Revista Chapingo Serie Ciencias Forestales y del Ambiente
ACTIVIDAD INSECTICIDA DE ACEITES ESENCIALES DE DOS ESPECIES DE Eucalyptus SOBRE Rhyzopertha dominica Y SU EFECTO EN ENZIMAS DIGESTIVAS DE PROGENIES
ISSNe: 2007-4018   |   ISSN: 2007-3828
PDF

Palabras clave

Eucaliptos
mortalidad
barrenador menor de los granos
amilólisis
proteólisis
trigo

Cómo citar

Reyes-Guzmán, R. ., Borboa-Flores, J. ., Cinco-Moroyoqui, F. J. ., Rosas-Burgos, E. C. ., Osuna-Amarillas, P. S. ., Wong-Corral, F. J. ., Ortega-Nieblas, M. M. ., & León-Lara, J. D. D. . (2012). ACTIVIDAD INSECTICIDA DE ACEITES ESENCIALES DE DOS ESPECIES DE Eucalyptus SOBRE Rhyzopertha dominica Y SU EFECTO EN ENZIMAS DIGESTIVAS DE PROGENIES. Revista Chapingo Serie Ciencias Forestales Y Del Ambiente, 18(3), 385–394. https://doi.org/10.5154/r.rchscfa.2012.02.015

Plaudit

Resumen

La fracción volátil de los aceites esenciales de Eucalyptus globulus y Eucalyptus camaldulensis se utilizaron para evaluar su actividad insecticida sobre el barrenador menor de los granos Rhyzopertha dominica (F.). Muestras de granos de trigo fueron infestadas con el insecto y expuestas a los vapores de diferentes volúmenes (5, 10 y 15 μL) de los aceites por diferentes periodos (24, 48 y 72 h). La actividad enzimática amilolítica y proteolítica se determinaron en las progenies (F1) que emergieron de los granos. Ambos aceites ocasionaron una estimulación en la actividad enzimática amilolítica y proteolítica de las progenies; sin embargo, solamente E. globulus ocasionó la muerte de éstas (P < 0.05). Al incrementar el volumen de aceite de E. camadulensis, la actividad proteolítica del insecto aumentó, incluso al mayor tiempo de exposición. Los resultados de este estudio muestran que la fracción volátil de los aceites esenciales de eucalipto, especialmente la de E. globulus, es un agente insecticida efectivo para el control de R. dominica en trigo almacenado.

https://doi.org/10.5154/r.rchscfa.2012.02.015
PDF

Citas

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267. doi: https://doi.org/10.4067/S0718

Association of Official Analytical Chemists (AOAC). (1990). Official Methods of Analysis (15th ed.). Arlington, VA. USA: Autor.

Batish, D. R., Pal-Singh, H., Kohli, R. K., & Kaur, S. (2008). Eucalyptus Essential oil as a natural pesticide. Forest Ecology and Management, 256, 2166–2174. doi: https://doi.org/10.1016/j.foreco.2008.08.008

Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254. doi: https://doi.org/10.1016/j.foreco.2008.08.008

Cinco-Moroyoqui, F. J., Díaz-Malváez, F. I., Alanís-Villa, A., Barrón- Hoyos, J. M., Cárdenas-López, J. L., Cortez-Rocha, M. O., & Wong-Corral, F. J. (2008). Isolation and partial characterization of three isoamylases of Rhyzopertha dominica F. (Coleoptera: Bostrichidae). Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 150, 153–160. doi: https://doi.org/10.1016/j.cbpb.2008.02.008

Cinco-Moroyoqui, F. J., Rosas-Burgos, E. C., Borboa-Flores, J., & Cortez-Rocha, M. O. (2006). α-Amylase activity of Rhyzopertha dominica (Coleoptera: Bostrichidae) reared on several wheat varieties and its inhibition with kernel extracts. Journal of Economic Entomology, 99, 2146–2150. doi: https://doi.org/10.1603/0022-0493-99.6.2146

Cuperus, G. W., Prickett, C. K., Bloome, P. D., & Pitts, J. T. (1986). Insect populations in aerated and unaerated stored wheat in Oklahoma. Journal of the Kansas Entomology Society, 59, 620–627. http://www.jstor.org/stable/25084836

Daglish, G. J., & Nayak, M. K. (2006). Long-term persistence and efficacy of spinosad against Rhyzopertha dominica (Coleoptera: Bostrichidae) in wheat. Pest Management Science, 62(2), 148– 152. doi: https://doi.org/10.1002/ps.1141

Hamedo, H. A., & El Shamy, A. R. (2008). Effect of essential oil of Eucalyptus rostrata on the production of some enzymes by Trichoderma virens and Fusarium solani. Australian Journal of Basic and Applied Sciences, 2(4), 1223–1227. http://www.ajbasweb.com/ajbas/2008/1223-1227.pdf

Haritos, V. S., Damcevski, K. A., & Dojchinov, G. (2006). Improved efficacy of ethyl formate against stored grain insects by combination with carbon dioxide in a “dynamic” application. Pest Management Science, 62, 325–333. doi: https://doi.org/10.1002/ps.1167

Isman, M. B. (2000). Plant essential oils for pest and disease management. Crop Protection, 19, 603–608. doi: https://doi.org/10.1016/S0261-2194(00)00079-X

Kakade, M. L., Rackis, J. J., Mcghee, J. E., & Puski, G. (1974). Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chemistry, 51, 376–381. http://www.aaccnet.org/publications/cc/backissues/1974/Documents/chem51_376.pdf

Mcclintock, E. (1993). Myrtaceae-Myrtle Family. In J. C. Hickman (Ed.), The Jepson manual: Higher plants of California (p. 766). Berkeley and Los Angeles, California, USA: University of California Press.

