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S1. Positive-matrix factorization 1 

S1.1 Diagnostics of the six-factor solution 2 

The time series of organic mass spectra measured by the AMS was analyzed by positive-3 

matrix factorization (PMF) using a standard analysis toolkit Ulbrich et al., 2009. High-resolution 4 

“V-mode” data were used. The PMF solution was based on minimization of the “Q-value” (i.e., 5 

the sum of the weighed squared residuals for a chosen number of factors) and the physical 6 

meaningfulness of factors, as evaluated by profile characteristics and correlations with gas and 7 

particle phase measurements by other instruments.  8 

Technical diagnostics of the six-factor solution are presented in Figure S3 in complement 9 

to the diagnostics presented in de Sá et al. (2017). The analysis was run for a number of factors 10 

from 1 to 10, and the rotational ambiguity parameter fpeak was varied from -1 to 1 in intervals of 11 

0.2. Panel a shows the statistics of residuals for solutions with different number of factors. There 12 

was a large improvement in the solution when a sixth factor was introduced, as shown by a 13 

significant decrease in residuals, and only a marginal improvement when a seventh factor was 14 

added. Panel b shows, on the ordinate, the correlation between the time series of loadings for 15 

each pair of factors and, on the abscissa, the correlation between the profiles of each pair of 16 

factors. For the six-factor solution, the correlations among factor profiles are overall lower, also 17 

suggesting a better separation of factors and an improvement in the solution. Figure S4 18 

corroborates this analysis by showing the factor profiles and loading time series of the 5- and 7-19 

factor solutions. In the 5-factor solution, factors 4 and 5 seem to be a result of mixing of the three 20 

factors that are associated with secondary processing in the 6-factor solution (MO-OOA, LO-21 

OOA, IEPOX-SOA). Conversely, in the 7-factor solution, some splitting seems to occur as factor 22 

7 is physically meaningless, and a few pairs of factors have higher correlations between their 23 
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loading time series (cf. Figure S3). An fpeak of zero was chosen for the final 6-factor solution, 24 

since it yielded the minimum quality of fit parameter Q/Qexpected  de Sá et al. (2017), and no 25 

significant improvements in the external validation of factors were observed by varying fpeak . 26 

S1.2 Discussion of the ADOA PMF factor 27 

ADOA is interpreted as a primary anthropogenic factor due to the correlation of its 28 

loadings with several tracers of anthropogenic activities (Figure 5), its spectral profile, and its 29 

diel behavior (Figure 4). Even though factors containing a characteristic m/z 91 have been 30 

reported in the literature as a biogenic factor (Robinson et al., 2011; Budisulistiorini et al., 2015; 31 

Chen et al., 2015; Riva et al., 2016), the ADOA of this study showed similarity with primary 32 

organic material from cooking activities. Figure S5 shows the high similarity of ADOA of this 33 

study to a factor representing cooking emissions at an urban background site in Barcelona, Spain 34 

(Mohr et al., 2012), and to a factor representing a cooking source tied to restaurants in an urban 35 

background site in Zurich, Switzerland (Lanz et al., 2007). By contrast, a lower similarity is 36 

found with the “91fac” factor found in the Borneo forest, a predominantly biogenic site. This 37 

result emphasizes that a characteristic marker ion C7H7
+ at m/z 91 does not directly imply either 38 

biogenic or anthropogenic origin, and the interpretation of a PMF factor with such marker should 39 

also strongly rely on the atmospheric context of the measurements, including the correlations of 40 

the factor loadings with external measurements and the diel behavior. 41 

S2. Estimates of organic and inorganic nitrates based on AMS analysis 42 

The typical AMS analysis reports total nitrate, meaning that nitrate fragments originating 43 

from both organic and inorganic nitrates are reported indistinctively as nitrate. In the absence of 44 

external measurements of inorganic nitrate, an estimation method using the ratio of NO2
+ to NO+ 45 

signal intensities measured by the AMS was employed (Figure S6; Fry et al., 2009; Farmer et al., 46 



4 

 

2010; Fry et al., 2013). Calculations were done on a 60-min time base to increase signal over 47 

noise. The obtained organic and inorganic nitrate time series were then interpolated into the 48 

original AMS timestamp for ambient measurements (i.e., one point every 8-min interval). The 49 

analysis excluded points that had total nitrate below the estimated detection limit, DLNitrate, which 50 

was estimated as three times the standard deviation for “closed AMS spectra”, i.e., when chopper 51 

was in closed position and particles did not reach the vaporizer. Mathematically, 52 

DLNitrate = 3×√E, where E is the “closed” error calculated by the standard PIKA software 53 

