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ABSTRACT 

 

Considering information entropy (IE), HLA surface expression (SE) regulation phenomenon is considered 

as information propagation channel with an amount of distortion. HLA gene SE is considered as sink 

regulated by the inducible transcription factors (TFs) (source). Previous work with a certain number of bin 

size, IEs for source and receiver is computed and computation of mutual information characterizes the 

dependencies of HLA gene SE on some certain TFs in different cells types of hematopoietic system under 

the condition of leukemia. Though in recent time information theory is utilized for different biological 

knowledge generation and different rules are available in those specific domains of biomedical areas; 

however, no such attempt is made regarding gene expression regulation, hence no such rule is available. In 

this work, IE calculation with varying bin size considering the number of bins is approximately half of the 

sample size of an attribute also confirms the previous inferences.  
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1. INTRODUCTION 

 
Understanding of HLA gene regulation is important particularly in malignancy and other state of 

disease cases. It has been reported that in cancer cells classical HLA class I (HLA class Ia) gene 

expression is frequently down-regulated that may enable them to escape from immune attack. It is 

also noted that HLA down regulation is also evident in leukemic cell both at the transcriptional 

and at the translational level [1]. In this connection it would be interesting to note that in cancer 

no mutation has been identified in HLA gene so far [2].  

 

Regarding the mechanism of HLA down-regulation in cancer, aberrant expression or binding of 

transcription factor (TF) to Enhancer (Enh) A, a conserved sequence present in the HLA 

promoter region is already reported. However, in the promoter region of HLA has another region 

called Enh B region, regarded as inducible region. It has been suggested that this region has a 

cell/tissue specific function and plays a significant role in pathogenic transformation [3-4]. Hence, 

this would be interesting to find out the possible role/importance of this region in malignant cells.  

 

Conventionally, experimental biologists test the mechanism of gene regulation through an in vitro 

experimental model system set up. With such model system, either the gene of interest (GI) i.e., 

TF is over-expressed within a cell line deficient to that gene or silencing the GI followed by 

estimation of the effect on the downstream target gene (TG). Such experimentation with Enh B 

reveals that several Enh B region binding TF like RFXB, CIITA or CREB1 alone can induce the 
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HLA class I expression. Therefore it could be expected that these TF could be down-regulated in 

primary human leukemic cells. Investigation with primary human leukemic cells reveals that 

there is no alteration (statistically insignificant through nonparametric statistics) of majority of the 

TFs except RFXB and CREB1. Contrarily, these two TFs are over expressed in primary human 

leukemic cells having HLA class Ia positivity [5, 6].  

 

In recent times, information theoretic tools (like entropy analysis, mutual information) have been 

used in the development of sets of over- and/or under-expressed genes (through clustering) from 

microarray profile of different gene expression [7, 8]. Very recently, mutual information has been 

utilized to identify post-translator modulators of different TFs in human B-cells [9]. Along with 

the approach, information entropies computed for the source (TF) to receiver [TG i.e., surface 

expression (SE) of HLA] and computation of channel equivocation and mutual information are 

used to characterize the phenomenon of HLA gene regulation in different de-novo AML, CML, 

ALL, CLL and MDS patients.  

 

With this approach, the TF and SE data divided into certain number of intervals and confirms the 

previous relationships between RFXB and CREB1 expression with HLA class Ia positivity. 

Moreover, mutual information analysis reveals the different cells (leukemias) types are 

differentially dependent on these TFs in regulating HLA expression [10]. The dependencies of 

HLA expression are as follows –    

for RFXB: NV > AML > ALL and  

for CREB1: AML > ALL > NV.   

 

In recent time it is hypothesized that entropy function is dependent on the probability distribution 

of an attribute within the bins and hence, differences in the number of bins may produce in 

different inference [11, 12]. Here attempt has been made to validate/confirm the previous findings 

with varying bin size.  
 

