offset ink	30	30	30	30	5	10	23
L attamanaga inla	Solvent-based	60	60	60	60	60		60
Letterpress ink —	Water-based	15				10		13
Company inte	Solvent-based	60	60	60	60	75		63
Gravure ink —	Water-based	15				30		23
UV ink		0				2		1
Screen ink		45	45	45	45	50		46
Other ink		60	60	60	60			60

Table S2 Data source for VOC content of ink (%)

a. Data from VOCs.BJX (2019)

b. HJ 2542-2016, Technical requirement for environmental labelling products offset printing ink.

Amplication fields	Water-based (%) ^a								
Application fields	Polyvinyl acetate	Polyvinyl alcohol	Rubber	Polyurethane	EAV	Acrylics	Other	Mean	
Architecture	10	10	15	10	5	10	5	9	
Packaging and labelling	5		5	5	5	5	5	5	
Woodworking	10		10	5	5	5	5	7	
Paper converting	5	5	5	5	5	5	5	5	
Shoemaking	5		15	5	5	10	5	8	
Fiber processing	5	5	5	5	5	5	5	5	
Transportation	5		5	5	5	5	5	5	
Residential use	5	5	5	5	5	5	5	5	
Other	5	5	5	5	5	5	5	5	

Table S3. Data source for VOC content of adhesive (%)Table S3a VOCs content of water-based adhesive

a. Data from GB33372-2020, Limit of volatile organic compounds content in adhesive.

Table S3b VOCs content of solvent-based adhesive

Annication fields	Solvent-based (%) ^a								
Application fields	Polychloroprene rubber	SBS resin	Polyurethane	Acrylics	Other	Mean			
Architecture	65	55	50	51	50	54			
Packaging and labelling	60	50	40	51	50	50			
Woodworking	60	50	40	51	40	48			
Paper converting	60	50	25	51	25	42			
Shoemaking	60	50	40		40	48			
Fiber processing	60	50	25	51	25	42			
Transportation	60	50	25	51	25	42			
Residential use	60	50	25	51	25	42			
Other	60	50	25	51	25	42			

Table S3c VOCs content of bulk form adhesive

Application					Bulk f	form (%) ^a				
fields	Organic silicon	MS	Polyurethane	Polysulfide	Acrylics	Epoxy resins	α -Cyanoacrylate	Thermoplastic	Other	Mean
Architecture	10	10	5	5		10	2	5	5	7
Packaging and labelling	10	5	5					5	5	6
Woodworking	10	5	5	5	20	5	2	5	5	7
Paper converting		5	5					5	5	5
Shoemaking		5	5				2	5	5	4
Fiber processing		5	5					5	5	5
Transportation	10	10	5	5	20	10	2	5	5	8
Residential use	10	5	5	5	20	5	2	5	5	7
Other	10	5	5	5	20	5	2	5	5	7

	Products		VOC limit (%)	References	Mear
	Fabric refresher	Aerosol	15		
	radric refresher	Nonaerosol	6		
	Fabric protectant	Aerosol	60		
Laundry	Fabric protectant	Nonaerosol	1	CARB	16
Lauliury	Laundry prewash	Aerosol/Solid	22	CARD	10
	Laundry prewasn	All other forms	5		
	Snot romovor	Aerosol	15		
	Spot remover	Nonaerosol	3		
Dishwashing			10	HSECSM	10
	Glass cleaner	Aerosol	10		
	Glass cleaner	Nonaerosol	3		
		Aerosol/Pump	8		
	Oven or grill	spray	0		
	cleaner	Liquid	5	CARB	
Surface cleaners		Nonaerosol	4	CARD	9
	Toilet or urinal	Aerosol	10		
	care product	Nonaerosol	3		
	Bathroom and tile	Aerosol	7		
	cleaner	Nonaerosol	1		_
	Oil stain cleaner		40	HSECSM	
In dustrial data		Water-based	5	CD 29509 2020 a	5
Industrial detergent		Solvent-based	90	GB 38508-2020 ^a	90
Insecticide		Liquid	25	HSECSM	24
insecticide		Spray	22	IDECOM	24

Table S4. Data source for VOC content of cleaner and insecticide (%).

a. GB 38508-2020, Limits for volatile organic compounds content in cleaning agents

Table S5. Data	source for VOC conte	nt of personal care	(%).		
	Products		VOC limit (%)	References	Mean
	Hair mousse		6		
	Hair shine		55		
	Hair finishing spray		55		
	Hair styling product	Aerosol and pump spray	6		
Hair and body care	5 81	All other forms	2	CARB	23
	Temporary hair color		55		
	Hand cleaner		8		
	Shampoo ^a		8		
	Body wash ^a		8		
Daufanaa		With 20% or less fragrance	75	CADD	70
Perfumes		With more than 20% fragrance	65	CARB	70
Skin care			35	Green Seal	35
	A atia angainant	Aerosol	50		
	Antiperspirant	Nonaerosol	0		
	Deodorant	Aerosol	10		
Other cosmetic	Deodorant	Nonaerosol	0	CARB	18
Other cosmetic	Shaving cream		5		18
	Shaving gel		4		
	Nail polish remover		1		
	Nail polish		75	Green Seal	

Table S5. Data source for	VOC content of pe	rsonal care (%).
---------------------------	--------------------------	------------------

a. VOC content of shampoo and body wash is referred from data of hand cleaner.