(Ulbrich et al., 2009). The dark blue dashed line in Figure S6c that defines NO2
+/NO+ for 54 

inorganic nitrate was determined by linear fit of ammonium nitrate calibrations performed 55 

regularly, as shown by the grey triangles. The small drift over time can be attributed to a gradual 56 

clean-up of the vaporizer. Worth noting, whether the linear fit or an average value was used for 57 

the calculations, the overall results did not change considerably, as all calibration ratios lied 58 

within ± 20% of the campaign-average ratio. The ratio NO2
+/NO+ for organic nitrates was 59 

assumed to be a factor of 2.25 lower than that or inorganic nitrate based on previous field studies 60 

(Farmer et al., 2010; Fry et al., 2013). The resulting IOP1-average for the fraction of organic 61 

nitrate in total nitrate (Figure S6b) was 87%.  62 

S3. Fuzzy c-means clustering 63 

Fuzzy c-means (FCM) clustering was applied to the dataset consisting of concentrations 64 

of particle number, NOy, ozone, black carbon, and sulfate (Bezdek et al., 1984). The use of a 65 

fuzzy clustering method stems from the understanding that any point in time may be affected by 66 

a combination of different sources and processes and could therefore be anywhere on the scale 67 

between pristine background and extreme polluted conditions, as opposed to a simpler binary 68 

classification. Given the scope of the analysis as non-overcast afternoon times, data points were 69 
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restricted to (i) local 12:00-16:00 h, (ii) local solar radiation over the past 4 h not less than 200 W 70 

m-2 (i.e., excluding the lower 20 percentile), and (iii) insignificant precipitation (< 0.1 mm) over 71 

the previous 10 h along backward trajectory (a threshold was used as most rain radar grid cells 72 

had non-zero yet negligible values). The data were normalized prior to the FCM analysis using 73 

the z-score method, which transforms all variables into a common scale with an average of zero 74 

and standard deviation of one. 75 

The FCM algorithm minimizes the objective function represented in Eq. S1, which is a 76 

weighted sum of squared errors where the error is the Euclidean distance between each data 77 

point and a cluster centroid. 78 

                                 J(U,ν)= ∑ ∑ uik
m ||y

k
-νi||

2
  c

i=1
N
k=1               (Eq. S1) 79 

The input data is given by the matrix Y = [y1, y2, …, yN], where yk is a vector of length X at the k-80 

th time point. X is the number of variables (i.e., measurements) used as input in the analysis. The 81 

number of time points is represented by N, and the associated running index is k. N in this case 82 

was 313. The number of clusters is represented by c, and the corresponding running index is i. 83 

The coordinates of the centroid of each cluster i are represented by 𝜈i , a vector of length X. The 84 

exponent of the Fuzzy partition matrix is represented by m. The algorithm returns (1) the Fuzzy 85 

partition matrix of Y, given by U = [uik] where uik is the degree of membership of time point k to 86 

cluster i, (2) the vectors of coordinates of cluster centers, given by 𝜈 = [𝜈i], as well as (3) the 87 

value J of the objective function.  88 

 The analysis was performed in MATLAB® using the “fcm” function in the Fuzzy logic 89 

toolboxTM. The stop criterion of the algorithm is that either the maximum number of iterations is 90 

reached or the improvement of the objective function between two consecutive iterations is less 91 

than the minimum amount of improvement specified. The default value of 1 × 10-5 was used for 92 
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the minimum amount of improvement, and the maximum number of iterations was set to 1000 so 93 

that convergence always happened before this maximum was reached. A default value of 2 was 94 

used for the exponent m of the partition matrix. Fuzzy clustering algorithms are not sensitive to 95 

small fluctuations in m (Chatzis, 2011), and a value in the range of 1.5 to 3 is recommended 96 

(Bezdek et al., 1984; Hathaway and Bezdek, 2001). 97 

 The analysis was run for a number of clusters varying from two to eight, and the value of 98 

the objective function for each run is shown in Figure S7. The choice of number of clusters 99 

hinges on a balance between increased complexity and additional information provided by each 100 

extra cluster. The improvement in the objective function was larger in the range of two to four 101 

clusters, with marginal improvements above four clusters (Figure S7).  The location of cluster 102 

centroids was also examined for evaluation of cluster overlap (Figure S8). The addition of a fifth 103 

cluster made two pairs of clusters very similar, as can be seen by the locations of cluster 104 

centroids in Figure S8. The solution of four clusters was therefore a reasonable choice to 105 

represent the studied system. The subsequent characterization of the PM chemical composition 106 

associated with each cluster further confirmed the meaningfulness of the solution. Although the 107 

three-cluster solution could also provide a reasonable representation of the system, the four-108 

cluster solution provided further insight by differentiating two background and two polluted 109 

conditions.  110 

Subsequently, the PM composition associated with each of the clusters was determined 111 

by calculating the corresponding coordinates of the centroids for AMS species concentrations 112 

and PMF factor loadings, which were not input to the FCM analysis. The calculation followed 113 

the mathematical definition of the centroid (Eq. S2). The resulting characterization of clusters is 114 

shown in Figure 8 and Table 2. 115 
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List of Supplementary Figures 

Figure S1. Location of the GoAmazon2014/5 sites relevant for this study. Image data: Google 

earth. 