2. INFORMATION THEORY BACKGROUND  

 
The classical concept involves a source of information that emanates certain symbols according to 

a probability distribution. These symbols pass through a channel and are received at the other end. 

The received symbol probabilities are different from the source to an extent depending upon the 

distortion properties of the channel.  

 

This concept can be extended to cover data points of a TF attribute which acts as the source and 

an attribute surface expression (SE) as the receiver with the phenomenon of gene regulation as the 

underlying channel. Information entropy (IE) function provides us with this important metric. IEs 

computed for the source, receiver and computation of channel equivocation and mutual 

information could be useful to characterize the phenomenon of gene regulation. Below we 

provide detailed theoretical background on the concepts used in this work.  

 
Entropy (H) of Single attribute of TF: If an attribute value close to max., data are scattered & 

more is its information entropy and uncertainty. Given the n data points pertaining to a variable, 

the range is sub-divided into q intervals and if fi is the number of data points occurring in the ith 

interval, then pi = fi / n defines a probability distribution for the variable over the chosen q 

intervals. Entropy ∑ 

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probability distribution of the variable. In general for r-based logarithm,  
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In natural logarithms (base e) the units are nats. In our calculation we have calculated all values to 

10 based logarithm. That means here r =10.  

 

Some of the properties of entropy function is listed here that would be useful for the present work 

[13, 14]. 

 

i) H is symmetric and continuous. This ensures that any choice of sub-interval changes can bring 

out the required uncertainty measure.  

ii) Hn+1 (p1, p2, p3,…, pn-1, 0) = Hn (p1, p2, p3,…, pn) i.e., if an interval is empty, it does not affect 

entropy. This means extending the range to some global (max, min) does not affect the sample 

data point based calculation. Due to this property, all the different groups (normal, disease) can be 

governed by the same sub-interval choice without affecting the desired metric. 

iii) Hn (p1, p2, p3,…, pn) ≤ Hn (1/n, 1/n, 1/n,…, 1/n). This means that if the data is uniformly 

distributed the entropy will be maximum while the same falls down when the data is clustered 

more in a certain interval. This allows an upper bound on the chosen metric and thereby facilitates 

comparison.  

 
Joint Entropy (TF attribute vs. surface expression) is the amount of average information 

provided by the two attribute jointly. The joint entropy approaches the summation of the 

individual entropies when the two taken attributes are independent. This allows any arbitrary sub-

ranging of the two-dimensional array involving TF and SE pair while finding the metric.  
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X and Y are two random variables.  

 

Conditional Entropy [H(Y|X) or H(X|Y)] measures the uncertainty remaining about random 

variable X after specifying that random variable Y has taken on a particular value. The 

relationship between joint entropy and conditional entropy is exhibited by the fact that the 

entropy of a pair of random variables is the entropy of one plus the conditional entropy of the 

other.  

 
Mutual Information [I(X;Y)] is the relative importance of an attribute in SE of protein. The 

mutual information between two random variables measures the amount of information that one 

conveys about the other. Equivalently, it measures the average reduction in uncertainty about X 

those results from learning about Y. Mutual information is always ≥ 0. In the event that the two 

random variables are perfectly correlated, then their mutual information is the entropy of either 

one alone. The mutual information of a random variable with itself is just its entropy. For this 

reason, the entropy H(X) of a random variable X is sometimes referred to as its self-information. 

The mutual information can be calculated as  

 

I(X;Y) = H(X) – H (X|Y) = H(Y) - H (Y|X).  

3. MATERIALS AND METHOD  

 

3.1. Collection of Data  
 

All gene expression data has been collected from the work of Majumder, 2006 and Majumder, 

2012 [5, 6]. Primarily we have data of two attributes – HLA surface expression (HLA-ABC and 

HLA-DR) and transcriptional data ( IRF-1, RFX5, RFXB, CIITA, CREB-1) of 10 normal 
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volunteers (NV) and different leukemic patients [18 AML (acute myelogenous leukemia), 14 

ALL (acute lymphocytic leukemia), 12 CML (chronic myelogenous leukemia) and 6 CLL 

(chronic lymphocytic leukemia)]. The demographic description of the patients is same as 

mentioned in the earlier works [1]. The TFs gene expression data and SE data were acquired 

through semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and by flow 

cytometric method respectively. The characteristics of the collected data are shown in Table 1 and 

2 [1].  
 