Moreno, J., López, G., & Siche, R. (2010). Modelación y optimización del proceso de extracción de aceite esencial de eucalipto (Eucalyptus globulus). Scientia Agropecuaria, 1, 147 – 154. https://sites.google.com/a/unitru.edu.pe/sci-agropecu/publicacion/scagropv1n2/scagrop01_147-154

Mossi, I. J., Astolfi, V., Kubiak, G., Lerin, L., Zanella, C., Toniazzo, G.,… Restello, R. (2011). Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). Journal of the Science of Food and Agriculture, 91(2), 273–277. doi: https://doi.org/10.1002/jsfa.4181

Naseem, M. T., & Khan, R. R. (2011). Comparison of repellency of essential oils against red flour beetle Tribolium castaneum Herbst (Coleoptera: Tenebrionidae). Journal of Stored Products and Postharvest Research, 2(7), 131–134. http://www.academicjournals.org/jsppr/PDF/pdf2011/Jul/Naseem%20and%20Khan.pdf

Negahban, M., & Moharramipour, S. (2007). Fumigant toxicity of Eucalyptus intertexta, Eucalyptus sargentii and Eucalyptus camaldulensis against stored-product beetles. Journal of Applied Entomology,131(4), 256–261. doi: https://doi.org/10.1111/j.1439-0418.2007.01152.x

Oppert, B., Morgan, T. D., Hartzer, K., & Kramer, K. J. (2005). Compensatory proteolytic responses to dietary proteinase inhibitors in the red flour beetle, Tribolium castaneum (Coleoptera: Tenebrionidae). Comparative Biochemistry and Physiology, 140C, 53–58. doi: https://doi.org/10.1016/j.cca.2005.01.006

Ouattara, B. R. E., Simard, R. A., Holley, G., Piette, J. P., & Bégin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. International Journal of Food Microbiology, 37, 155–162. doi: https://doi.org/10.1016/S0168-1605(97)00070-6

Rajendran, S., & Gunasekaran, N. (2002). The response of phosphine-resistant lesser grain borer Rhyzopertha dominica andrice weevil Sitophilus oryzae in mixed-age cultures to varying concentrations of phosphine. Pest Management Science, 58, 277–281. doi: https://doi.org/10.1002/ps.446

Schlipalius, D. I., Cheng, Q., Reilly, P. E. B., Collins, P. J., & Ebert, P. R. (2002). Genetic linkage analysis of the lesser grain borer Rhyzopertha dominica identifies two loci that confer high-level resistance to the fumigant phosphine. Genetics, 161, 773–782. http://www.genetics.org/content/161/2/773.full.pdf

Silva, L. B., Lopes, K. V. G., Oliveira, M. G. A., & Guedes, R. N. C. (2010). Altered proteolytic and amydolytic activity in insecticide susceptible and resistant strains of the maize weevil, Sitophilus zeamais. 10th International Working Conference on Stored Product Protection. Julius-Kühn-Archiv., 425, 845–850. doi: https://doi.org/10.5073/jka.2010.425.184

Siramon, P., & Ohtani, Y. (2007). Antioxidative and antiradical activities of Eucalyptus camaldulensis leaf oils from Thailand. Journal of Wood Science, 53, 498–504. doi: https://doi.org/10.1007/s10086-007-0887-7

Thoroski, J., Blank, G., & Biliaderis, C. (1989). Eugenol induced inhibition of extracellular enzyme production by Bacillus cereus. Journal of Food Protection, 52, 399–403.

Tyler, P. S., Taylor, R. W., & Rees, D. P. (1983). Insect resistance to phosphine fumigation in food warehouses in Bangladesh. International Pest Control, 25, 7–12.

Vardeman, E. A., Arthur, F. H., Nechols, J. R., & Campbell, J. F. (2006). Effect of temperature, exposure interval, and depth of diatomaceous earth treatment on distribution, mortality, and progeny production of lesser grain borer (Coleoptera: Bostrichidae) in stored wheat. Journal of Economic Entomology, 99, 1017–1024. doi: https://doi.org/10.1603/0022-0493-99.3.1017

Watts, V. M., & Dunkel, F. W. (2003). Postharvest resistance in hard spring and winter wheat varieties of the northern Great Plains to the lesser grain borer (Coleoptera: Bostrichidae). Journal of Economic Entomology, 96, 220–230. doi: https://doi.org/10.1603/0022-0493-96.1.220

Wendakoon, C. N., & Sakaguchi, M. (1995). Inhibition of amino acid decarboxylase activity of Enterobacter aerogenes by active components in spices. Journal of Food Protection 58, 280–283.

Zhang, J., An, M., Wu, H., Stanton, R., & Lemerle, D. (2010). Chemistry and bioactivity of Eucalyptus essential oils. Allelopathy Journal, 25, 313–330.

Zhu, Y. C., & Baker, J. E. (1999). Characterization of midgut trypsin-like enzymes and three trypsinogen cDNAs from the lesser grain borer, Rhyzopertha dominica (Coleoptera: Bostrichidae). Insect Biochemistry and Molecular Biology, 29, 1053–1063. doi: https://doi.org/10.1016/S0965-1748(99)00081-8

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Derechos de autor 2012 Revista Chapingo Serie Ciencias Forestales y del Ambiente

Métricas

Cargando métricas ...