Figure S2. Scatter plot of the AMS signal fraction at m/z 44 (f44) against that at m/z 43 (f43).  

Green and yellow markers correspond to measurements made by two different AMS 

instruments at T0t in the wet season of 2008 during the AMAZE-08 campaign (Chen 

et al., 2009; Schneider et al., 2011). Red markers correspond to measurements made 

at the T0a (ATTO) by an ACSM during the wet season of 2015. A correction factor 

of 0.75 was applied to the f44 values of the ACSM based on calibrations with 

standards. Solid squares represent median values, and whiskers represent 10 and 90 

percentiles. The plot shows a significant variability between the observations of 2008 

and 2015 for the two background sites. An explanation of the differences is not 

attempted herein and warrants further investigation through longer-term continuous 

measurements.   

Figure S3. Diagnostics of the PMF analysis. (a) Statistics of the sum of for solutions with 

different number of factors. Box plots show the interquartile ranges, including the 

medians as a horizontal line. Red markers show the means. Whiskers show the 5 and 

95 percentiles. (b) Correlations expressed as between each pair of factors within each 

PMF solution, with number of factors varying from 2 to 7. The Pearson R value 

between factor loadings is shown on the coordinate and between factor profiles is 

shown on the abscissa. Numbers in red indicate the identity of the pair of factors.    

Figure S4. Results of the PMF analysis for 5 factors (a and b) and 7 factors (c and d). Panels on 

the left (a and c) show the time series of factor loadings and panels on the right (b and 
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d) show the profiles of factors. The signals shown in panels b and d were summed to 

unit mass resolution. 

Figure S5. Comparison of the ADOA factor profile from the present study to factors found in 

three other field studies. “COA” are factors representative of cooking activities, and 

the “91fac” from Robinson et al. (2011) was tied to biogenic sources. 

Figure S6. Summary of the analysis for estimating organic and inorganic nitrates from AMS 

bulk measurements. (a) Resulting time series of organic and inorganic nitrates are 

shown together with the original nitrate AMS times series. (b) Time series of the 

fraction of organic nitrate in total nitrate. (b) Time series of the measured NO2
+/NO+ 

ratio is shown in red and values of NO2
+/NO+ from ammonium nitrate calibrations are 

shown in gray triangles. A linear fit to those calibration ratios is shown by the dashed 

dark blue line and constitutes the reference ratio for inorganic nitrate over time. The 

dashed light blue line is the reference ratio for organic nitrates over time. Calculations 

were done for data binned to one hour (as plotted), and the resulting time series were 

interpolated to the native time stamp for evaluation of correlations in the PMF 

analysis. 

Figure S7. Value of the objective function of the FCM analysis (Eq. 1) in the last iteration 

plotted against the number of clusters.  

Figure S8. Locations of cluster centroids from the FCM analysis as visualized by a 2-D 

projection on the plane defined by each pair of input variables. Results for two to five 

clusters are shown in panels a to d. Red circles are observational data and black 

squares are cluster centroids. 
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Figure S9. Map of Manaus city depicting population density as well as main avenues and 

representative locations of industry, restaurants, and other businesses. Population 

density data are from the 2010 census by the Brazilian Institute of Geography and 

Statistics (IBGE, 2010).  

Figure S10. Measurements showing the geographical heterogeneity of emissions from Manaus. 

On the top row, concentrations of sulfate (red) and particle number (white) measured 

onboard the G-1 aircraft on (a) March 19 and (b) Mar 21. Image data: Google earth. 

On the bottom row, rose plots of mean (c) sulfate mass concentrations and (d) particle 

number concentrations observed at T2 during IOP1. The angles represent wind 

direction, the radial scale (0 to 5 m s-1) represents wind speed, and the color scale 

represents the concentrations. The interactions of emissions from Manaus with the 

daily river breeze is complex, and the detailed interpretation of the data sets is not 

fully attempted herein. Of importance, the river breeze terminates well below 500 m 

based on the G-1 flights so that the complexities of the river breeze largely do not 

affect the measurements at T3 because most pollution is lofted above the river breeze 

before reaching T3 (Medeiros et al., in preparation). These surface-level plots, 

although complicated by the river breeze, demonstrate the heterogeneity of Manaus 

emissions.  
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