Table 1. Cell surface HLA-ABC and HLA-DR expression. Data are presented as mean ± SD; 

Mdn, Max and Min stands for median, maximum and minimum value obtained in the population. 

 

Sample HLA-ABC HLA-DR 

NV  

 

57.23±21.97 

Mdn 48.6 

Max 107.37 

Min 38.53 

36.793±13.78 

Mdn 32.48 

Max 58.33 

Min 21.03 

AML 29.035 ± 17.325 

Mdn 28.02 

Max 59.81 

Min 1.12 

51.508±46.29 

Mdn 42.96 

Max 165.01 

Min 1.19 

ALL and CLL  

 

32.721 ± 23.44 

Mdn 25.19 

Max 81.42 

Min 9.2 

195.909±192.43 

Mdn 106.82 

Max 626.36 

Min 32.91 

 

*Note: In CML cases, identification of malignant cell diagnosis is not possible through flow 

cytometry, hence investigation on HLA surface expression is not done. Statistical test of 

significance is available in Ref. 1.  
 

Table 2. Transcriptional expression of different TFs in leukemic and normal individuals. Data are 

presented as mean ± SD. 
 

 IRF1 RFX5 RFXB CIITA CREB1 

NV 1.049 
±0.632 

1.102 

±0.376 

0.711 

±0.392 

0.412 

±0.353 

0.0 

 

AML 1.37 

±1.451 
NS 

0.984 

±0.597 

NS  

1.83 

±0.588 

P<0.005 

0.801 

±0.742 

NS 

0.801 

±0.76 

P<0.001  

ALL 0.831 
±0.978 
NS 

1.181 

±0.5 

NS  

1.84 

±0.905 

P≤0.02  

0.735 

±0.486 

P≤0.02 

0.533 

±0.286 

P<0.001  

CML 0.842 
±1.419 
P<0.02 

1.15 

±0.66 

NS  

1.528 

±1.1 

P<0.05  

0.717 

±0.668 

NS  

0.228 

±0.218 

P<0.001  

CLL 1.83 
±2.16 
NS 

1.234 

±0.411 

NS  

2.253 

±1.403 

P≤0.05 

0.795 

±0.491 

NS  

0.155 

±0.158 

P<0.001  

 

NS: Not statistically significant; P means the level of statistical significance through Mann-

Whitney U test.  
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3.2. Proposed Scheme  

 
Five attributes (IRF1, RFX5, RFXB, CIITA AND CREB1,) pertaining to TF and two attributes of 

HLA surface expression (HLA-ABC, HLA-DR) (SE) have been considered (Fig. 1A). For each 

pair (altogether 5×2 = 10 pairs) of TF and SE, we consider the existence of an informational 

channel through which the concerned TF manifest into the corresponding SE. Our aim is to 

examine these channels. For the chosen attributes we have collected data of individuals from 

normal population and some individuals with different leukemic conditions. We separately 

examine the channels in different disease groups and compare them with normal group. This 

gives an insight into the phenomenon through which a TF regulates the SE. The results are not in 

absolute terms but based on the comparative analysis.  

 

The TF and SE data collected is divided into a certain number of intervals. Here we choose two 

numbers of intervals; the intervals are 7 and 10. The number of intervals is analogous to the 

number of symbols in classical information theory. Calculation of the frequency distribution from 

data is analogous to the symbol probabilities at the source and the receiver side respectively.  

