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ABSTRACT 
 

The work for predicting drug and target affinity(DTA) is crucial for drug development and 

repurposing. In this work, we propose a novel method called GDGRU-DTA to predict the 
binding affinity between drugs and targets, which is based on GraphDTA, but we consider that 

protein sequences are long sequences, so simple CNN cannot capture the context dependencies 

in protein sequences well. Therefore, we improve it by interpreting the protein sequences as 

time series and extracting their features using Gate Recurrent Unit(GRU) and Bidirectional 

Gate Recurrent Unit(BiGRU). For the drug, our processing method is similar to that of 

GraphDTA, but uses two different graph convolution methods. Subsequently, the representation 

of drugs and proteins are concatenated for final prediction. We evaluate the proposed model on 

two benchmark datasets. Our model outperforms some state-of-the-art deep learning methods, 

and the results demonstrate the feasibility and excellent feature capture ability of our model. 
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1. INTRODUCTION 
 

So far, due to the bottleneck of technological development, the development of new drugs is 
more difficult, and the exploration of new uses of developed drugs has become a new hot spot.  

Discovering new associations between drugs and targets is critical for drug development and 

repurposing, However, the traditional study of drug-protein relationships in the wet laboratory 
[1][2] is time-consuming and expensive due to the huge range of chemical spaces to be searched, 

to solve this problem, some virtual screening(VS) has been proposed to accelerate the 

experimental drug discovery and reposition studies in silico [3], some of the more commonly 

used VS methods, like structure-based VS, ligand-based VS and sequence-based VS have 
contributed to drug development to a large extent [4][5]. However, these VS methods have their 

own defects in application. For example, if the structural information of the protein is unknown, 

the structure-based approach cannot play its role. There is still a long way to go before accurately 
constructing the structure of proteins, to this end, some structure-free methods have sprung up. 

 

In recent years, with the development and maturity of deep learning technology and its great 
breakthroughs in the field of computer vision(CV) and natural language processing(NLP) [6][7], 

many people in the field of drug research have begun to turn their attention to deep learning. 

Moreover, with the advent of more and more biological activity data, a great deal of work based 

on these data has been carried out to investigate the relationship between drugs and targets. These 
works are usually divided into two categories, one is a binary classification-based approach, that 
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is, to determine whether a drug and a target interact, and the other is a regression-based approach, 
which describes the relationship between the drug and the target by binding tightness. In binary 

classification-based drug-target (DT) prediction tasks, deep learning technologies seem to be 

used by more researches to deal with drug-target interactions (DTIs) problems. When doing DTIs 

prediction tasks in the past, compounds and proteins are represented using manually crafted 
descriptors and the final interaction prediction is made through several fully connected networks 

[8][9]. The problem with this approach is that the descriptors are designed from a specific 

perspective, that is, the design angle is too single, in addition, it remains fixed during the training 
process, so it cannot learn and adjust according to the results, and thus cannot extract task-related 

features. Therefore, some end-to-end models are proposed. Du et al. proposed a model called 

wide-and-deep to predict DTIs [10]. A generalized linear model and a deep feed-forward neural 
network are integrated to enhance the precise of DTIs prediction. Molecular structural 

information is also of great significance for feature extraction, to learn the mutual interaction 

features of atoms in a sequence, Shin et al. proposed a Transformer-based DTI model [11], which 

uses multi-layered bidirectional Transformer encoders [12] to learn the high-dimensional 
structure of a molecule from the Simplified Molecular Input Line Entry System (SMILES) string. 

Some researchers obtain structural information of compounds or proteins from another 

perspective, they represent the corresponding compounds or proteins as graphs and use graph 
neural networks to extract their spatial features, related work such as GraphCPI [13], Graph-CNN 

[14], etc.  

 
However, the above methods have common defects, since it is a binary classification problem, 

the result is only yes or no, and so the distinction between compound-protein pairs is 

indistinguishable. In addition, many binary classification-based methods are based on setting a 

specific threshold as the basis of whether the drug and target interact or not. If the predictive 
value is higher than the threshold, it is considered interactive, otherwise it is not interactive. The 

deficiency of this design method is that the interaction information of many DT pairs is ignored 

and a proportion of these neglected information are actually significant for drug repurposing and 
discovery. In addition, the rationality of the threshold setting is also a factor that needs to be fully 

considered. Compared with the binary classification model, it seems more convincing to describe 

the relationship between drug and target through a regression task, the use of regression model 

can provide us with more information about the relationship between compounds and proteins, 
since continuous values can tell us how strongly the two are bound. What’s more, the 

development of deep learning has also largely facilitated the affinity prediction of DT pairs. 