	Prod	lucts	$\mathbf{I}_{\mathbf{I}}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{1}}}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	£	f	$\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}}}}}$	VE	UE
Level 1	Level 2	Level 3	$-W_{VOC}$ (%)	fvoc	f _{s/IVOC}	<i>W_{S/IVOC}</i> (%)	VF _{VOC}	VF _{S/IVOC}
	Architectural	Solvent-based	71 ± 3	0.99	0.01	1 ± 0	1	0.70 ± 0.20
	coating	Water-based	13 ± 1	0.76	0.24	4 ± 0	1	0.70 ± 0.20
	Energiterre	Solvent-based	69 ± 10	0.99	0.01	1 ± 0	1	0.70 ± 0.20
	Furniture	Water-based	15 ± 8	0.76	0.24	5 ± 3	1	0.70 ± 0.20
	coating	UV	12 ± 2	0.76	0.24	4 ± 1	1	0.70 ± 0.20
Casting	A	Solvent-based	61 ± 15	0.99	0.01	1 ± 0	1	0.70 ± 0.20
Coating ^a	Automotive	Water-based	14 ± 5	0.76	0.24	4 ± 1	1	0.70 ± 0.20
	coating	UV	12 ± 2	0.76	0.24	4 ± 1	1	0.70 ± 0.20
	Powder coating		1 ± 2	0.76	0.24	0 ± 0	1	0.70 ± 0.20
		Solvent-based	67 ± 11	0.99	0.01	1 ± 0	1	0.70 ± 0.20
	Other	Water-based	18 ± 8	0.76	0.24	6 ± 3	1	0.70 ± 0.20
		UV	12 ± 2	0.76	0.24	4 ± 1	1	0.70 ± 0.20
		Sheet-fed offset Ink	4 ± 1	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	Offset ink	Cold set web-fed-offset ink	3 ± 1	0.86	0.14	0 ± 0	1	0.70 ± 0.20
		Heat set web-fed-offset ink	23 ± 11	0.86	0.14	4 ± 2	1	0.70 ± 0.20
	Tettermene in h	Solvent-based	60 ± 0	0.86	0.14	10 ± 0	1	0.70 ± 0.20
Ink ^b	Letterpress ink	Water-based	13 ± 3	0.86	0.14	2 ± 0	1	0.70 ± 0.20
INK °	Communication 1	Solvent-based	63 ± 6	0.86	0.14	10 ± 1	1	0.70 ± 0.20
	Gravure ink	Water-based	23 ± 8	0.86	0.14	4 ± 1	1	0.70 ± 0.20
	UV ink		1 ± 1	0.86	0.14	0 ± 0	1	0.70 ± 0.20
	Screen ink		46 ± 2	0.86	0.14	7 ± 0	1	0.70 ± 0.20
	Other		60 ± 0	0.86	0.14	10 ± 0	1	0.70 ± 0.20
A dheairea C	Auchitaatuur	Water-based	9 ± 3	0.86	0.14	1 ± 1	1	0.70 ± 0.20
Adhesive ^c	Architecture	Solvent-based	54 ± 6	0.89	0.11	7 ± 1	1	0.70 ± 0.20

Table S6. The parameters for calculating emission of various solvent product.

	Produc	ets	$\mathbf{I}_{\mathbf{I}}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{\mathbf{I}_{1}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	£	£	IAZ (0/.)	VE	VE
Level 1	Level 2	Level 3		f _{voc}	f _{s/Ivoc}	$W_{S/IVOC}$ (%)	VF _{VOC}	VF _{S/IVOC}
		Bulk form	7 ± 3	0.86	0.14	1 ± 0	1	0.70 ± 0.20
		Water-based	5 ± 0	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	Residential use	Solvent-based	42 ± 14	0.89	0.11	5 ± 2	1	0.70 ± 0.20
		Bulk form	7 ± 5	0.86	0.14	1 ± 1	1	0.70 ± 0.20
		Water-based	7 ± 2	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	W	Solvent-based	48 ± 8	0.89	0.11	6 ± 1	1	0.70 ± 0.20
	Woodworking	Bulk form	7 ± 5	0.86	0.14	1 ± 1	1	0.70 ± 0.20
		Formaldehyde type	5 ± 4^{d}	0.86	0.14	1 ± 1	1	0.70 ± 0.20
	D	water-based	5 ± 0	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	Paper	Solvent-based	42 ± 14	0.89	0.11	5 ± 2	1	0.70 ± 0.20
	converting	Bulk form	5 ± 0	0.86	0.14	1 ± 0	1	0.70 ± 0.20
		Water-based	8 ± 4	0.86	0.14	1 ± 1	1	0.70 ± 0.20
	Shoemaking	Solvent-based	48 ± 8	0.89	0.11	6 ± 1	1	0.70 ± 0.20
		Bulk form	4 ± 1	0.86	0.14	1 ± 0	1	0.70 ± 0.20
		Water-based	5 ± 0	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	Fiber processing	Solvent-based	42 ± 14	0.89	0.11	5 ± 2	1	0.70 ± 0.20
		Bulk form	5 ± 0	0.86	0.14	1 ± 0	1	0.70 ± 0.20
		Water-based	5 ± 0	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	Transportation	Solvent-based	42 ± 14	0.89	0.11	5 ± 2	1	0.70 ± 0.20
		Bulk form	8 ± 5	0.86	0.14	1 ± 1	1	0.70 ± 0.20
	De che c'ana an d	Water-based	5 ± 0	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	Packaging and	Solvent-based	50 ± 6	0.89	0.11	6 ± 1	1	0.70 ± 0.20
	labelling	Bulk form	6 ± 2	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	Other	Water-based	5 ± 0	0.86	0.14	1 ± 0	1	0.70 ± 0.20
	Other	Solvent-based	42 ± 14	0.89	0.11	5 ± 2	1	0.70 ± 0.20

	Pro	ducts	\mathbf{M}	ſ	£	IAZ (0/.)	VE	VE
Level 1	Level 2	Level 3	W_{VOC} (%)	f _{voc}	fs/ivoc	$W_{S/IVOC}$ (%)	VF _{VOC}	VF _{S/IVOC}
		Bulk form	7 ± 5	0.86	0.14	1 ± 1	1	0.70 ± 0.20
	Insecticide		24 ± 2	0.5	0.5	24 ± 2	1	0.30 ± 0.25
Pesticide	Herbicide		$24\pm2~{\rm f}$	0.5	0.5	24 ± 2	1	0.30 ± 0.25
Pesticide	Bactericide		$24\pm2~{\rm f}$	0.5	0.5	24 ± 2	1	0.30 ± 0.25
	Other		$24\pm2~{\rm f}$	0.5	0.5	24 ± 2	1	0.30 ± 0.25
	Laundry		16 ± 18	0.81	0.19	4 ± 4	0.007 ± 0.005	0
	Dishwashing		10 ± 0	0.92	0.08	1 ± 0	0.044 ± 0.006	0
Cleaner	Surface cleaner		9 ± 11	0.78	0.22	3 ± 4	0.47 ± 0.38	0
	Industrial	Water-based	5 ± 0	0.22	0.78	18 ± 0	0.25	0.25
	detergent ^e	Solvent-based	90 ± 0	0.99	0.01	1 ± 0	1	0.70 ± 0.20
	Hair and body		23 ± 23	0.91	0.09	2 ± 2	0.60 ± 0.40	0
	care		23 ± 23	0.91	0.09	$Z \equiv Z$	0.00 ± 0.40	0
Personal care	Perfume		70 ± 5	0.78	0.22	20 ± 1	1	0.40 ± 0.15
	Skin care		35 ± 0	0.93	0.07	3 ± 0	1	0.40 ± 0.15
	Other		18 ± 27	0.86	0.14	3 ± 4	0.80 ± 0.20	0.40 ± 0.15

a. The total of coating activity comes from China coating industry Yearbook. Level 2 of coating are derived from the China Coating Industry Yearbook for 2007-2010 and the "13th Five-Year plan" of China coating industry for 2011-2014. Level 3 of architectural coating is from Liu (2000) for 2000, China coating industry Yearbook for 2007-2010, Chyxx (2014) for 2013 and Huaon (2019) for 2018. Years missing data are estimated based on the most recent years data available for level 2 and 3. Level 3 of other coating are estimated roughly

based on water-based, solvent-based and UV proportion in total.