 

Now we have considered the joint probabilities of the symbols of the source (TF) and receiver 

(SE). In these ways we convert the TF-SE pair into a source-receiver pair. Now we calculate the 

information entropies at the source H(X) i.e., TF [interval 7 and 10] and receiver H(Y) i.e., SE 

[interval 7 and 10]. We also calculate the joint entropy of source and receiver pair H(X,Y) by 

considering the joint probabilities. These provide the measure of uncertainty and from these. In a 

sense the mutual information I(X;Y) is the intersection between H(X) and H(Y), since it 

represents their statistical dependence. In the given Venn diagram we derive the channel 

equivocation H(X|Y) or H(Y|X) i.e., the average conditional entropy of the source given the 

receiver symbol or vice versa. H(Y|X) = H(X, Y) - H(X) and H(X|Y) = H(X, Y) – H(Y), Mutual 

information I(X;Y) can now be calculated as: I(X;Y) = H(X) – H(X|Y) = H(Y) - H(Y|X) 

 

In this way we calculate our proposed scheme and compared our results in two intervals and also 

checked the results that different intervals results are same or not.  

 

 

Figure.1. Analogy between transcriptional regulation and information channel (A) and Venn 

diagram showing relation between different entropies (B). 

 

The channel equivocation is an important metric that provides the information about the nature of 

the channel, i.e., how the channel contributes to the uncertainty propagation from source to 

receiver. In analogy, the metric chosen by us could provide the uncertainty with which the TFs' 

express themselves into the SE. In other words, it gives an idea about relative importance of the 
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contribution of the channel in the propagation of uncertainty of TF into the uncertainty of SE. 

Venn diagram (Fig. 1B) shows how the different entropies are related to one another. Results 

indicate how differently the channel behaves from normal to disease cases. Also, the relative 

importance of propagation of a TF to SE would be manifested.  

 

3.3. Grading of Independence  

 
We sum the individual entropies of attributes already computed and compare them with their joint 

entropies. If sum comes close to joint entropy values then we can say that the two considered 

attributes are independent.  

 

Table 3a. Entropy of different attributes with 7 intervals.  

 
 HLA-ABC  HLA-DR  IRF1  RFX5  RFXB CIITA  CREB1 

NV  0.5159 0.4727 0.6533 0.4728 0.477 0.4579 ND 

AML  0.5914 0.6866 0.72 0.7343 0.5397 0.5853 0.5491 

ALL  0.6372 0.5233 0.6098 0.6239 0.6394 0.7262 0.4515 

CML  ND ND 0.3867 0.7774 0.6221 0.4265 0.2597 

CLL 0.477 0.477 0.5478 0.5393 0.4191 0.4391 ND 

MDS ND ND 0.2065 0.6016 0.4515 0.4515 0.2172 

Total  0.7453 0.5595 0.692 0.7279 0.7653 0.6538 0.3963 

Maximum  0.8450 0.8450 0.8450 0.8450 0.8450 0.8450 0.8450 

 

Table 3b. Entropy of different attributes with 10 intervals. 

 
 HLA-ABC  HLA-DR  IRF1  RFX5  RFXB CIITA  CREB1 

NV  0.5988 0.5556 0.7362 0.447 0.477 0.4556 ND 

AML  0.7116 0.7839 0.7803 0.8012 0.5397 0.7153 0.8087 

ALL  0.7465 0.6873 0.7626 0.6078 0.6392 0.7853 0.7522 

CML  ND ND 0.5495 0.6582 0.6221 0.4265 0.64 

CLL 0.477 0.477 0.5478 0.5393 0.4191 0.4391 0.4306 

MDS ND ND 0.6394 0.7145 0.4515 0.4515 0.5782 

Total  0.7523 0.6583 0.7986 0.8582 0.8401 1.963 0.5176 

Maximum  1 1 1 1 1 1 1 

 

ND: not done due to inadequate data. 
 

So after finding the joint entropy we have given the grading to them that denotes the degree of 

independence between those two attributes. Say for a joint distribution of X, Y we obtain HX,Y = 

P units of entropy and Q be the individual sum of entropies, then, 
Q

PQ −
 × 100 is taken as a 

measure to find the grade which is expressed as a range of percentage. Thus grading system 
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indicates that the lesser the percentage or grade, the two attributes are more independent to each 

other; whereas higher is the grade, higher is the dependency.  

