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Abstract

Thermal, suction and osmotic gradients interact during evaporation from a salty soil.
Vapor fluxes become the main water flow mechanism under very dry conditions. A cou-
pled nonisothermal multiphase flow and a reactive transport model of a salty sand soil
was developed to study such an intricate system. The model was calibrated with data5

from an evaporation experiment (volumetric water content, temperature and concentra-
tion). The retention curve and relative permeability functions were modified to simulate
oven dry conditions. Experimental observations were satisfactorily reproduced, which
suggests that the model can be used to assess the underlying processes. Results
show that evaporation is controlled by heat, and limited by salinity and liquid and va-10

por fluxes. Below evaporation front vapor flows downwards controlled by temperature
gradient and thus generates a dilution. Vapor diffusion and dilution are strongly influ-
enced by heat boundary conditions. Gas diffusion plays a major role in the magnitude
of vapor fluxes.

1 Introduction15

Understanding evaporation is necesary in many fields of earth system sciences (Shut-
tleworth, 2007). In fact, soil evaporation is crucial in controlling the balance of soil-
surface water and energy in arid and semiarid areas (Saito et al., 2006). The actual
mechanisms controlling evaporation are intricate (Sakai et al., 2009). Soil evapora-
tion may be controlled by the soil-atmosphere boundary layer when the soil is moist20

or by hydraulic conditions when it is dry (Schneider-Zapp et al., 2010). In the latter
case, evaporation causes the soil to dry and heat up causing liquid, vapor and heat
fluxes to interact. The presence of solutes increases the complexity of the system and
exacerbates the consequences leading to salinization.

A number of researchers have analyzed this problem from an experimental perspec-25

tive (Wheeting, 1925; Scotter, 1974; Nassar and Horton, 1989; Scanlon, 1992). These
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authors concluded that water flux in dry and salinized soils is controlled by salinity
and temperature gradients. Salinity causes water activity to drop, thus reducing vapor
pressure in equilibrium with liquid water and driving vapor towards the saltier zone.
Evaporation depends also on temperature and absorbs energy. Thus, evaporation is
affected by water flow and energy and solutes transport. The interaction of matric po-5

tential, temperature and salinity gradients under very dry conditions was studied by
Gran et al. (2010), who observed a salinity decrease below the evaporation front owing
to condensation of downward vapor flux. Although experimental studies are critical,
they do not yield direct measurements of flow and phase change processes, which
must be indirectly inferred from state variable measurements. This is not easy when10

the phenomena are complex and coupled. Therefore, quantitative understanding of the
above processes requires numerical modeling.

Most models of evaporation focus on the interactions between water and heat flow
(Jackson et al., 1974; Scanlon and Milly, 1994; Boulet et al., 1997). These authors
conclude that vapor flux is dominant near the surface where the soil is dry, and that15

water flows in the liquid phase below the evaporation front. A good approximation to
water table evaporation under isothermal conditions was obtained by Gowing et al.
(2006), who divided the soil into liquid flow and vapor flow zones separated by the
evaporation front. The nature of the evaporation front is unclear: Gran et al. (2010)
observed a sharp front, whereas Konucku et al. (2004) concluded that a sharp phase20

transformation could not be expected. Notwithstanding, these models do not consider
the role of salinity.

The effect of high salinities was modeled by Nassar and Horton (1989), who sim-
ulated water transport in unsaturated nonisothermal salty soil on the basis of steady-
state heat and mass transfer. Ironically, salinity effects have commonly been predicted25

assuming dilute solutions, which is not sufficient to compute vapor and liquid pressures
(Burns et al., 2006). This explains the difficulties encountered by Nassar et al. (1992)
when modeling evaporation from salty solutions.
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Two additional factors must be borne in mind when modeling evaporation from high
salinity solutions. First, salt precipitates tend to form a low permeability crust that
should be modeled (Yakirevich et al., 1997). Crust formation was modeled but not
compared with experimental data by Olivella et al. (1996a). Second, under hot condi-
tions, the residual saturation can no longer be considered a lower bound for saturation5

(Milly and Eagleson, 1982; Rossi and Nimmo, 1994; Prunty, 2003). A modification of
the retention curve and relative permeability function must therefore be considered.