Related studies include KronRLS [15] and SimBoost [16], both of which based on regression and 
utilized the similarity information of drugs and targets to predict DTAs. DeepDTA [17] is the 

first framework for predicting drug and target affinity based on deep learning, which utilizes two 

CNN blocks to process SMILES strings of drugs and amino acid sequences of proteins, 
respectively. Works related to DeepDTA include WideDTA [18] and AttentionDTA [19]. The 

improvement of WideDTA over DeepDTA is that it combines several characters as words and 

proposes a word-based sequence representation method. The novelty of AttentionDTA compared 

to DeepDTA lies in that it proposes an attention mechanism for learning important parts of each 
other's sequences. In order to better capture the topological structure features of compounds, 

Nguyen et al. proposed GraphDTA [20] to predict drug and target affinity which utilizes RDKit 

technology to represent drug string sequences into graphs that could reflect its structural 
characteristics, and uses graph convolutional neural network to extract its spatial features. 

Furthermore, Lin proposed a similar approach called DeepGS [21], which uses advanced 

techniques to encode amino acid sequences and SMILES strings. DeepGS also combines a GAT 
model to capture the topological information of molecular graph and a BiGRU model to obtain 

the local chemical context of drug. 
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In this paper, we proposed a novel framework to predict DTAs. In most of the current DTA 
prediction research, the feature extraction of protein sequences is still dominated by CNN, this 

method considers the local correlation of sequences. However, most protein sequences are very 

long, so there are context dependences [22] in the sequence, and if we want to use CNN to 

capture these dependencies, then we need to use a large number of network layers. In contrast, 
GRU/BiGRU can capture the context dependencies of long sequences without using a large 

number of network layers due to its properties. Therefore, in the processing of protein 

representations, we interpret proteins as context-dependent time series and use GRU/BiGRU to 
capture the long-term dependencies of it. In the process of drug feature extraction, like 

GraphDTA, we still use graphs to represent drugs, and use two new graph convolution methods, 

namely GatedGraph and Transformer, to extract structural features of drugs. Of course, the four 
graph convolution methods mentioned in GraphDTA are also included for comparative 

experiments. Experimental results demonstrate that our model greatly improves the performance 

compared to previous models. 

 

2. MATERIALS AND METHODS 
 

2.1. Datasets 
 
In our experimental evaluation, we used the two datasets most commonly used in DTAs 

prediction, namely Davis [23] and KIBA [24]. The Davis dataset contains 72 compounds and 442 

proteins, along with their corresponding affinity values, where the affinity values are measured 
by Kd values (kinase dissociation constant) and the average length of SMILES strings for 

compounds is 64 and that of amino acid sequences is 788. There are a total of 30056 affinity 

values in Davis, and they range from 5.0 to 10.8. We convert Kd into the value of the 
corresponding logarithmic space, pKd, as follows: 

 

                                                              P𝐾d = − log10 (
𝐾d

109
)                                                                (1) 

 

The KIBA dataset contains 2116 compounds and 229 proteins, as well as 118,254 drug and target 
affinity values, where the affinity values range from 0.0 to 17.2. The average length of SMILES 

strings for compounds in KIBA is 58 and the average length of amino acid sequences is 728. The 

data information is summarized in Table 1. 

 
Table 1. Summary of the benchmark datasets 

 

Datasets Compound Protein Affinity AC AP DTAsRange 

Davis 72 442 30056 64 788 (5.0,10.8) 

KIBA 2116 229 118254 58 728 (0.0,17.2) 

 
In Table 1, AC means the average length of compound strings, AP means the average length of 

protein amino acid sequences. 