 

Similarly the calculated mutual information with respect to the entropy value of each of the 

variable i.e., H(X) or H(Y) is represented to percentage [ 100
)(

);(
×

XH

YXI
 and 100

)(

);(
×

YH

YXI
]. This 

measure denotes the relative dependencies on that variable in quantitatively.  

  
 Table 4a. Entropy of each attributes of different leukemia combinations with 7 intervals. 

 

Type of 

Combination 
Malignancy 

HLA-

ABC 

HLA-

DR 
IRF1 RFX5 RFXB CIITA CREB1 

Myeloid 

Combination 
AML+CML 0.5914 0.6868 0.8339 0.8334 0.7956 0.7541 0.5395 

Lymphoid 

Combination 
ALL + CLL 0.6891 0.8412 0.6288 0.773 0.7877 0.7597 0.4398 

Acute 

Combination 
AML+ ALL 0.67 0.6259 0.7524 0.875 0.7687 0.8309 0.5593 

Chronic 

Combination 
CML+ CLL 0.477 0.477 0.6113 0.794 0.791 0.6093 0.2167 

 
Total 0.7453 0.5595 0.692 0.7279 0.7653 0.6538 0.3963 

 Maximums 0.8450 0.8450 0.8450 0.8450 0.8450 0.8450 0.8450 

Normal 

Volunteers 
NV 0.5159 0.4727 0.6533 0.4728 0.477 0.4579 0 

 
Table 4b. Entropy of each attributes of different leukemia combinations with 10 intervals. 

 

Type of 

Combination 
Malignancy 

HLA-

ABC 

HLA-

DR 
IRF1 RFX5 RFXB CIITA CREB1 

Myeloid 

combination 
AML+CML 0.7116 0.7839 0.9341 0.9306 0.9332 0.8218 0.5402 

Lymphoid 

combination 
ALL + CLL 0.9231 0.8811 0.7979 0.814 0.7877 0.8253 0.4695 

Acute 

combination 

AML+ 

ALL 
0.8474 0.776 0.9189 0.9465 0.9055 0.9073 0.5606 

Chronic 

Combination 
CML+ CLL 0.477 0.477 0.847 0.8334 0.791 0.7285 0.2340 

 Total 0.7523 0.6583 0.7986 0.8582 0.8401 1.963 0.5176 

 Maximums 1 1 1 1 1 1 1 

Normal 

Volunteers 
NV 0.5988 0.5556 0.7362 0.447 0.477 0.4556 0 

 

 

4. RESULTS  
 

4.1. Analysis of Single Attribute 
 

Table 3a and 3b indicate the extent of deterministic behavior of different attributes of different 

populations in different intervals. If any attribute value is closer to the maximum value, the more 
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is its information entropy or uncertainty. As discussed in entropy (H) function properties, 

uncertainty will maximize if all the intervals are equally likely i.e., data points are scattered 

equally over the entire range. Here deterministic behavior implies that most of the attribute values 

fall within a few sub-ranges while randomized behavior means the attribute values are scattered 

over the entire range. It is observed that with increasing in bin size the entropy values are also 

increased in both NV and diseased samples, as suggested by Paninski, 2004 [11]. This ensures the 

data points are scattered. However, the increment in bin size follow the same trend in both NV 

and disease sample (Table 3a and 3b). Comparing the ratio of entropy value of an attribute in 

between the disease to NV does not differ much more and the value does not exceed 1.43. For 

example, RFX5 has the difference between two bins is 0.084 while considering AML versus NV.  
 

4.2. Analysis of Combinations of Different Leukemias  
 

Next we have the combination of different disease conditions (Table 4a and 4b) and performed 

entropy analysis to find out the behavior of individual parameters in different states and types of 

leukemia in different intervals. Here we observed the same trend as we have observed for single 

attribute analysis.  
 