b. The total and level 2 of ink are obtained from China Light Industry Yearbook. Level 3 proportion for some ink are from Chyxx (2017), Bai and Zi (2003) and Qianzhan (2019).

c. The total and level 2 sources of adhesive are obtained from China Chemical Industry Yearbook. Solvent-based proportion of shoemaking adhesive is from Yuan and Chen (2005) and Chyxx (2015). Other level 3 are estimated roughly based on water-based, solvent-based

and bulk form proportion in total.

d. VOCs content of formaldehyde type adhesive is referred to DYQ (2019), Henan River Grinding Material Co LTD (2020) and GB/T14732-2017 (Wood adhesive: urea-formaldehyde, phenol-formaldehyde and melamine-formaldehyde resins).

e. Level 3 of industrial detergent is from Vzkoo (2019).

f. Data are referred to that of insecticide.

	Solvent use	Proxy variable
	Pesticide	Cultivated land area ^a
	Personal care	Disposable income of households ^a
Cleaner	Industrial detergent	Industrial sales value ^b
Cleaner	Other cleaner	Disposable income of households ^a
	Architectural coating	Building area completed ^a
Cratina	Automotive coatings	Sales value of automobile manufacturing ^b
Coating	Furniture coatings	Sales value of furniture manufacturing ^b
	Other coatings	Industrial sales value ^b
	Ink	Sales value of printing and recording media reproduction industry ^b
	adhesives for wood processing	Sales value of wood processing ^b
	Adhesives for paper processing, label	Sales value of printing and recording media reproduction industry ^b
Adhesive	Adhesives for fiber processing	Sales value of fiber processing ^b
	Adhesives for transportation	Sales value of automobile manufacturing ^b
	Adhesives for building	Building area completed ^a
	Adhesives for making shoes	Sales value of making shoes ^b
	Adhesives for residential use	Disposable income of households ^a
	Other adhesives	Industrial sales value ^b

Table S7. Proxy variables for allocating national emissions to provincial level.

a. Data from 2017 China Statistical Yearbook

b. Data from 2017 China Industry Statistical Yearbook

VOCs control technology	Share (%)	Control efficiency (%)
Adsorption	48.8	45
Absorption	19.5	20
Plasma	10.3	30
Direct catalytic combustion	7.1	70
Adsorption - Catalytic combustion	6.3	63
Combustion	3.7	78
Photolysis	1.9	15
Other technologies	2.5	43 ^a

Table S8 (a) Market share of NMVOCs control technologies and their control efficiency in the Yangtze River Delta (YRD) region (Lu et al., 2018).

Table S8 (b): Market share of NMVOCs control technologies and their control efficiency in the Pearl River Delta (PRD) region, China (Cai, 2016)

VOCs control technology	Share (%)	Control efficiency (%)
Adsorption	68	45 ^b
Combination technologies ^c	12	63 ^d
Absorption	11	20 ^b
Combustion	2	78 ^b
Plasma	2	30 ^b
Photolysis	1	15 ^b
Other technologies	3	43 ^b

a. Control efficiency of other technologies is based on mean of control efficiency of single technology in Table S8 (a)

b. Data are referred to Table S8 (a).

c. Combination technologies means that more than two technologies work together to process VOCs

d. Data is referred to that of adsorption - catalytic combustion in Table S8 (a).

Year	Annual value of production	Percentage with treatment	Overall effective control
	(Billion CNY)	facilities (%)	efficiency (%)
2000	0.49	0	0
2001	0.56	1	0.4
2002	0.64	2	0.9
2003	0.74	3	1.3
2004	0.85	4	1.7
2005	0.98	5	2.2
2006	1.13	6	2.6
2007	1.3	7	3.0
2008	1.5	8	3.4
2009	1.75	9	3.9
2010	2.1	10	4.3
2011	2.8	13.3	5.7
2012	3.2	16.7	7.2
2013	3.5	20	8.6
2014	8.35	35	15.1
2015	21.2	50	21.5
2016	27	60	25.8
2017	54	70	30.1

Table S9. Annual value of production for organic exhaust gas treatment industry, percentage with NMVOCs treatment facilities and effective control efficiency during 2000-2017.

Year	Adhesive	Coating	Ink	Personal Care	Pesticide	Cleaner	Total	Lower limit	Upper limit
2000	0.30	0.80	0.06	0.35	0.05	0.01	1.58	1.19	2.22
2001	0.32	0.76	0.07	0.44	0.06	0.01	1.66	1.24	2.38
2002	0.38	0.81	0.08	0.49	0.07	0.01	1.85	1.38	2.68
2003	0.44	0.91	0.08	0.66	0.09	0.02	2.19	1.60	3.32
2004	0.47	1.10	0.09	0.70	0.16	0.02	2.53	1.89	3.72
2005	0.52	1.47	0.09	0.75	0.21	0.02	3.06	2.31	4.43
2006	0.65	1.81	0.10	0.77	0.30	0.02	3.65	2.79	5.14
2007	0.78	2.54	0.11	0.87	0.40	0.01	4.71	3.57	6.56
2008	0.83	2.73	0.12	0.99	0.46	0.02	5.14	3.88	7.17
2009	0.97	3.06	0.16	1.04	0.56	0.03	5.82	4.47	7.90
2010	1.20	3.92	0.16	1.09	0.55	0.03	6.96	5.28	9.41
2011	1.40	4.29	0.18	1.26	0.59	0.04	7.76	5.88	10.61
2012	1.49	4.96	0.19	1.47	0.85	0.04	9.00	6.76	12.60
2013	1.63	4.97	0.20	1.68	0.68	0.04	9.19	6.83	13.06
2014	1.65	6.13	0.19	1.77	0.84	0.06	10.64	7.82	14.96
2015	1.62	5.77	0.18	1.87	0.83	0.07	10.34	7.65	14.57
2016	1.65	5.77	0.18	2.10	0.77	0.07	10.53	7.72	14.84
2017	1.63	6.10	0.18	2.15	0.43	0.06	10.55	7.73	14.94

Table S10. Solvent use emissions from various categories in 2000-2017 (Tg).