A nonisothermal multiphase flow model is necessary to simulate the processes un-
der these very dry conditions. Advective and diffusive vapor flows must be allowed,
and high concentration values and oven dry conditions near the surface must be ac-10

knowledged. Mass balances of water, air, heat and solutes are necessary and effects
of thermal, suction and salinity gradients must be simulated interacting simultaneously.

The present work seeks to model the experiments of Gran et al. (2010) in order
to (a) evaluate the magnitude and direction of the water fluxes and gain a greater
understanding of the downward vapor flow mechanism, (b) describe the evolution and15

location of condensation-evaporation, and (c) to assess the relevance of the matric
potential, temperature and osmotic gradients in controlling the aforementioned water
separation process.

2 Evaporation experiment and conceptual model

Laboratory experiments consisted of open sand columns initially saturated with an ep-20

somite (MgSO4 ·7H2O) solution. Evaporation was forced by an infrared lamp so that
radiation at the soil surface was similar to the summer radiation at mid-latitudes. The
experiment continued until the overall saturation fell to 0.32. At this stage, the columns
were dismounted to measure vertical profiles of temperature, volumetric water content
and solute concentration. Some identical columns were dismounted at different times25

to obtain the time evolution of those profiles. These columns were dismantled sequen-
tially after reaching saturation degrees of 74% (after 2 days of evaporation), 50% (after
4 days), 40% (5 days) and 32% (12 days).
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Both column experiments and results are described in Gran et al. (2010) and a dia-
gram is shown in Fig. 1.

Results displayed a coupled phenomenon. Capillarity brings about an upward liq-
uid flux and soil drying. The liquid flux transports solutes by advection towards the
top, where evaporation leads to a dramatic increase in concentration. Evaporation also5

reduces the water content and the unsaturated hydraulic conductivity causing the evap-
oration front to move downwards. Measurements suggest that this front is very narrow.
A water separation process occurs at the front. On the one hand, concentrations are
high above the front, where water flow is restricted to the vapor phase. On the other
hand, underneath the evaporation front, concentrations are diluted below initial values.10

That is, vapor flows not only upwards from the evaporation front but also downwards.
Condensation of this downward vapor flux causes dilution.

3 Processes and governing equations

The system is governed by thermohydraulic and geochemical processes. To simulate
them, it is necessary to study water flow and heat and reactive transport. Changes15

in porosity, thermal conductivity, permeability and water activity caused by water
content reduction and salt precipitation should be simulated as well as vapor pres-
sure variations in response to changes in water activity. Moreover, the precipitates
present in the system (epsomite MgSO4 ·7H2O, hexahydrite MgSO4 ·6H2O, pentahy-
drite MgSO4 ·5H2O and starkeyite MgSO4 ·4H2O) are highly hygroscopic. Therefore,20

hydratation-dehydratation of the mineral phases must be considered in the mass water
balance.

3.1 Thermohydraulic processes

The thermohydraulic model focuses on the mass balance of water (liquid water and
vapor) and air (dissolved in water and in the gas phase) in terms of pressure, and the25
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energy balance in terms of temperature. The equations of water and air mass balance
are:
∂
∂t

(ωw
l ρlSlφ+ωw

gρgSgφ)+∇· (jw
l + jw

g )= f w (1)

∂
∂t

(ωa
l ρlSlφ+ωa

gρgSgφ)+∇· (ja
l + ja

g)= f a (2)

where subscripts l and g refer to liquid and gas and superscript w and a refer to water5

and air, ω is the mass fraction (kg kg −1) of a component in a phase, ρ is the density
(kg m−3) of a phase, S is the hydraulic saturation (m3 m−3), φ is the porosity (m3 m−3),
j (kg m−2 s−1) is the total flux (advective, diffusive and dispersive) and f is an external
source/sink term (kg m−3 s−1).

