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ABSTRACT 
 

The task of inferring missing links or predicting future ones in a graph based on its current 
structure is referred to as link prediction. Link prediction methods that are based on pairwise 

node similarity are well-established approaches in the literature and show good prediction 

performance in many real-world graphs though they are heuristic. On the other hand, graph 

embedding approaches learn low-dimensional representation of nodes in graph and are capable 

of capturing inherent graph features, and thus support the subsequent link prediction task in 

graph. This appraisal paper studies a selection of methods from both categories on several 

benchmark (homogeneous) graphs with different properties from various domains. Beyond the 

intra and inter category comparison of the performances of the methods our aim is also to 

uncover interesting connections between Graph Neural Network(GNN)-based methods and 

heuristic ones as a means to alleviate the black-box well-known limitation. 
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1. INTRODUCTION 
 

One of the most interesting and long-standing problems in the field of graph mining is link 
prediction that predicts the probability of a link between two unconnected nodes based on 

available information in the current graph such as node attributes or graph structure [1].The 

prediction of missing or potential links helps us toward the deep understanding of structure, 
evolution and functions of real-world complex graphs [2]. Some applications of link prediction 

include friend recommendation in social networks [3], product recommendation in e-commerce 

[4], and knowledge graph completion [5]. 

 
A large category of link prediction methods is based on some heuristics that measure the 

proximity between nodes to predict whether they are likely to have a link. Though these 
heuristics can predict links with high accuracy in many graphs, they lack universal applicability 

to any kind of graphs. For example, the common neighbor heuristic assumes that two nodes are 

more likely to connect if they have many common neighbors. This assumption may be correct in 
social networks, but is shown to fail in protein-protein interaction (PPI) networks [6]. In case of 

using these heuristics, it is required to manually choose different heuristics for different graphs 

based on prior beliefs or rich expertise. 

 
On the other hand, machine learning methods have shown their impressive performance in many 

real-world applications like image classification, natural language processing etc. The built 
models assume that the input data is represented as independent vectors in a vector space. This 
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assumption is no longer applicable for graph data as graph is a non-Euclidean structure and the 
nodes in a graph are linked to some other nodes [7]. To overcome this limitation, a lot of efforts 

have been devoted to develop novel graph embeddings where the nodes, edges, graphs are 

represented in a low-dimensional vector space. In last decade, graph embedding has been 

established as a popular supporting tool for solving several analytical problems in graphs like 
node classification, node clustering, link prediction. The embedding approaches represent a part 

of a graph (or the whole graph) in a low dimensional vector space while preserving the graph 

information [8]. There are some review studies in the literature which focus either on similarity-
based approaches [9], [10] or embedding-based approaches [8], [11] for link prediction task in 

graphs. Thus, to the best of our knowledge, a study including methods from both categories is 

missing in the literature. In this paper, we try to fill this gap. We first introduce the link prediction 
problem and briefly describe selected similarity-based and embedding-based methods. Then, we 

evaluate their performances on different types of graphs, namely homogeneous graphs. We 

compare their performances on diverse graph groups (sharing characteristics). We also propose a 

few interesting connections between similarity-based and embedding-based methods. 
 

2. LINK PREDICTION APPROACHES 
 

Consider an undirected graph at a particular time t where nodes represent entities and links 
represent the relationships between pair entities (or nodes). The link prediction problem is 

defined as discovering or inferring a set of missing links (existing but not observed) in the graph 

at time t + ∆t based on the snapshot of the graph at time t. Several link prediction approaches 

have been proposed in the literature. We focus on the two popular categories: (1) similarity-based 
approaches and (2) embedding-based approaches. 

 

2.1. Similarity-Based Link Prediction 
 

The similarity-based approach is the most commonly used approach for link prediction which is 
developed based on the assumption that two nodes in a graph interact if they are similar. 