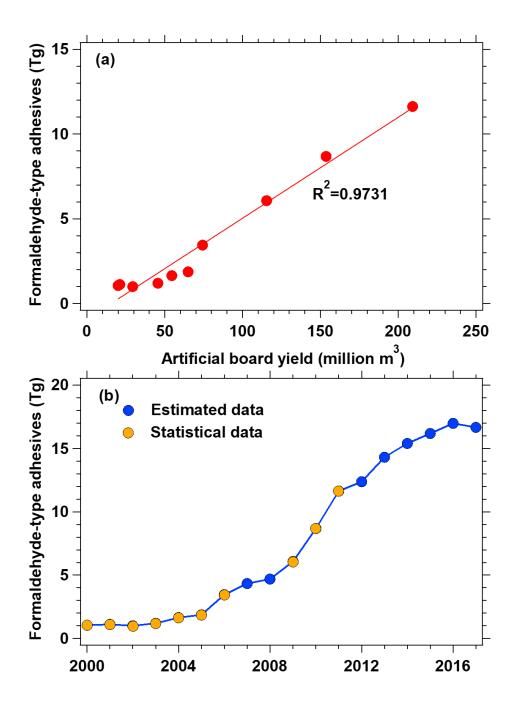
Table S11. Major policies for NMVOCs control in China.

Year	Policy	Related content and significance
2010	Notice on promoting joint prevention and control of air pollution and improving regional air quality	VOCs included in the focus of prevention and control
2011	The 12th five-year plan for environmental protection	Strengthening VOCs control
2012	The 12th five-year plan for the prevention and control of air pollution in key regions	The prevention and control of VOCs fully implemented in 2015
2013	The action plan for air pollution prevention and control	Comprehensive VOCs improvement in the petrochemical industry
2015	Law of the People's Republic of China on the prevention and control of air pollution	VOCs prevention and control subject to legal supervision
2016	The 13th five-year plan for ecological and environmental protection	China's total emissions in 2020 dropping by more than 10 percent compared with 2015
2017	The 13th five-year plan for the prevention and control of volatile organic matter pollution	Perfecting the management system for the prevention and control of VOCs pollution by 2020
2018	Three-Year action plan for winning the blue sky defense battle	Implement VOCs special rectification plan

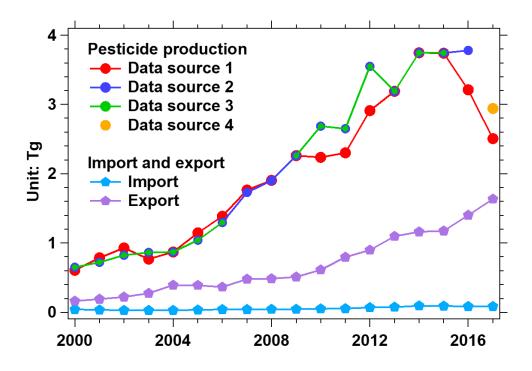
	MEIC	MEIC adjusted in this study			
Solvent	Solvent use	Solvent	Solvent use		
Transportation	Transportation	Transportation	Transportation		
	Coal consumption		Chemical industry		
Industrial	Other fuel comsumption	Industrial process	Oil production, distribution and refin		
	Chemical industry		Other industrial process		
	Oil production, distribution and refinery				
	Other industrial process		Power		
			Coal-residential		
	Coal		Wood-residential		
	Wood	Combustion	Crop residual-residential		
Residential	Crop residuel	Compusiion	Waste treatment-residential		
	Waste treatment		Other fuel consumption-residential		
	Other fuel consumption		Coal consumption-industrial		
			Other fuel consumption-industrial		
Power	Power				

Table S12. Source classification of NMVOC emissions in MEIC and the adjusted classification in this study.

Reference	Base year and region	-	Emission sources	Emission factors	Units	Activity data sources or data (Tg)
			Architecture surface coating	0.051	kg/capita	
			Can coating	100	Mg/wire	
			Magnet wire coating	84	Mg/wire	
			Agriculture machines surface coating	236	Mg/plant	
			Surface coating of plastic parts for business machines	236	Mg/plant	China Statistical
			Metal furniture surface coating	218	Mg/plant	
		Coating	Wood furniture	0.4	kg/piece	Yearbooks, China Light Industry Yearbooks , China Market Yearbooks, China Industrial Economic Statistical Year
Bo et al. (2008)	2005, China	China	Machine tool equipment	0.4	kg/piece	
			Automobile & light duty truck surface coating	21.2	kg/vehicle	
			Large appliance surface coating	0.2	kg/production	
			Bicycle surface coating	0.3	kg/bike	
			Automobile recoating	0.021	kg/capita	
			Solvent degreasing	0.044	kg/capita	
		Others	Commercial/ Consumer	0.1	kg/capita	
			solvent use	180	a /lea point	2.2
			Interior wall paint	580	g /kg paint	1.7
Wai at al. (2011)	2010, China	China Coating	Exterior wall paint	470	g /kg paint	0.2
Wei et al. (2011)	2010, China		Auto-manufacturing paint		g /kg paint	
			Auto-repair paint	720	g /kg paint	0.06
			Wood paint	640	g /kg paint	1.3


Table S13. Source categories, emission factors and activity data source for solvent use NMVOC emissions in different studies.

Reference	Base year and region	-	Emission sources	Emission factors	Units	Activity data sources or data (Tg)
			Other industrial paint	375	g /kg paint	2.5
		A	Shoemaking adhesive	670	g/kg adhesive	0.3
		Adhesive	Other adhesive	90	g/kg adhesive	6.4
		Ink	Printing	1210	g/kg ink	0.45
			Architecture surface coating	548.43	g/kg	Guangdong Statistical Yearbook 2011
			Car	4.8	kg/per vehicle	
			Truck	32	kg/per vehicle	
			Passenger car	7.8	kg/per vehicle	China Automotive
			Motorcycle	1.5	kg/per vehicle	Industry Yearbook 2011
		Coating 0, the PRD	Bicycle	0.3	kg/per vehicle	
			Shipping coating	750	g/kg	China Machinery Industry Yearbook 2011
			Container coating	750	g/kg	Statistical Yearbook for
Yin et al. (2015)	2010, the PRD		Furniture Surface coating	0.54	kg/piece	each city in PRD
			Toy manufacturing	730	kg/t	Guangdong Statistical Yearbook
		Adhesive	Shoemaking	0.06	kg/pair	Statistical Yearbook for
		Adhesive	Artificial board	0.5	g/kg	each city in PRD
			Printing	320	g/kg	Guangdong Statistical Yearbook
		Ink	Printed circuit board	0.093	kg/m ²	Statistical Yearbook for each city in PRD
		Others	Personal domestic product	0.5 for urban, 0.1 for rural	kg/capita	Guangdong Statistical Yearbook 2011