 

2.2. Overview of the proposed model 
 

In this section, we will introduce an overview of our model. As mentioned earlier, GDGRU-DTA 
consists of three parts: GNN block, GRU/BiGRU block, and prediction block. After the SMILES 

strings of the drugs and the amino acid sequences of the proteins are given, these data are 
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preprocessed and converted into the corresponding graph representation and feature matrix. 
Subsequently, the GNN block is used to extract the features of the graph representation of the 

drug, and the GRU/BiGRU block is used to extract the feature matrix of the protein. Finally, the 

extracted features of drugs and proteins are concatenated and input to the prediction block for 

final prediction. The overall flow of GDGRU-DTA is depicted in Fig. 1. 
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Fig. 1. Overall flow of GDGRU-DTA.  

 

In Fig. 1, the drug and target are converted into corresponding feature representations, which are 
then input to the corresponding feature extraction model for feature extraction. Finally, the two 

extracted features are concatenated for final prediction. 

 

2.2.1. Data Preprocessing 

 

The feature extraction of drugs and targets are two independent input channels. Before drugs and 

targets are input into their respective feature extraction blocks, data preprocessing is required for 
drugs and targets, respectively. The implementation details are as follows. 

 

2.2.1.1. Drug representation 

 
For data preprocessing of drugs, we use the same method as GraphDTA, we use the open source 

technology RDKit to convert the SMILES strings of drugs into corresponding 2D molecule 

graphs. The molecule graph is denoted as 𝐺 = (𝑉, 𝐸), and the vertexes 𝑉  are represented as 

atoms and the edges 𝐸 are represented as bonds, where |𝑉| = 𝑁 is the number of nodes in the 

graph and |𝐸| = 𝑁𝑒  is the number of edges. Each atom is embedded with 78-dimensional 

features such as the atom's type, degree, implied valence, aromaticity, and the number of 

hydrogen atoms attached to the atom. The feature of the node is encoded as a one-hot vector of 

shape (𝑁, 78). The chemical bonds index is encoded as (2, 𝐸) vector, which is used to store the 

edges of the undirected graph.The schematic diagram of the SMILES string of a drug converted 

into a two-dimensional molecule map by rdkit technology is as follows: 
 

 CN1CCN(C(=O)c2cc3cc(Cl)ccc3[nH]

2)CC1 

Drug SMILES

 

Rdkit

 
 

Fig. 2. Convert SMILES string to graph. 
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2.2.1.2. Target representation 

 

The sequence length of each protein is different and varies greatly. For uniform feature 

representation, we fix the length of all protein sequences as 1000 according to the average length 

of protein sequences, if the sequence length of the protein exceeds 1000, the part more than 1000 
will be cut off, and otherwise, the part less than 1000 will be padded with 0. In addition, since 

protein sequences are represented by different combinations of 25 amino acids, each represented 

by the one-letter code. We map each amino acid to an integer, and each integer is embedded as a 
128-dimensional feature. 

 

2.2.2. GNN Blocks 

 

In the graph neural network block, we use two graph convolution algorithms to extract the 2D 

molecular graph features of drugs, namely GatedGraph and Transformer, and their details are as 

follows. 
 

2.2.2.1. GatedGraph 

 
GatedGraph [25] is a feature learning technique that studies graph-structured inputs, it modifies 

previous graph neural network work using gated recurrent units (GRU) and modern optimization 

techniques, and then extends to output sequences, so this method can make full use of long-
distance information and fit well with our model of extracting protein features. In addition, 

GatedGraph has favorable inductive biases relative to purely sequence-based models when 

dealing with graph structure problems, and thus is a flexible and widely useful class of neural 

network models. The features of the node are updated as follows: 
 

                                                                      hi
(0)

= xi || 0                                                                          (2) 

   m𝑖
(𝑙+1)

= ∑ e𝑗,𝑖 ∙ Θ ∙ h𝑗
(𝑙)

𝑗∈𝑁(𝑖)

                                                           (3) 

    ℎ𝑖
(𝑙+1)

=  GRU(𝑚𝑖
(𝑙+1)

, ℎ𝑖
(𝑙))                                                         (4) 

 

Where in formula (2), h
(0) 

i  is the input state, xi ∈ R𝐹is the feature of node i, xi || 0 represents 

padding 0 after feature xi to the specified dimension. In formula (3), Θ is the parameter matrix to 
be learned, that is, the aggregation information of surrounding nodes. Formula (4) is to use a 

GRU unit to take the above two formulas as input and get an output, which can be functioned as a 

new feature of node i. 

 

2.2.2.2. Transformer 

 

Transformer [12] is a model proposed by Google researchers for seq2seq tasks, the special 
feature of Transformer is that it uses a lot of special layer such as self-attention in the model. 