The energy mass balance is written as:10

∂
∂t

(Esρs(1−φ)+ElρlSlφ+EgρgSgφ)++∇· (ic+ jEl+ jEg)= fQ (3)

where ic is the energy flux (J m−2 s−1) owing to conduction through the porous medium,
the other fluxes (jEl,jEg) are advective fluxes of energy (J m−2 s−1) caused by mass

motions and fQ is an internal/external supply (J m−3 s−1).
A state variable is associated with each mass balance: liquid pressure (Pl), gas15

pressure (Pg) and temperature (T ). Constitutive laws must be used to express the
mass balance equations as a function of the state variables. The constitutive laws that
control these balances are shown in Table 1.

3.2 Oven dry conditions

As discussed above, under oven-dry conditions, the residual saturation can no longer20

be considered a lower bound for saturation, and a modification of the retention curve
and relative permeability functions must be considered. Milly and Eagleson (1982) sim-
ply considered the residual saturation to be zero; Rossi and Nimmo (1994) proposed
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a different function to extend the capillary curve towards fully dry conditions; and Prunty
(2003) used the zero value in standard retention curve models but modified the relative
permeability function for the dry range.

The van Genuchten (1980) model is widely used under moist conditions but requires
modification to represent the very dry ones. The assumption is that soil can reach full5

drying, i.e. if evaporation takes place in an oven at 105 ◦C or near the surface under
a dry or hot atmosphere (Ross et al., 1991).

The van Genuchten retention curve is:

Se =
(

1+ (Pc/P0)
1

1−λ
)−λ

(4)

where Pc is capillary pressure, P0 is related to the capillary pressure required to de-10

saturate the soil and λ is a shape parameter of the function. This equation permits to
calculate the effective saturation (Se) as a function of a minimum saturation Si and the
actual saturation (Sl):

Se = (Sl−Si)/(1−Si) or Sl =Si+ (1−Si)Se (5)

In order to extend this curve for high suctions (i.e. conditions of drying by evaporation),15

the minimum degree of saturation is expressed as follows:

Si =S0
minα ln(P dry

c /Pc) (6)

The parameter P dry
c can be identified with the capillary pressure for the dry material

and can be considered equal to P oven dryness
c =1000 MPa. However, lower values may

be considered if dryness is induced by atmospheric conditions that are less extreme20

than oven dryness. Finally, α modifies somewhat the transition point and S0
min is used

in the permeability function below. This proposed retention curve is a continuous func-
tion with continuous derivatives. A similar form was already proposed by Fayer and
Simmons (1995).
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The following relative permeability function is proposed for the new retention curve

Krl =0, Sl ≤S0
min

Krl =
√
Sep

(
1−

(
1−S 1/λ

ep
)λ)2

, Sl >S0
min (7)

Sep = (Sl−S0
min)/(1−S0

min)

Note that for saturations below S0
min the capillary pressure can be calculated from the5

retention curve, but the relative permeability is zero. This allows representing water
isolated in the meniscus that can not flow as a liquid phase but can still evaporate.
Figure 2 compares the proposed model and the original van Genuchten model, in terms
of retention curve and relative permeability. The parameters used here (see Table 1)
are obtained by calibration. Based on these results, the incorporation of a branch for10

the drying process of the residual water of the soil becomes necessary.

3.3 Reactive transport

The mass balance used for the reactive transport can be written as

∂φSlρlca

∂t
=LI(ca)+R (8)

Ll()=−∇· (q lρl())+∇· (D lφSlρl∇())+ml15

R = reps+rhex+rpent+rstark

rmin =σmink(Ωmin−1)

where vector ca (mol/kg) is the concentration of aqueous species and Ll is the lin-
ear operator for the advection, dispersion/diffusion, ml is the non-chemical source-sink
(mol m−3 s−1) and D l is the dispersion/diffusion tensor (m2 s−1). R contains the rates of20

the kinetic reactions (rmin) for all the different mineral phases (reps, rhex, rpent and rstark),
σmin is the mineral reactive surface and Ωmin is the ratio between the ion activity prod-
uct and the equilibrium constant. The reaction rates enable us to estimate the liquid
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water provided by mineral hydratation-dehydratation. This amount of water is added to
the water mass balance as a source/sink term (f w

l ) in Eq. 1.

f w
l = (7reps+6rhex+5rpent+4rstark)mw (9)

where mw is the water molecular weight.