Reference	Base year and region]	Emission sources	Emission factors	Units	Activity data sources or data (Tg)
			Interior wall paint	80	g/kg paint	
			Exterior wall water paint	120 for waterborne, 450 for solvent-based	g/kg paint	
		Coating	Car	21.2	kg/car	~
			Motorcycle	1.8	kg/motorcycle	China Statistical
			Bicycle	0.3	kg/bicycle	Yearbook, China Market
			Home appliance coating	0.2	kg/piece	Yearbooks, China Light
Sup at al. (2018)	2009-2013,	Int	Conventional printing	750	g/kg ink	Industry
Sun et al. (2018)	China	Ink	New printing	100	g/kg ink	Yearbook, China Building Materials Industry Yearbook, China Industrial Economy Statistical Yearbook
		Pesticide Others	Insecticides	576	g/kg pesticide	
			Herbicides	276	g/kg pesticide	
			Bactericides	568	g/kg pesticide	
			Decontamination and skimming	0.044	kg/capita	
			Consumer/commercial solvents	0.1	kg/capita	
			architecture interior wall coating	180 for waterborne, 620 for solvent-based	g/kg	
Li et al. (2019) ^a	1990-2017, China	Coating	architecture other paint	300 for waterborne, 620 for solvent-based	g/kg	
			new car varnish paint	50 for waterborne, 730 for solvent-based	g/kg	China Paint and Coatings Industry Annual
			vehicle refurnish paint	150 for waterborne, 750 for solvent-based	g/kg	
			decorations wood	225 for waterborne, 660 for	g/kg	

Reference	Base year and region]	Emission sources	Emission factors	Units	Activity data sources or data (Tg)
				solvent-based		
				225 for waterborne, 660 for	- /	
			wood furniture	solvent-based	g/kg	
			other industry paint	440	g/kg	
						China Council for the
		Adhesive	glue use	66	g/kg	Promotion of International
						Trade (CCPIT)
		Ink	printing ink	540	g/kg	
		Pesticide	pesticide use	425.36	g/kg	China Statistical Yearbook
		Others	domestic solvent	0.5 for urban, 0.1 for rural	kg/capita	

a. Emission factors in Li et al. (2019) are unabated emission factor without NMVOCs control.

Figure S1. (a) The linear relationship between formaldehyde-type adhesive consumption and the artificial board yield for estimating consumption of formaldehyde-type adhesive, and (b) consumption of formaldehyde-type adhesive during 2000-2017.

Figure S2. Pesticide production, import and export data during 2000-2017 in China. Data source 1: China Statistical Yearbook, missing import and export data; Data source 2: China Crop Protection Industry Yearbook; Data source 3: China Chemical Industry Yearbook; Data source 4: Duan (2018).

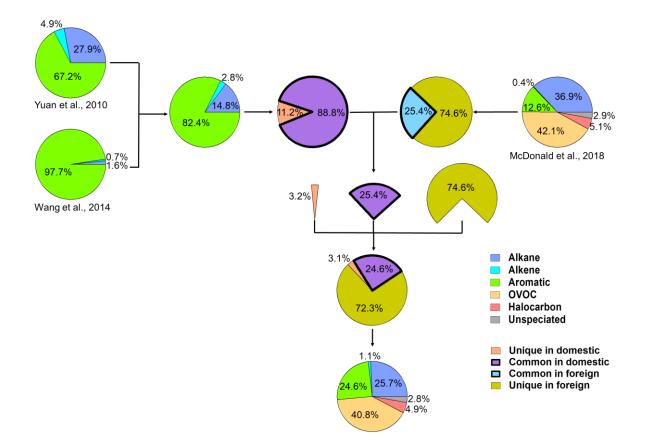


Figure S3. The procedure of obtaining merged source profiles for architectural coating.

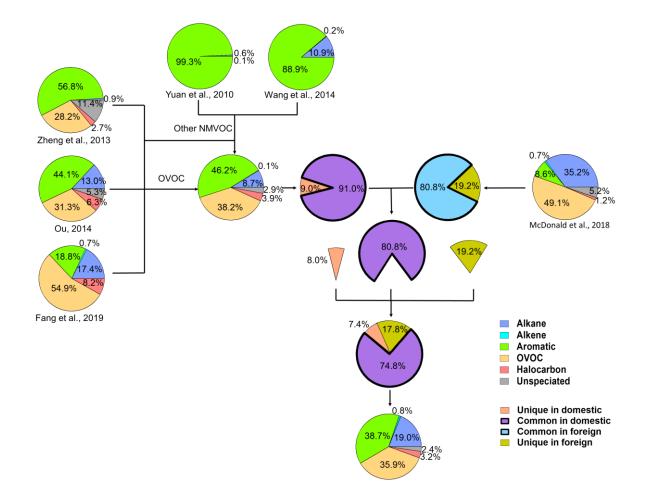


Figure S4. The procedure of obtaining merged source profiles for furniture coating.

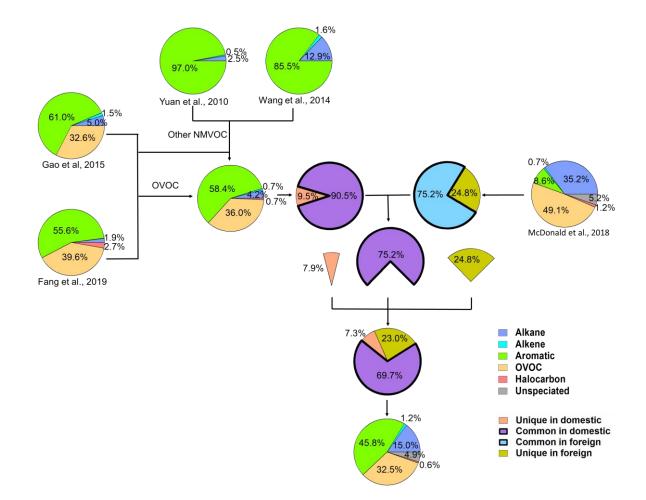


Figure S5. The procedure of obtaining merged source profiles for automobile coating.