Transformer breaks through the limitation that RNN models cannot be computed in parallel. 

Compared to CNN, Transformer does not grow with distance in the number of operations 
required to compute the association between two locations, and finally, self-attention can lead to 

more interpretable models. TransformerConv is a graph convolution method based on 

transformer idea [26], which takes into account the case of edge features by adopting 

Transformer’s vanilla multi-head attention into graph learning and achieves ideal results. The 
feature extraction of the node is as follows: 
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x𝑖
′ = W1x𝑖 + ∑ 𝛼𝑖,𝑗

𝑗∈𝑁(𝑖)

W2x𝑗                                                         (5) 

 

Where the attention coefficients 𝛼𝑖,𝑗  are computed via mult-head dot product attention: 

 

𝛼𝑖,𝑗 = softmax (
(W3x𝑖)

T(W4x𝑗)

√d
)                                                  (6) 

 

2.2.3. GRU/BiGRU Blocks 

 

2.2.3.1. GRU block 

 
When CNN is used to extract the context dependences of long sequences, the field of view is 

limited due to the influence of the size of convolution kernel, and multiple CNN layers need to be 

used, which makes the model bloated and complex. In order to overcome the inability of CNN 

and RNN to deal with long-distance dependence, LSTM (Long-Short Term Memory) [27] is 
proposed. GRU is a very successful variant of LSTM, both of them can capture the long-term 

dependencies of the sequence and have comparable performance on many tasks, but GRU has a 

simpler internal structure and fewer parameters than LSTM, so it is more efficient when dealing 
with the same task, therefore, using GRU to process the time series of proteins is an obvious 

choice. Compared to LSTM, GRU has only two gates, namely update gate and reset gate, so it is 

more efficient in handling the same task. The update gate is used to control the extent to which 
the state information of the previous moment is brought into the current state. The larger the 

value of the update gate is, the more state information of the previous moment is brought into the 

current state. Reset gate is used to control the degree of ignoring the state information of the 

previous moment. The smaller the value of reset gate is, the more state information is ignored. 
GRU is to make a prediction in the current time step by controlling the operation of these two 

gates and then realizing the selection of sequence context information. The update gate zt and 

reset gate rt in GRU can be expressed as follows: 
 

zt =  𝜎(xt U
z + ht−1W

z)                                                            (7) 

rt =  𝜎(xt U
r + ht−1W

r)                                                             (8) 

 

Where 𝜎 is the sigmoid function, through which the data can be transformed into a value in the 

range of 0~1 to act as a gating signal. xt is the input of the current node, ht-1 is the hidden state 

passed down by the previous node, and this hidden state contains the relevant information of the 
previous node. U and W are the corresponding weight matrices, respectively. When GRU is used 

to extract protein features, the feature extraction process of GRU/BiGRU blocks can be shown in 

Fig. 2. 

 

x1 x2 xN
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xN-1

GRU Cell GRU Cell GRU Cell

y1 y2 yN-1 yN

 

h0 hN

h1 hN-2h2 hN-1

 
 

Fig. 3. GRU structure diagram.  
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In Fig. 2, the output of each stage is jointly determined by the hidden state of its previous stage 
and the input of the current stage. 

 

2.2.3.2. BiGRU block 

 
For some specific tasks, the information at a certain moment is not only related to the previous 

state, but also has some connection with the later state. When dealing with such problems, the 

traditional unidirectional GRU is obviously not competent, therefore, the bidirectional GRU is 
introduced. For protein sequences, we consider that the features of a certain part of the protein 

sequence are not only related to the previous part, but also related to the later part. Therefore, we 

also use a bidirectional GRU to extract the amino acid sequence features of the protein. BiGRU is 
composed of two unidirectional GRUs with opposite directions. At each moment, the input will 

fuse the outputs of the two opposite GRUs at the same time, and the output is jointly determined 

by these two unidirectional GRUs. The feature extraction process of BiGRU is as follows: 

 

ht
⃗⃗  ⃗ =  GRU(xt, ht−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ )           (9) 

ht
⃖⃗ ⃗⃗ =  GRU(xt, ht−1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗⃗)                                                           (10) 

ht =  wtht
⃗⃗  ⃗ +  vtht

⃖⃗ ⃗⃗ + bt                                                   (11) 