4 Numerical model5

The problem is considered one dimensional in a vertical direction. The grid is made up
of 240 elements (for 24 cm column length) consisting of two materials: the first covers
the top 1.5 cm, and the second the rest. The gas diffusion enhancement factor (τ0) (see
Table 1) was calibrated to be 1.2 in the upper material and 8 below. Accordingly, we
reduce the vapor diffusion near the column surface, simulating more salt precipitates10

(salt crust formation), thereby reproducing more accurately the experimental results.
Different boundary conditions (BC) for liquid, vapor and heat were chosen to repro-

duce the laboratory conditions (see Table 2). The top boundary is a mixed condition
representing gas (air and vapor) and heat inflow-outflows. A radiative heat flux (from
the lamp) was added at the top boundary condition. The lateral and bottom BC were15

of no-flow for water and solutes, but some loss of energy was permitted to dissipate
across the boundary.

Initial conditions are also applied: initial porosity (φ=0.4), initial gas and liquid pres-
sures (Pg=Pl=0.101325 MPa) and initial temperature (T0=25 ◦C).

Numerical simulations were carried out using the RETRASO-CODE BRIGHT (RCB)20

code, which couples the thermohydraulic model CODE BRIGHT (CB) of Olivella et al.
(1996b) with the reactive transport model RETRASO of Saaltink et al. (2004). Further-
more, geochemical calculations are performed with the object-oriented chemical mod-
ule CHEPROO (Bea et al., 2009, 2010), which includes high salinity solutions using
the equations of Pitzer (1973). The feedback of reactive transport in thermohydraulics25

is performed by a time lag approach. The code solves the thermohydraulic equations
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(Eqs. 1–3) for one time step. Results (Darcy fluxes, hydraulic saturation, etc.) are
used to calculate the reactive transport for the same time step (Eq. 8). Subsequently,
thermohydraulic properties such as porosity change due to precipitation-dissolution or
water activity and the source/sink term (f w

l ) are calculated using the reactive transport
results. A new thermohydraulic time step is calculated using these new properties.5

5 Results and discussion

Figure 3 displays the water saturation, temperature and salinity profiles computed for
four different times along with the experimental results at the end of the experiment,
after 12 days. Saturation profiles illustrate the progressive desaturation of the columns
from the top. The water content drops over time to values near residual saturation at10

a depth that increases with time. Saturation at the top reaches oven dry conditions
(volumetric water content lower than the residual one). The bottom of this zone rep-
resents the location of the evaporation front. Below it, the water content continues to
increase downwards, leading to a degree of saturation profile similar to that of the sand
retention curve. The good match between model and experiment at the upper oven dry15

area (above 4 cm depth) confirms the validity of the retention curve modification, which
improves the simulation of multiphase flow under very dry conditions.

Temperature rises during the experiment and displays a slope change at the evapo-
ration front. The temperature gradient is larger above than below the front because the
evaporation front acts as a heat sink. Another smaller temperature slope change can20

be detected at a depth of 1.5 cm. This is due to the change in enhancement factor (τ0).
The spatial distribution of concentration is noteworthy. Salinity is extremely high at

the surface, where the water content is negligible, reaching salt solubility and producing
precipitates. This high concentration zone grows with time, advancing in depth with the
evaporation front. Immediately below, salinity drops sharply to values underneath the25

initial concentration. The minimum concentration is always located immediately below
the evaporation front. Further down, salinity rises slightly with depth, but still more
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dilute than the initial conditions. The water content and temperature profiles coincide
with what might be expected (drier and warmer conditions at the surface than at depth)
unlike the concentration profile. Furthermore, a difference between the experimental
data and the numerical model is observed: the minimum in the simulated concentration
consistently beneath the measured one.5

The fact that the model reproduces qualitatively the observations suggests that it
can be used to determine the role of water flow, heat and transport processes in the
system. We discuss below the mechanism that is responsible for the dilution of the
solution.