Generally, the links with high similarity scores are predicted as truly missing links. The definition 

of similarity is a crucial and non-trivial task that varies from domain to domain even from the 
graph to graph in the same domain [9]. As a result, numerous similarity-based approaches have 

been proposed to predict links in small to large graphs. Some similarity-based approaches use the 

local neighbourhood information to compute similarity score are known as local similarity-based 

approach. Another category of similarity-based approaches is global approaches that use the 
global topological information of graph. The computational complexity of global approaches 

makes them unfeasible to be applied on large graphs as they use the global structural information 

such as adjacency matrix [9]. For this reason, we are considering only the local similarity-based 
approaches in the current study. We have studied six popular similarity-based approaches for link 

prediction. Considering the citations for a duration from publishing to the year 2020, we define 

popularity of each approach as the average citation per year.  

 
Table 1 summarizes the approaches with the basic principle and similarity function. These 

approaches in Table 1 except CCLP (Clustering Coefficient-based Link Prediction) [16] use node 
degree, common neighborhood or links among common neighborhood information to compute 

similarity score.  
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Table 1.  Summary of studied similarity-based approaches. The similarity function is defined to predict a 

link between two nodes x and y. Γx and Γy denote the neighbour sets of nodes x and y respectively. 

 

Approach  Principle Similarity-function 

Adamic-Adar 

(AA) [3] 

Variation of CN where each common 

neighbour is logarithmically penalized 

by its degree 

S
AA

(x, y)= ∑
z∈Γ x∩Γ y

1

log|Γ z|
 

Resource 
Allocation (RA) 

[12] 

Based on the resource allocation 

process to further penalize the high 

degree common neighbours by more 
amount 

S
RA

(x, y)= ∑
z∈ Γ x∩Γ y

1

|Γ z|
 

Preferential 
Attachment (PA) 

[13] 

Based on the rich-get-richer concept 

where the link probability between 

two high degree nodes is higher than 
two low degree nodes 

SPA(x, y)=|Γ x|×|Γ y|  

Hub Promoted 

Index (HPI) [14] 

Promoting link formation between 

high-degree nodes and hubs 
S

HPI
(x, y)=

|Γ x∩Γ y|

max(Γ x ,Γ y)
 

Local Leicht-

Holme- Newman 

(LLHN) [15] 

Utilizing both of real and expected 

amount of common neighbours 

between a pair of nodes to define their 
similarity 

S
LLHN

(x, y)=
|Γ x∩Γ y|

Γ x× Γ y  

Clustering 

Coefficient-
based Link 

Prediction 

(CCLP) [16] 

Quantification of the contribution of 

each common neighbour by utilizing 
the local clustering coefficient of 

nodes 

S
CCLP(x, y)= ∑

z∈Γ x∩Γ y

CCz

 

 
AA, RA and CCLP handcraft the computation of weight of each common neighbours based on 

their neighbourhood size or clustering co-efficient (CC) [16]. On the other hand, HPI, PA and 

LLHN assigns equal weights to neighbours. These local similarity-based approaches except PA 
work well when the graphs have a high number of common neighbours between a pair of nodes. 

However, LLHN suffers from outlier (infinite similarity score) when one of the end nodes has no 

neighbour. HPI also suffers from the outlier (infinite similarity score) when both of end nodes 

have no neighbour. 
 

2.2. Graph Embedding-Based Link Prediction 
 

A graph embedding approach embeds the nodes of a graph into low-dimensional vector space 

where connected nodes are closer to each other. The embedding vector of a link is then computed 

based on the embedding of end nodes and a classifier is used to classify it as existent or non-
existent link. Random walk-based and neural network-based embedding are two popular methods 

of embedding [8]. The first one samples the nodes based on the random walk process in graph 

and adopts skip-gram model to represents them in a low-dimensional vector. The second category 
is designed based on neural network (NN). The success of NN in image, speech, text processing 

where data can be represented in Euclidean form, motivates researchers to study GNNs as a kind 

of NN that operates directly on graphs. GNNs provide an end-to-end graph embedding [8]. In our 
study, we are interested in a specific GNN architecture called convolution GNN (ConvGNN) [7]. 