 

Where the function GRU () represents converting the corresponding input to its hidden layer 

state. ht
⃗⃗  ⃗ and ht

⃖⃗ ⃗⃗  represent the hidden layer state in the corresponding direction, respectively, wt 

and vt represent the weights corresponding to the forward hidden layer state ht
⃗⃗  ⃗  and reverse 

hidden layer state ht
⃖⃗ ⃗⃗  of the bidirectional GRU at time t, respectively. bt represents the bias 

corresponding to the hidden layer state at time t. When BiGRU is used to extract protein features, 

the feature extraction process of GRU/BiGRU blocks can be shown in Fig. 3. 
 

2.2.4. Prediction block 

 

The features of the drug and the features of the protein are concatenated after being extracted and 
then fed into the prediction block. The prediction block consists of two fully connected layers, 

each of which is followed by a Dropout of rate 0.5 to prevent over fitting. The activation function 

of fully connected layer is the Rectified Linear Unit (ReLU). The output of the last layer 
identifies the final predicted affinity value for the drug and protein. 

 

2.3. Implementation 

 

GDGRU-DTA is implemented in Pytorch. We use the Adam optimizer with the default learning 

rate of 2e-4. The SMILES string for each drug is converted into 2-dimensional molecular graph 

where each node of the molecular graph is embedded with 78-dimensional features. GNN block 
consists of three stacked GNN layers with 78, 156 and 312 output features, respectively, which 

followed by a global max pooling layer to get the most striking features. The protein input 

embedding is of size 128, which means that we represent each character in amino acid sequence 
with a 128-dimensional dense vector. The GRU block is made up of 2 GRU layers, the first of 

which is followed by a Dropout of rate 0.2 and the output dimension of each layer is 8. For the 

BiGRU block, the number of layers of GRU is set to 1, and the output dimension is also 8. The 
prediction block is made up of three fully connected layers, in which the numbers of neurons are 

1024, 512 and 1, respectively. The dropout rate is set to 0.5 and for the Davis dataset, the batch 

size is set to 128, while for the KIBA dataset the batch size is set to 512 because it is much larger 

than the Davis dataset, about four times larger than the Davis. Each drug and protein are 
converted into a 128-dimensional vector after their respective feature extraction, and are 

concatenated into a 256-dimensional vector for the final prediction. In this experiment, we 
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divided the dataset into five equal parts, four of which were used as training set and one was used 
as test set, we deal with over fitting problem by setting up cross-validation. The number of 

training epochs is set to 1000. Our experiments are run on Windows 10 professional with Intel(R) 

Core(TM) i5-10400F CPU @ 2.90GHz and GeForce GTX 1660Ti(6GB). 
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Fig. 4. BiGRU structure diagram.  

 

In Fig. 3, the output of each stage is jointly determined by the hidden states of its previous and 

subsequent stages and the input of the current stage. 

 

3. EXPERIMENTS AND RESULTS 
 

3.1. Evaluation Metrics 

 
MSE (Mean Squared Error), CI (Concordance Index) and r

2 

m (Regression toward the mean) are 

the most commonly used evaluation metrics in regression tasks to study drug-target interactions 

[15-21]. Since our research is also in this field, we continue to use these evaluation metrics, the 

details of each metric are as follows: 
 

MSE is the mean square error, which is used to measure the gap between the predicted value of 

the model and the actual label value. The smaller the gap is, the better the performance of the 

model is; otherwise, the worse the performance of the model is. 
 

                                                           MSE = 
1

𝑛
∑(𝑃𝑖 − 𝑌𝑖)

2

𝑛

𝑖=1

                                                           (12) 

 

Where Pi is the prediction value, Yi corresponds to the label value and n is the total number of 

samples. 
 

CI is the Concordance Index, which is a measure of whether the order of predicted binding 

affinity values for two random drug-target pairs is consistent with their true values, which value 

exceeds 0.8 indicates a strong model. 
 

                                                            CI =  
1

𝑍
∑ ℎ(𝑝𝑖 − 𝑝𝑗)                                                            (13)

𝑦𝑖>𝑦𝑗

 

                                                            ℎ(𝑥) =  {
1, 𝑥 > 0

0.5, 𝑥 = 0
0, 𝑥 < 0

                   (14) 
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In (13), sample i has a bigger label value than sample j. 
 