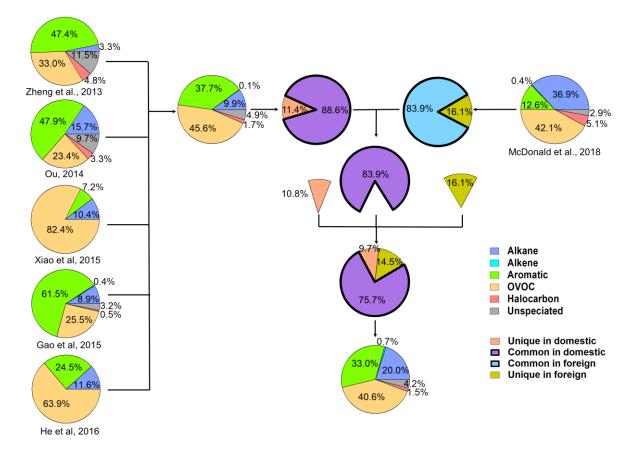


Figure S6. The procedure of obtaining merged source profiles for other industrial coating.

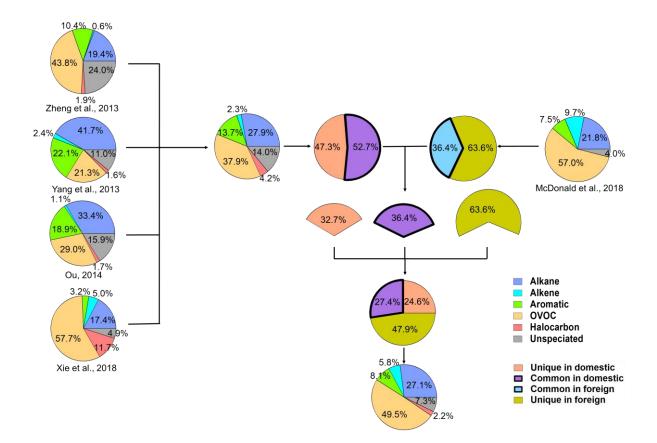


Figure S7. The procedure of obtaining merged source profiles for offset printing ink.

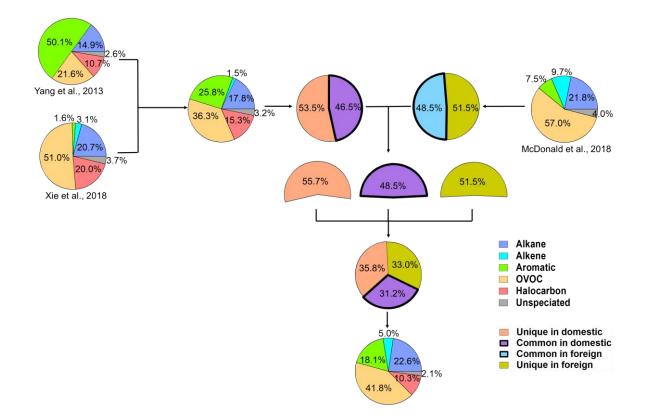


Figure S8. The procedure of obtaining merged source profiles for letterpress printing ink.

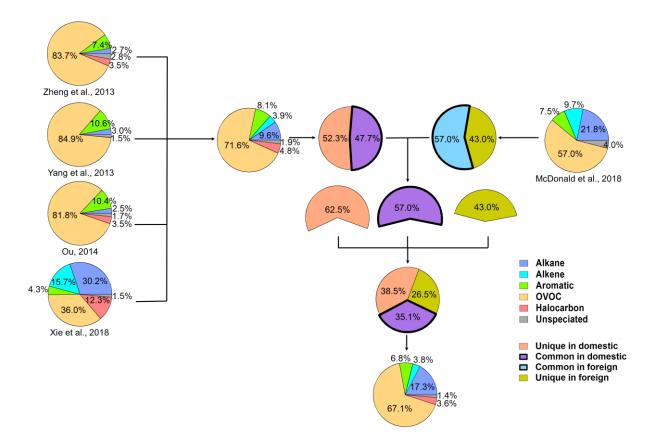


Figure S9. The procedure of obtaining merged source profiles for gravure printing ink.

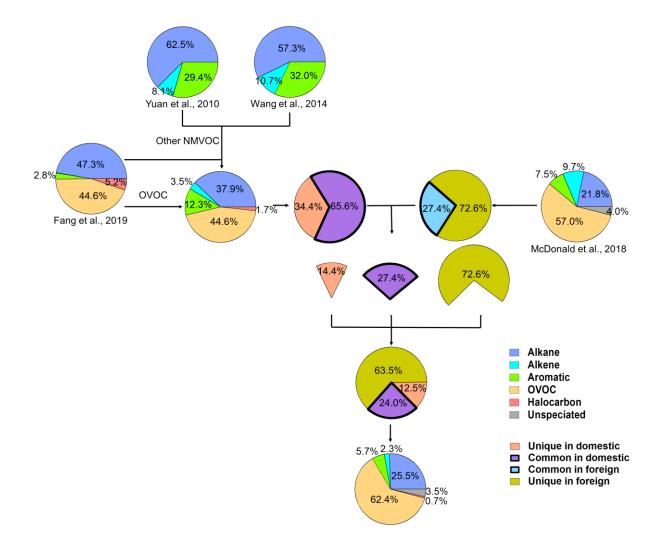


Figure S10. The procedure of obtaining merged source profiles for other printing ink.

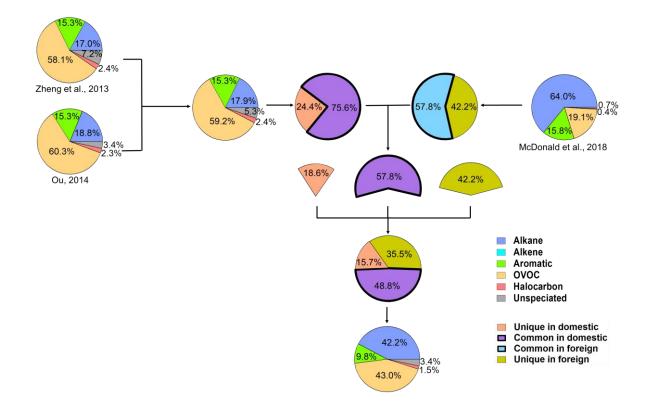


Figure S11. The procedure of obtaining merged source profiles for shoemaking adhesive.