Figure 4 displays the profiles of water and heat fluxes for the same instants as in10

Fig. 3. Liquid water flows upwards because of capillarity throughout the experiment. An
evaporation front, located where the liquid flux drops abruptly to zero, may be observed
after 3.3 days. This front advances deeper into the soil as the feeding liquid flux from
the bottom diminishes over time. Above this front, water can no longer flow as a liquid.
Nevertheless the water content continues to diminish towards the top of the column in15

response to the upward increase in temperature and the reduction of vapor pressure
(which causes an upward decrease in relative humidity). Water vapor flux profiles show
that vapor flows both upwards and downwards from the evaporation front. The increase
in suction at the surface leads to a lower vapor pressure that promotes the upward
flux. The temperature gradient causes a vapor pressure gradient that generates the20

downward flux. Condensation of this downward vapor flux accounts for the decrease
at the bottom of the column and for the dilution of the solution below the evaporation
front. Both upward and downward vapor fluxes are present all over the experiment.

The numerical model also enables us to study in detail heat fluxes. Figure 4 displays
that conductive heat flows downwards throughout the column. This flux is larger in25

the upper zone, where the soil is dry, and decreases over time. Note the sudden
fall in heat flux observed at all time steps, which is due to the heat sink produced by
evaporation. The advance of the evaporation front is observed very clearly and its
location is controlled by the above heat flux, which decreases because of depth and
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dryness. The total heat flux graph exposes that conductive and advective heat fluxes
are similar in magnitude but in opposite directions above the front. Below it, both fluxes
flow downward although the advective flux is the dominant one.

Figure 5 displays the spatial distribution of the evaporation and condensation rates
and the vapor mass fraction profile. The vapor mass fraction profile presents a marked5

change in the slope and provides evidence of two distinct gradients. Since evaporation
occurs at this juncture, the increase in vapor and gas pressure generates vapor diffu-
sion and advection both upwards and downwards. The graph on the right displays the
evolution of the evaporation (negative values). The evaporation rate is higher at the
start and decreases as the evaporation front advances deeper into the soil. Conden-10

sation rate is much smaller than evaporation, but extends over a much longer interval.
Vapor condensation occurs from the early stages and its maximum evolves decreas-
ing and advancing into the soil just like evaporation. This explains the decrease in
concentration below its initial value. Nevertheless, the model underestimates this de-
crease. Note that condensation always occurs below the evaporation front and that its15

magnitude is substantially lower than that of the evaporation, causing the soil to dry.

6 Sensitivity analisis

Further insight into the above processes and into the role of controlling parameters
can be gained from a sensitivity analysis. Processes are strongly coupled, i.e. all the
parameters affect all the processes. We focused on the sensitivity of the boundary heat20

dissipation (γ) and the gas diffusion enhancement factor (τ0), which proved to be more
illustrative. Table 3 presents the values adopted for these parameters.

Figure 6 illustrates the impact of the heat dissipation increase through the column
walls on the whole system. The effect of the heat dissipation increase through the
bottom has also been studied but is not shown here (it presents a similar system re-25

sponse but less relevant). Increasing γ at the walls causes an increase in the rate of
sensible heat dissipation and leaves less energy available for evaporation. Although
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Fig. 6 shows higher evaporation at the evaporation front, this is overcompensated by
a higher condensation below the front. As a result the overall saturation increases and
the evaporation front remains close to the surface. It also leads to a lower overall tem-
perature. Note that as more heat is dissipated the temperature gradient just beneath
the evaporation front also increases. This causes an increase in the downwards va-5

por pressure gradient and in the downward vapor flux, whereas, the upward vapor flux
diminishes. The shape of the condensation profile varies to give a bigger maximum
concentrated just below the evaporation front. We can infer that the amount of heat
dissipated through the walls controls the thermal gradient in the column.