Inspired by the convolution operation of NN, ConvGNNs compute the embedding of a node by 

aggregating its own and neighbours information. In the following, we present four embedding-

based link prediction approaches including one random-walk based (Node2Vec) and three GNN-
based (WLNM, SEAL, GAT). We choose Node2Vec to represent simple non-deep learning 
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methods, WLNM to represent the methods which learn only structural features, SEAL to 
represent the methods which maximize the use of available information (structural, node 

attributes, latent features) and GAT to represent the methods which define different roles of 

different neighbours. 

 

2.2.1. Node2Vec: 

 

Motivated by the classical skip-gram model in natural language processing, Grover & Leskovec 
[17] developed Node2Vec representation learning approach that optimizes a neighbourhood 

preserving objective function using Stochastic Gradient Descent (SGD). Node2Vec starts with a 

fixed size neighbourhood sampling using guided random walk. Unlike the classical random walk, 
Node2Vec defines a 2nd order random walk that interpolate between BFS(Breadth First Search) 

and DFS(Depth First Search)-based sampling strategy where two parameters p and q are used to 

compute the transition probability during the walk. These parameters control how fast the walk 

explores and leaves the neighborhood of the starting node. The node embedding is then generated 
based on the popular skip-gram model where the co-occurrence probability among the 

neighbours those appear within a window.  

 

2.2.2. Weisfeiler-Lehman Neural Machine (WLNM): 

 
Based on the well-known Weisfeiler-Lehman (WL) canonical labelling algorithm [18], Zhang & 
Chen [19] developed the Weisfeiler-Lehman Neural Machine (WLNM) to learn the structural 

features from the graph and use it in the link prediction task.  

 

 
 

Figure 1.  Illustration of WLNM  [19] with existent(A,B) and non-existent link(C,D) 
 
As illustrated in Figure 1, WLNM is a three steps link prediction approach that starts with 

extracting sub-graphs those contain a predefined number of neighbour nodes, labelling and 

encoding the nodes in the sub-graph using WL algorithm and ends with training and evaluating 
the neural network.  

 
WLNM is a simple GNN-based link prediction approach which is able to learn the link prediction 
heuristics from a graph. The downside of WLNM is that it truncates some neighbours to limit the 

sub-graph size to a user-defined size which are may be informative for the prediction task. 

 

2.2.3. Learning from Sub-graphs, Embeddings and Attributes (SEAL): 

 
Zhang & Chen [20] developed a Conv GNN-based link prediction approach called SEAL to learn 
from latent and explicit features of nodes along with the structural information of graph. Unlike 
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WLNM, SEAL is able to handle neighbours of variable size. The overall architecture of the 
approach is shown in Figure 2.  

 

 
 

Figure 1.  Architecture of SEAL approach  [20] 

 

Like WLNM, SEAL also consists of three major steps: (1) sub-graph extraction and node 
labelling, (2) node information matrix construction, and (3) neural network training and 

evaluation. SEAL utilizes the available information in the graph to improve the prediction 

performance. However, SEAL is limited to be applied on homogeneous graphs though many real 
work graphs are heterogeneous graphs. Moreover, the use of latent feature affects the 

computational time of SEAL. 

 
2.2.4. Graph Attention Networks (GAT): 

 
In Graph Convolutional Networks (GCN) [21], the convolution operation is defined based on 

close neighbors where all neighbors contribute equally which affects the prediction performance. 

To overcome this shortcoming, Velickovic et al. [22] presents GAT by leveraging attention 

mechanism for learning different weights (or coefficients) to different nodes in a neighborhood. 
The attention learning mechanism starts with defining a graph attention layer where the input is 

the set of node features, 
h= {h⃗1, h⃗2,. . ., h⃗N}

 for N nodes. The layer produces a transformed set 

of node feature vectors h=
h'= {h⃗'1, h⃗' 2, .. , h⃗'N}

, where 
h

i  and 
h' i  are input and output 

embeddings of the node 
ei . The attention layer is defined as Equation 1. 

 
cij= f a(Wh⃗i ,Wh⃗j)     (1) 