4.3. Joint Entropy Analysis  
 

Joint entropy analysis provides the amount of average information of two attribute jointly and 

dependency between two attributes and also a comparison between disease and normal reflects 

the alteration in transcriptional efficiency. The joint entropy of different combinations and its 

comparison with the summation of their individual entropies have been tabulated and a grade has 

been provided as per the grading rule mentioned in the Methods section. Example cases are 

tabulated in Table 5. The table shows that in normal samples, CIITA is more potent in induction 

of HLA-DR (more dependency) compared to HLA-ABC. Generally, in disease cases, HLA is 

independent of CIITA with some minor dependency in case of lymphoid leukemia. The detailed 

results for all TFs can be derived from mutual information analysis.  
 

Table 5. HLA-ABC vs. CIITA (A) and HLA-DR vs. CIITA (B). DS: total disease samples.  
 

Type HLA-ABC vs.  CIITA (A) 

Joint Entropy Sum of Entropies Grading* 

7 Vs. 7 7 Vs. 10 7 Vs. 7 7 Vs. 10 7 Vs. 7 7 Vs. 10 

NV 0.6614 0.7535 0.9738 1.0544 D D 

AML 0.8398 0.9049 1.1767 1.4269 B C 

ALL 0.9866 1.0413 1.3634 1.5318 B B 

Total (DS) 1.3259 1.6281 1.3991 2.7153 B A 

Maximum 
1.6901 1.8450   

 

Type HLA-DR vs.  CIITA (B) 

Joint Entropy Sum of Entropies Grading* 

7 Vs. 7 7 Vs. 10 7 Vs. 7 7 Vs. 10 7 Vs. 7 7 Vs. 10 

NV 0.6387 0.5558 0.9306 1.0112 C D 

AML 0.7817 0.7522 1.2719 1.4992 B B 

ALL 0.8873 0.9542 1.2495 1.4726 B C 

Total (DS) 1.5670 1.3933 1.2133 2.6213 B A 

Maximum 
1.6901 1.8450 

  

 

*A: 0-15%, B: 15-30%, C: 30-45%, D: above 45%. 
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4.4. Mutual Information Analysis  
 

Mutual information analysis may reveal the relative importance of an attribute (TF) on the 

regulation of SE (HLA-ABC or HLA-DR) in normal and leukemic state (Table 6 and Table 7). If 

mutual information decreases, it indicates that the association becomes more independent and the 

channel (gene regulation) distorts the passage of information from TF to SE. With respect to 

particular TF, percentage of dependency (as mentioned in section 3.3) is also calculated and 

compared with NV. If the calculated value is increased in disease sample, dependency to that TF 

is more for SE of HLA in disease cases.   

 

Table 6. Mutual information analysis with bin size combination of 7 vs. 7. Values in parentheses 

indicates % dependency (out of mutual information analysis) with respect to entropy value of X 

i.e., TF* [H(X)] (in A) and Y i.e., SE† [H(Y)] (in B).  

 

(A)  
HLA Gene 

Type 
I (X;Y) = H(X) – H(X│Y)*

 

CIITA RFX5 RFXB IRF1 CREB1 

HLA-ABC 
 

NV 
0.3124 
(68.22) 

0.5158 
(109.09) 

0.2148 
(45.03) 

0.215 
(32.90) 

-0.0117 
(100) 

AML 
0.3369 
(57.56) 

1.2068 
(164.34) 

0.3998 
(74.49) 

0.2156 
(29.94) 

0.1863 
(33.92) 

ALL 
 

0.3768 
(51.88) 

0.3292 
(52.76) 

0.4985 
(77.96) 

0.3675 
(60.26) 

0.3106 
(68.79) 

HLA-DR 
 
 
 

NV 
 

0.2919 
(63.74) 

0.2693 
(56.95) 

0.2719 
(57.00) 