R

2 

m index is the regression toward the mean, which is used to evaluate the external predictive 

performance. The metric can be described as follows: 

 

                                                       𝑟𝑚
2 = 𝑟2 ∗ (1 − √𝑟2 − 𝑟0

2)(15) 

 
Where r2 and r

2 

0  are the squared correlation coefficients with and without intercept, respectively. 
A value of r

2 

m above 0.5 is considered an ideal model. 

 

3.2. Results 

 

3.2.1. Performance comparison of GRU/BiGRU and CNN 

 
To demonstrate that the GRU model we use is more efficient than the CNN model in extracting 

protein sequence features, in this section, we compare the above two. Our experiments were 

carried out on the Davis database and modified on GraphDTA. We changed the way of extracting 

proteins from the four models of GraphDTA from CNN to GRU and BiGRU to observe their 
experimental results. The results are shown in Table 2, from which we can conclude that 

GRU/BiGRU is facilitating to capture context dependencies in sequence. 

 

Table 2. Performances of GRU and BiGRU compared to CNN on Davis dataset 

 CI MSE r
2 

m 

Method GRU BiGRU CNN GRU BiGRU CNN GRU BiGRU 

GCN 0.899 0.896 0.880 0.211 0.220 0.254 0.712 0.705 

GAT 0.902 0.903 0.892 0.218 0.220 0.232 0.715 0.706 

GCN-GAT 0.895 0.897 0.881 0.223 0.232 0.245 0.697 0.699 

GIN 0.901 0.896 0.893 0.214 0.218 0.229 0.726 0.714 

 

As can be seen from the table, after the extraction method of protein is changed from CNN to 
GRU and BiGRU, both MSE, CI and r

2 

m are improved to varying degrees. For using the GRU 

model, the CI of GCN, GAT, GCN-GAT and GIN increases by 2.2%, 1.1%, 1.6%, and 0.9%, 

respectively, and the MSE decreases by 16.9%, 6.0%, 9.0%, and 6.6%, respectively. For using 
BiGRU model, the CI of GCN, GAT, GCN-GAT and GIN increases by 1.8%, 1.2%, 1.8%, and 

0.3%, respectively, and the MSE decreases by 13.9%, 5.2%, 5.3%, and 4.8%, respectively. 
Besides, except for GCN-GAT, the r

2 

m values of the other methods using these two models all 

exceed 0.7, which indicate its excellent linear correlation and acceptability. 
 

3.2.2. Comparison with other models 

 
The GDGRU-DTA model combines GNN and RNN, and we conduct experiments on two 

different datasets, Davis and KIBA. The experimental results demonstrate that compared with 

other DTA methods, GDGRU-DTA has a huge improvement in performance. For each DTA 
model, we use its optimal data for comparison, the results on Davis and KIBA dataset are shown 

in Table 3 and Table 4 respectively.  
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Table 3. Results of various DTA prediction models on the Davis dataset 

 

Method Protein Compound CI MSE r
2 

m 

Baseline models 

KronRLS[15] S-W Pubchem 0.871 0.379 0.407 

SimBoost[16] S-W Pubchem 0.872 0.282 0.644 

WideDTA[18] CNN CNN 0.886 0.262 — 

DeepDTA[17] CNN CNN 0.878 0.261 0.630 

DeepGS[21] GAT+Smi2Vec CNN(Prot2Vec) 0.882 0.252 0.686 

GraphDTA[20] CNN GNN 0.893 0.229 — 

AttentionDTA[19] CNN CNN 0.893 0.216 0.677 

Proposed model – GDGRU-DTA 

Transformer-

BiGRU 
BiGRU GNN 0.902 0.214 0.697 

GatedGraph-

BiGRU 
BiGRU GNN 0.904 0.214 0.708 

Transformer-GRU GRU GNN 0.903 0.212 0.730 

GatedGraph-GRU GRU GNN 0.906 0.207 0.711 

 
Table 4. Results of various DTA prediction models on the KIBA dataset 

 