The gas diffusion enhancement factor (τ0) was homogenised increasing its value in10

the upper part of the column (Table 3). As a result, the soil dries faster and the overall
degree of saturation diminishes. The evaporation front advances deeper into the soil
and the area below is colder. The temperature profile changes from three to two differ-
ent gradients: the temperature gradient near the surface increases and becomes uni-
form towards the evaporation front. As the lower temperature leads to less lateral heat15

dissipation, the temperature gradient below the evaporation front decreases. Accord-
ingly, the downward vapor flux diminishes and hence, the condensation. By contrast,
the upward vapor flux increases, showing that vapor can flow more easily towards the
surface and explaining the downward displacement of the evaporation front and the
column drying. As the evaporation front advances deeper into the soil, condensation20

takes place further down. Overall, the results fit to experimental data, suggesting that
variations in τ0 must be modeled.

7 Conclusions

The model reproduces quite accurately experimental observations, so that it can be
used to quantify processes. These confirm the initial conjecture about the highly cou-25

pled and rather complex nature of evaporation from a soil. In essence, evaporation is
driven by heat, but it can be limited by liquid and vapor flux processes and by salinity.
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Some conclusions can be inferred from the calibrated model:

- Evaporation causes vapor pressure to increase at the evaporation front causing
vapor to flow upwards and downwards. Both fluxes occur throughout the exper-
iment, but the relative importance of the downwards flux increases over time. In
our model the downward flux is half that of the upward flux at the end of the5

experiment.

- The evaporation front is very narrow, which contradicts the analysis of Konucku
et al. (2004). Most evaporation is concentrated in less than 1 cm. Some evap-
oration occurs above the front, but condensation starts immediately below. This
finding may be due to the experimental conditions (loss of heat through the col-10

umn walls). Without this heat loss, water vapor could have penetrated further into
the soil, which is consistent with the findings of Scanlon and Milly (1994).

- Condensation of the downward vapor flux dilutes the solution beneath the evap-
oration front with the result that salinity drops below the initial value. This finding
confirms the existence of a water separation process driven by evaporation.15

- Heat flows downwards from the surface to the bottom of the column mainly by
conduction. Even though is not shown in the graphs, the advective vapor heat
flux is larger than the liquid one during all the experiment. Advection of latent
heat is the main transport mechanism in the system.

Further conclusions can be drawn from the sensitivity analysis:20

- Vapor diffusion is very sensitive to the heat boundary conditions. The amount of
heat dissipated throughout the column walls controls the temperature gradient.
Downward diffusion is enhanced by the lateral heat dissipation through the walls.

- It is the temperature gradient more than the temperature range, what governs
the magnitude of vapor fluxes. Therefore, these processes can occur in salinized25

soils under temperatures lower than the ones observed here.
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- The formation of a crust due to salt precipitation reduces porosity and increases
tortuosity, which hinders evaporation. These have been simulated by reducing
the gas diffusion enhancement factor (τ0) at the crust. This has been needed
to reproduce evaporation rates together with observed temperatures and salinity
profiles.5

Finally, further research is warranted to resolve a number of issues. The dilution sim-
ulated by the numerical model is always lower than that measured in the experiments.
The representation of vapor flux may not be accurate. In fact, as stated by Shokri et al.
(2009), the use of gas diffusion enhancement factor is an empirical need without a firm
foundation. Nevertheless, our model offers new insights into the evaporation and water10

separation processes that occur in a salty soil under very dry conditions.
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Table 1. Constitutive laws, parameters and values used in the numerical model.