0.0339 
(5.18) 

0.2075 
(100) 

AML 
 

0.4902 
(83.75) 

0.5008 
(68.20) 

0.4029 
(75.06) 

0.4464 
(62.00) 

0.5605 
(102.07) 

ALL 
 

0.3622 
(49.87) 

0.352 
(56.41) 

0.3846 
(60.15) 

0.3053 
(50.06) 

0.6588 
(145.47) 

 

(B)  
HLA Gene 

Type 
I (X;Y) = H(Y) – H(X│Y)

†
 

CIITA RFX5 RFXB IRF1 CREB1 

HLA-ABC 
 

NV 
0.3704 
(71.79) 

0.5589 
(108.33) 

0.2537 
(49.17) 

0.0776 
(15.04) 

0.5042 
(97.73) 

AML 
0.343 
(57.99) 

1.0639 
(179.89) 

0.4545 
(76.85) 

0.087 
(14.71) 

0.2286 
(38.65) 

ALL 
 

0.2878 
(45.16) 

0.3425 
(53.75) 

0.4963 
(77.88) 

0.3949 
(61.97) 

0.4963 
(77.88) 

HLA-DR 
 
 
 

NV 
 

0.3067 
(64.88) 

0.2692 
(56.94) 

0.2676 
(56.61) 

-0.1467 
(-31.03) 

0.6802 
(143.89) 

AML 
 

0.5915 
(86.14) 

0.4531 
(65.99) 

0.5528 
(80.51) 

0.413 
(60.15) 

0.698 
(101.66) 

ALL 
 

0.1593 
(30.44) 

0.2514 
(48.04) 

0.2685 
(51.30) 

0.2188 
(41.81) 

0.7286 
(139.23) 

 

From Table 6 and Table 7, we observed that mutual information for RFXB is high in general in 

both intervals. This means that both HLA class I and II (HLA-DR) are dependent on this TF with 

an indication that dependency of HLA class I is more than HLA-DR. This dependency becomes 

more pronounced in leukemic condition. Though under normal condition CIITA dependency of 
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HLA-DR is more but under the condition of malignancy this dependency decreases for AML but 

increased in ALL cases in both intervals. However, HLA-ABC is less dependent on RFX5 and 

CIITA in normal and myeloid leukemic cases. For lymphoid leukemia dependency is almost 

unaltered. 

 
Results imply that in induction of HLA-ABC, CREB1 has no role both in normal and leukemia; 

however, in lymphoid leukemia it plays a role. Similarly, in HLA-DR expression CREB1 has no 

role in normal and leukemia in general excepting lymphoid leukemia. The overall observation is 

that different TF plays different role in different type of leukemia (cell) and also observed that if 

we change the intervals then it not affect the roles of different types of leukemia.  

 

Table 7. Mutual information analysis with bin size combination of 7 vs. 10. Values in 

parentheses indicates % dependency (out of mutual information analysis) with respect to entropy                

value of X i.e., TF* [H(X)] (in A) and Y i.e., SE† [H(Y)] (in B). 

 

 
(A)  

HLA Gene 
Type 

I (X;Y) = H(X) – H(X│Y)*
 

CIITA RFX5 RFXB IRF1 CREB1 

HLA-ABC 
 

NV 
 

0.3009  

(66.04) 

0.3175 

(71.02) 

0.2977 

(62.41) 

0.3808 

(51.72) 

-0.0209 

(100) 

AML 
 

0.522 

(72.97) 

0.3368 

(42.03) 

0.4531 

(84.42) 

0.3961 

(50.76) 

0.5661 

(70.00) 

ALL 
 

0.4905 

(62.46) 

0.3677 

(60.49) 

0.6076 

(95.05) 

0.6296 

(82.55) 

0.7206 

(95.79) 

HLA-DR 
 
 
 

NV 
 

0.4554 

(99.95) 

0.3264 

(73.02) 

0.2545 

(53.35) 

0.5781 

(78.52) 