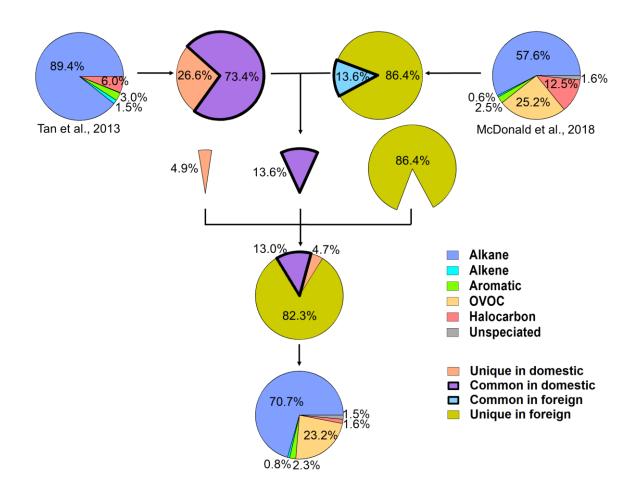


Figure S12. The procedure of obtaining merged source profiles for herbicide.

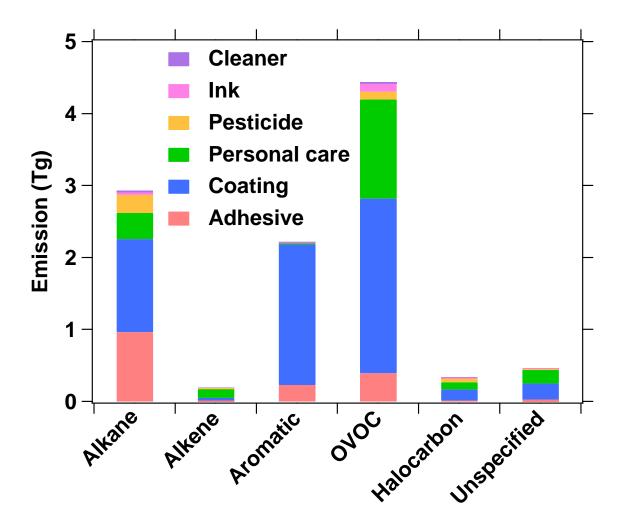


Figure S13. NMVOCs group emissions from various solvent categories in 2017.

Reference

Bai, Shan, and Zi, Yin: Water-based ink market (in Chinese), China Printing Materials Market, 27-28, 2003. Beijing Municipal Ecology and Environment Bureau: Detailed rules for the collection of pollutant discharge fees for volatile organic compounds, available at:

http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/zfxxgk43/fdzdgknr2/hbjfw/604447/index.html, 2015.

Bo, Y., Cai, H., and Xie, S. D.: Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China, Atmospheric Chemistry and Physics, 8, 7297-7316, 10.5194/acp-8-7297-2008, 2008. Cai, Huihua: The progress of pollution control on stationary sources in Guangdong Province, Guangdong

Polytechnic of Environmental Protection Engineering, Foshan, China, 2016.

California air resources board: Regulation for Reducing Emissions from Consumer Products, available at: <u>https://ww3.arb.ca.gov/consprod/regs/2019/article_2_final_5_2019.pdf</u>, 2019a.

California air resources board: Regulation for Reducing VOC Emissions from Antiperspirants and Deodorants, available at: <u>https://ww3.arb.ca.gov/consprod/regs/2019/article 1 final 5 2019.pdf</u>, 2019b.

China National Coatings Industry Association: The 13th Five-year Plan in Coatings Industry in China, China Coatings, 31, 1-12, 2016.

Chyxx: Competition pattern and demand market Outlook of Waterborne coatings industry in China in 2014, available at: http://www.chyxx.com/industry/201408/275519.html, 2014.

Chyxx: Analysis of the market demand for shoe adhesive in China in 2014, available at: http://www.chyxx.com/industry/201508/335107.html, 2015.

Chyxx: Ink industry market development status and future development trend analysis in 2016, available at: http://www.chyxx.com/industry/201702/494485.html, 2017.

Department of Ecology and Environment of Guangdong Province: Calculation method of volatile organic compounds emission in key industries, available at: <u>http://gdee.gd.gov.cn/shbtwj/content/post_2305668.html</u>, 2019.

Department of Ecology and Environment of Jiangsu Province: Interim Measures of Jiangsu Province for the Calculation of emissions of Volatile organic compounds in key Industries, available at: http://hbt.jiangsu.gov.cn/art/2016/7/8/art 1581_6691890.html, 2016.

Department of Ecology and Environment of Shandong Province: Reference value of organic material type and VOCs content, available at: <u>http://xxgk.sdein.gov.cn/zfwj/lhh/201705/t20170508_1173844.html</u>, 2017.

Department of Ecology and Environment of Zhejiang Province: Interim Method for the Calculation of Volatile Organic compounds (VOCs) emissions from industrial coating Process and Printing Industry, available at: http://sthjt.zj.gov.cn/art/2017/6/26/art 1229263559 2258845.html, 2017.

Duan, Yousheng: China's pesticide industry in 2017 (in Chinese), Economic Analysis of China Petroleum and Chemical Industry, 47-49, 2018.

DYQ: Urea formaldehyde resin details, available at: https://www.dyq.cn/show/42001485.html, 2019.

Fang, Li, Liu, Wen-wen, Chen, Dan-ni, Li, Guo-hao, Wang, Di, Shao, Xia, and Nie, Lei: Source Profiles of Volatile Organic Compounds(VOCs) from Typical Solvent-based Industries in Beijing (in Chinese), Environmental Science, 40, 4395-4403, 2019.

Gao, Zongjiang: Source chareteristics of VOC emission from typical industrial painting sources (MS thesis). South China University of Technology, 2015.

Green Seal: GS-50 Personal Care and Cosmetic Products, available at: <u>https://greenseal.org/green-seal-standards/gs-50</u>, 2020.

He, Menglin, Wang, Ni, Chen, Yangda, Wu, Zeng, Chen, Jiandong, Fan, Liya, and Ye, Daiqi: Emission characteristics of volatile organic compounds (VOCs) from electronic manufacturing factory of Guangdong

Province (in Chinese), Acta Scientiae Circumstantiae, 36, 1581-1588, 2016.

Henan River Grinding Material Co LTD: Phenolic resin details, available at:

http://www.hnbhsy.com/photo/667.html;http://www.hnbhsy.com/photo/649.html, 2020.

Huaon: The current situation of Waterborne coatings industry in China in 2018, available at: <u>https://www.huaon.com/story/446158</u>, 2019.

Human Settlements and Environment Commission of Shenzhen Municipality: Limit of volatile organic compounds of industrial production and consumer goods available at: http://meeb.sz.gov.cn/attachment/0/321/321040/2039498.pdf, 2016.