Constitutive laws Parameters and values

Water saturation for Sl=Si+(1−Si)Se S0
min=0.08, α=0.1

ret. curve in modified Se=
(

1+(Pc/P0)
1

1−λ
)−λ

λ=0.93, P0=0.0025 MPa

van Genuchten model Si=S
0
minα ln

(
P dry

c /Pc

)
P dry

c =650 MPa

Relative permeability function Krl=
√
Sep

(
1−

(
1−S1/λ

ep

)λ
)2

λ=0.93

(for a new ret. curve) Sep=
(
Sl−S

0
min

)
/
(

1−S0
min

)
Intrinsic permeability for qα=−

kkrα
µα

(∇Pα−ραg) k0=2.8×10−11 m2

Darcy’s Law k=k0exp(b(φ−φ0)) b=40, φ0=0.4

Diffusive flux of vapor iα=−(τφραSαDmI)∇wα D=5.9×10−6 m2 s−1 K−n Pa

(Fick’s Law) Dm=τD
(

(273.15+T )n

Pg

)
n=2.3

τ=τ0

(
Sm

g

)
τ0=8, m=3

Conductive flux of heat λdry=(1−φ)nλsolid+φ
nλgas λsol=2 W mK−1, n=2

(Fourier’s Law) λsat=(1−φ)nλsolid+φ
nλliq λgas=0.01 W mK−1

λ=
√
Slλsat+

(
1−

√
Sl

)
λdry λl iq=0.6 W mK−1

Psychrometric Law Pv=136075aw exp
( −5239.7

273.15+T

)
MPa

Where aw is the molar mass fraction of water in liquid calculated by the reactive transport from aqueous concentrations.
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Table 2. Liquid, vapor and heat boundary conditions and corresponding parameters.

Boundary conditions Top Lateral Bottom

Liquid flux jl=0 jl=0 jl=0

Vapor flux (ωw
g )0=0.020 kg/kg

jw
g =(ωw

g )0j0
g+ (Pg)0=0.101325 MPa

+(ωw
g )0γg(P 0

g −Pg)+ γg=50 kg/s/MPa/m2

+βg((ρgω
w
g )0−(ρgω

w
g )) βg=0.03 m/s

ρg=1.12 kg/m3

Energy flux j0
e=750 J/s j0

e=0 j0
e=0

je=j
0
e+γe(T 0−T )+Ew

g (jw
g ) T 0=25 ◦C T 0=26 ◦C T 0=26 ◦C

γe=24 J/s/C/m2 γe=25 J/s/C/m2 γe=1 J/s/C/m2
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Table 3. Studied parameters for the sensitivity analysis: boundary heat dissipation (at the walls
and at the bottom) and gas diffusion enhancement factor (τ0). Compared to the base model
(BM): the boundary heat dissipation, by means of γ value, has been doubled and increased by
an order of magnitude alternatively and τ0 value for the upper material (firsts 1.5 cm) has been
increased from 1.2 to 8 to equal the value for all the column.

Model
Parameter BM 2γbot 10γbot 2γwall 10γwall τ0

γwall 1 1 1 2 10 1
γbottom 25 50 250 25 25 25
τ0 1.2 1.2 1.2 1.2 1.2 8
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Lamp

WATER SALT ENERGY

Radiant heat

Vapor flux

Liquid flux

Evaporation

front
Min.

Advection

Dispersion
Diffusion

Crust

Cond. Latent
heat
adv.

Sensible
heat
adv.

conc.

Evap.

Fig. 1. Diagram of the design of the evaporation column experiments and their conceptual
model. The water fluxes are on the left, the salt fluxes are on the centre and the energy ones
on the right.
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Fig. 2. Retention and relative permeability curves (original van Genuchten and oven dry pro-
posed models) for the sand used in the column experiments.
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Fig. 3. Profiles of saturation, temperature and salinity measured at the end of the experiment
(symbols) and computed (lines). The time evolution is shown for four different times (after
1.1 days, 3.3 days, 6.6 days and, at the end of the experiment, 12 days).
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Fig. 4. Computed profiles of liquid, vapor and total water fluxes (above), and conductive and
total (conductive plus advective) heat fluxes (below). Positive and negative values stand for
upward and downward flows, respectively. The simulation results are shown for four different
times (after 1.1 days, 3.3 days, 6.6 days and 12 days). The difference between the diffusive
vapor flux and the total water flux, displayed in the top 4 cm of the above graph on the right, is
equal to the advective vapor flux.
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Fig. 5. Computed profiles of vapor mass fraction and evaporation (negative)/condensation
(positive) rates for four different times. Note the change in the vapor mass fraction slope at
1.5 cm depth owing to the imposition of the reduction in vapor diffusivity on the salt crust.
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Fig. 6. Analysis of the effect of boundary heat dissipation. Computed profiles of saturation,
temperature, concentration, water mass flux, evaporation and condensation after 12 days.
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