0.2634 

(100) 

AML 
 

0.747 

(104.43) 

0.4893 

(61.07) 

0.5002 

(93.19) 

0.4684 

(60.02) 

0.7053 

(87.21) 

ALL 
 

0.5184 

(66.01) 

0.4078 

(67.09) 

0.5484 

(85.79) 

0.6221 

(81.57) 

0.7617 

(101.26) 

 

(B)  
HLA Gene 

Type 
I (X;Y) = H(Y) – H(X│Y)†

 

CIITA RFX5 RFXB IRF1 CREB1 

HLA-ABC 
 

NV 
 

0.4441 

(74.16) 

0.4693 

(78.37) 

0.4195 

(70.05) 

0.2434 

(40.64) 

0.5779 

(96.50) 

AML 
 

0.5183 

(72.83) 

0.2472 

(34.73) 

0.628 

(88.25) 

0.3274 

(46.00) 

0.469 

(65.90) 

ALL 
 

0.4517 

(60.50) 

0.5064

(67.83) 

0.7149 

(95.76) 

0.6135 

(82.18) 

0.7149 

(95.76) 

HLA-DR 
 
 
 

NV 
 

0.5554 

(99.96) 

0.435 

(78.29) 

0.3331 

(59.95) 

0.3975 

(71.54) 

0.819 

(147.40) 

AML 
 

0.8156 

(104.04) 

0.472 

(60.21) 

0.7474 

(95.34) 

0.472 

(60.21) 

0.6805 

(86.80) 

ALL 
 

0.4204 

(61.16) 

0.4873 

(70.90) 

0.5965 

(86.78) 

0.5468 

(79.55) 

0.6968 

(101.38)  

 

5. CONCLUSIONS  

  
The present trend for the understanding of gene expression/regulation made between disease and 

normal by microarray method followed by analysis through different heuristic approaches. 

However microarray technology provides a range and heuristic based approaches are not truely 

mechanistic [15]. For understanding of HLA gene regulation there is no microarrray chip is 
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available.So we depend on PCR (polymerase chain reaction) base gene expression data. Previous 

work suggest that relative importance of propagation of individual TF to SE [10]. In other words 

this establishes dependency of HLA SE on different individual TF in different cell types of 

heamatopoietic system under the condition of leukemia.  

 

The parametric variation in population (signal) is a major concern of biological investigation. 

However the measurement uncertainty (noise) may shadow the signal. So conventionally 

experimental biologist look for much more instrumental sophistication like simple polymerase 

chain reaction based method to real time PCR based method. Information theory based analysis in 

previous work reveal that some of the attributes are dependent on each other. This signifies the 

measurement noise is less with a certain number of intervals (bin size) for all attributes. 

Increasing in bin size increases entropy value as suggested by Paninsky, 2004 [11]; however, the 

incremental difference in entropy of an attribute in disease sample do not differ much compared 

to the same attribute of NV while differing in bin sizes.  

 

It is to be mentioned here that we haven’t made our analysis with a bin size exceeding the sample 

size [11] and the maximum number of bins selected were approximately half compare to the 

sample size. Information theory based analysis is being utilized for generation of biological 

knowledge in several cases; however, there is no rule based method has yet been established for 

analysis of gene regulation [16]. It is worthwhile mentioned here that the source data [5, 6, 10] 

was collected with enough procedural validation and a lot of criticisms are also present regarding 

real time PCR based methodology [17]. So we can different statistical analytical tools (non 

parametric statistics together with information theory) can reveal gene regulatory mechanism 

from population data without much more experimental dimensionality and investigation cost. 

From our previous analysis [10] and this analysis, it can be inferred that previous association 

analysis (by χ2
) [5, 6] between HLA class Ia expression and CREB1 in leukemia may be due to 

the effect of malignancy; however, RFXB may play a significant role in HLA regulation. The 

present work suggests that with varying in bin size, the inference doesn’t differ from the previous 

inferences.  
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