Li, M., Zhang, Q., Streets, D. G., He, K. B., Cheng, Y. F., Emmons, L. K., Huo, H., Kang, S. C., Lu, Z., Shao, M., Su, H., Yu, X., and Zhang, Y.: Mapping Asian anthropogenic emissions of non-methane volatile organic compounds to multiple chemical mechanisms, Atmospheric Chemistry and Physics, 14, 5617-5638, 10.5194/acp-14-5617-2014, 2014.

Li, Meng, Zhang, Qiang, Zheng, Bo, Tong, Dan, Lei, Yu, Liu, Fei, Hong, Chao Peng, Kang, Si Cong, Yan, Liu, Zhang, Yu Xuan, Bo, Yu, Su, Hang, Cheng, Ya Fang, and He, Ke Bin: Persistent growth of anthropogenic nonmethane volatile organic compound (NMVOC) emissions in China during 1990–2017: drivers, speciation and ozone formation potential, Atmospheric Chemistry and Physics, 19, 8897-8913, 10.5194/acp-19-8897-2019, 2019.

Liu, Guojie: Current situation and development trend of architectural coatings (in Chinese), Architecture Decoration, 6-7, 2000.

Lu, Jianhai, Dong, Shibi, Li, Wenjuan, Miu, Xiaoping, and Gu, Zhenyu: Present Situation of VOCs Control Technologies for the Industrial Coating Process in Zhejiang Province (in Chinese). Environmental Protection Science, 44, 113-117+121, 2018.

McDonald, Brian C., de Gouw, Joost A., Gilman, Jessica B., Jathar, Shantanu H., Akherati, Ali, Cappa, Christopher D., Jimenez, Jose L., Lee-Taylor, Julia, Hayes, Patrick L., McKeen, Stuart A., Cui, Yu Yan, Kim, Si-Wan, Gentner, Drew R., Isaacman-VanWertz, Gabriel, Goldstein, Allen H., Harley, Robert A., Frost, Gregory J., Roberts, James M., Ryerson, Thomas B., and Trainer, Michael: Volatile chemical products emerging as largest petrochemical source of urban organic emissions, Science, 359, 760, 10.1126/science.aaq0524, 2018. National Bureau of Statistics: 2017 China Industrial Statistical Yearbook, China Statistics Press, Beijing, China, 2017.

National Bureau of Statistics: 2017 China Statistical Yearbook, China Statistics Press, Beijing, China, 2018. Ou, Jiaming: Characterization and validation of Volatile Organic Compounds (VOCs) emission sources and reactivity-based control strategy in the Pearl Delta region (MS thesis). South China University of Technology, 2014.

Qianzhan: A panoramic map of China's ink industry in 2019, available at:

https://www.qianzhan.com/analyst/detail/220/190618-27096aef.html, 2019.

Shanghai Municipal Bureau of Ecology and Environment: General method for calculating the emission of volatile organic compounds from industrial enterprises in Shanghai, available at:

https://sthj.sh.gov.cn/hbzhywpt1133/hbzhywpt1135/20170308/0024-103293.html, 2017.

Sun, W., Shao, M., Granier, C., Liu, Y., Ye, C. S., and Zheng, J. Y.: Long-Term Trends of Anthropogenic SO2,

NOx, CO, and NMVOCs Emissions in China, Earth's Future, 6, 1112-1133, 10.1029/2018ef000822, 2018.

VOCs.BJX: VOCs escape point, emission, concentration and characteristic pollutants in printing industry, available at: <u>http://huanbao.bjx.com.cn/news/20190822/1001864.shtml</u>, 2019.

Vzkoo: Hydrocarbon environmental protection solvent huge market potential, available at: <u>https://www.vzkoo.com/news/815.html</u>, 2019.

Wang, Hongli, Qiao, Yuezhen, Chen, Changhong, Lu, Jun, Dai, Haixia, Qiao, Liping, Lou, Shengrong, Huang, Cheng, Li, Li, Jing, Shengao, and Wu, Jianping: Source Profiles and Chemical Reactivity of Volatile Organic Compounds from Solvent Use in Shanghai, China, Aerosol and Air Quality Research, 14, 301-310, 10.4209/aaqr.2013.03.0064, 2014.

Wei, Wei, Wang, Shuxiao, Hao, Jiming, and Cheng, Shuiyuan: Projection of anthropogenic volatile organic compounds (VOCs) emissions in China for the period 2010–2020, Atmospheric Environment, 45, 6863-6871, https://doi.org/10.1016/j.atmosenv.2011.01.013, 2011.

Wu, R., and Xie, S.: Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds, Environ Sci Technol, 51, 2574-2583, 10.1021/acs.est.6b03634, 2017.

Xiao, Jingfang, Ye, Daiqi, Liu, Qiao, Peng, Ruosi, and Wang, Guannan: Emission characteristics of volatile organic compounds (VOCs) from the manufacturing process of consumer electronic products (in Chinese), Acta Scientiae Circumstantiae, 35, 1612-1619, 2015.

Xie, Yisong, Zheng, Xinmei, and Liu, Chunlei: Source Profiles and Ozone Formation Potental of Volatile Organic Compounds from Printing Industry in Nanjing (in Chinese), Environmental Science and Technology, 31, 64-67, 2018.

Yang, Yang, Yang, Jing, Yin, Shasha, Yu, Yufan, Zheng, Jun-yu, and Mo, Ziwei: Speciated VOCs Emission Inventory and Key Species from Printing Industry in the Pearl River Delta Region (in Chinese), Research of Environmental Sciences, 26, 326-333, 2013.

Yin, S., Zheng, J., Lu, Q., Yuan, Z., Huang, Z., Zhong, L., and Lin, H.: A refined 2010-based VOC emission inventory and its improvement on modeling regional ozone in the Pearl River Delta Region, China, Sci Total Environ, 514, 426-438, 10.1016/j.scitotenv.2015.01.088, 2015.

Yuan, Bin, Shao, Min, Lu, Sihua, and Wang, Bin: Source profiles of volatile organic compounds associated with solvent use in Beijing, China, Atmospheric Environment, 44, 1919-1926, 10.1016/j.atmosenv.2010.02.014, 2010.
Yuan, Changbo, and Chen, Jincai: A new adhesive for shoes (in Chinese), China Adhesives, 32-33, 2005.
Zheng, J., Yu, Y., Mo, Z., Zhang, Z., Wang, X., Yin, S., Peng, K., Yang, Y., Feng, X., and Cai, H.: Industrial sector-based volatile organic compound (VOC) source profiles measured in manufacturing facilities in the Pearl River Delta, China, Sci Total Environ, 456-457, 127-136, 10.1016/j.scitotenv.2013.03.055, 2013.