Method Protein Compound CI MSE r
2 

m 

Baseline models 

KronRLS[15] S-W Pubchem 0.782 0.411 0.342 

SimBoost[16] S-W Pubchem 0.836 0.222 0.629 

DeepDTA[17] CNN CNN 0.863 0.194 0.673 

DeepGS[21] GAT+Smi2Vec CNN(Prot2Vec) 0.860 0.193 0.684 

WideDTA[18] CNN CNN 0.875 0.179 — 

AttentionDTA[19] CNN CNN 0.882 0.155 0.755 

GraphDTA[20] CNN GNN 0.891 0.139 — 

Proposed model – GDGRU-DTA 

GatedGraph-

BiGRU 
BiGRU GNN 0.892 0.137 0.775 

GatedGraph-GRU GRU GNN 0.894 0.136 0.781 

Transformer-

BiGRU 
BiGRU GNN 0.894 0.134 0.780 

Transformer-GRU GRU GNN 0.895 0.132 0.785 

 

The models in the above two tables are arranged in descending order of MSE. The data for the 

baseline model is obtained from [15-21]. For the proposed model, two methods of drug feature 

extraction and two methods of protein feature extraction are randomly combined. It is not 
difficult to conclude from the table that the four methods of the proposed model outperform some 

current DTA methods to varying degrees in three indicators. In the table above, italics represent 

the best data of the baseline model, and bold represent the data that is better than the baseline 
model. In the above baseline method, KronRLS and SimBoost are traditional machine learning 
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methods which based on similarity. DeepDTA and WideDTA are sequence-based feature 
extraction methods, and AttentionDTA introduces an Attention block based on it to learn mutual 

features. DeepGS and GraphDTA are novel in that they both use graph structure and graph 

convolution network to extract features.  

 
In the analysis based on Table 3, the four approaches of the proposed model outperform the 

baseline model on all data, with the lowest MSE of 0.207, a 4.2% reduction compared to the 

lowest baseline method, and the highest CI of 0.906, compared to the highest baseline method 
improves by 1.5%, and the highest r

2 

m is 0.730, which is 6.4% higher than the highest baseline 

method. In addition, it can be seen from table 3 that the CI values of four methods of the 
proposed model all exceed 0.9, which proves that they have strong consistency, moreover, the r

2 

m 

values are all over or close to 0.7, indicating that they have strong external prediction 

performance. To sum up, among the above four methods of the GDGRU-DTA, the combined 

method of GatedGraph and GRU shows the best performance in comprehensive consideration of 
MSE, CI and r

2 

m, while the combination of Transformer and BiGRU is relatively poor. The data in 

Table 4 shows that the performance improvement of our model on large data sets is not so 

obvious compared to small data sets, which indicates that our model is insufficient in some 

aspects, and this is a problem that we need to consider and solve. 
 

Combining the above results of Table 3 and Table 4, we can conclude that our model has better 

performance than some other DTA models and has great significance for the research of DTA, 
and thus will greatly promote its development.   

 

4. CONCLUSION 
 

In this paper, we describe our model in detail earlier, which is an end-to-end bio-inspired deep 
learning-based model for DTA prediction. In this work, Since the graph structure of the drug can 

better represent the structural features of the drug, we represent the SMILES string of the drug as 

its graph structure, and use two graph convolution methods different from those used by 
GraphDTA, these two new graph convolution methods exhibit excellent performance on the one 

hand, and also demonstrate the generalization ability of the GRU/BiGRU model on the other 

hand. To address the feature extraction problem for long amino acid sequences, we use GRU and 

BiGRU to capture the long-term dependencies, in order to confirm that the model is better in 
protein feature extraction, we change the protein extraction method of the four models in 

GraphDTA to the method we used, and the results of the four models have been improved to 

varying degrees. GRU and BiGRU also show excellent performance when combined with our 
two new graph convolution methods, which demonstrate their excellent generalization ability. 

Finally, we combine the two newly proposed graph convolution methods and two GRU models, 

and compare them with the previous DTA methods and some state-of-the-art DTA methods, and 

the results show that our method outperforms the previous methods. Our model can greatly 
facilitate the affinity prediction of drugs and targets, and provide a good reference for future 

research. 

 
However, there is still room for improvement in our work. For example, for the feature extraction 

model of drugs, our structural innovation of the model is not very large. In addition, the attention 

mechanism is currently widely used in the model of drug and target interaction prediction. 
Therefore, our next work is to investigate how to improve the structure of drug feature extraction 

and add attention to the proposed model to better improve its performance. 
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