 

where 
cij  is the attention coefficient of the edge 

(ei ,ej), 
h⃗i , h⃗ j

 are embeddings of nodes 
ei ,ej , W is a parametrized linear transformation matrix mapping the input features to a higher 

dimensional output feature space, and 
f a  is a shared attention mechanism. GAT uses the 

LeakyReLU nonlinearity as the activation function of the attention layer. The coefficient 

indicates the importance of node 
ej  to node 

e
i . GAT uses the following softmax function 

(Equation 2) over the first order neighbours of a node including itself to compute the normalized 

attention coefficient, 
α ij  of the edge 

(ei ,ej). 
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αij=softmax(cij )=
exp(cij)

∑
k∈N i

exp(cik)
   (2) 

 

where 
Ni  is the set of neighbours for node 

e
i . The output embedding of the node 

e
i  is 

generated using the attention coefficients as in Equation 3. 

 
 

h⃗' i= ∑
j ∈N i

αij Wh⃗ j

     (3) 
 
GAT extends the single head concept to multi-head mechanism to learn more stable attentions by 

averaging the coefficients over multi-head attentions. For link prediction, the embedding of end 

nodes are feed into a fully connected NN. 
 

3. EXPERIMENTAL DESIGN 
 

3.1. Experimental Data 
 
We perform the comparative study of the above discussed similarity and embedding based link 

prediction approaches in simple and undirected graphs from different domains. To evaluate and 

describe the performance of the link prediction approaches, we choose ten benchmark graphs 
from different areas: Ecoli [23], FB15K [24], NS [25], PB [26], Power [27], Router [28], USAir 

[29], WN18 [30], YAGO3-10 [31], and Yeast [32]. FB1K, WN18 and YAGO3-10 are popular 

knowledge graphs. These knowledge graphs consist of subject-relationship type-object triples. 
However, as the studied approaches are applicable to homogeneous graphs only. We simplify 

these knowledge graphs by overlooking the relation names and considering links as undirected 

links. The topological statistics of the graph datasets are summarized in Table 2. Based on the 

number of nodes, these graphs are categorized into small/medium graphs with less or equal 
10,000 nodes and large graphs with more than 10,000 nodes. 

 
Table 2.  Topological statistics of graph datasets: number of nodes (#Nodes), links(#Links), average node 

degree (NDeg), clustering coefficient (CC), network diameter (Diam) and description. Large graphs are 

shaded with gray color. 

 
Graph

s 
#Nodes #Links NDeg CC Diam Description 

Ecoli 1805 42325 46.898 0.350 10 Nodes: Operons in E.Coli bacteria 
Edges: Biological relations between 

operons 
FB15K 14949 260183 44.222 0.218 8 Nodes: Identifiers of Freebase 

knowledge base (KB) entity 
Edges: Link between Freebase entities 

NS 1461 2742 3.754 0.878 17 Nodes: Researchers who publish papers 

on network science 
Edges: Co-authorship of at least one 

paper 
PB 1222 14407 23.579 0.239 8 Nodes: US political blog page 

Edges: Hyperlinks between blog pages 
Power 4941 6594 2.669 0.107 46 Nodes: Electrical power stations (e.g. 

generators, transformers) of western US 
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Edges: Power transmission between 

stations 
Router 5022 6258 2.492 0.033 15 Nodes: Network router 

Edges: Router-router interconnection 

for providing router-level internet 
USAir 332 2126 12.807 0.749 6 Nodes: US airports 

Edges: Link between two airports if 

there is at least one direct flight 
between them 

WN18 40943 75769 3.709 0.077 18 Nodes: Entities (or synsets) 

corresponds to English word senses 
Edges: Lexical relations between 

sysnets 
YAGO

3-10 
113273 758225 18.046 0.114 14 Nodes: Entities (such as movies, 

people, cities, etc.) in YAGO KB 
Edges: Relations between entities 

Yeast 2375 11693 9.847 0.388 15 Nodes: Proteins in yeast 
Edges: Protein-protein interaction in 

yeast network 
 

3.2. Construction of Train and Test Sets 
 

We follow a random sampling protocol to evaluate the performance of the studied approaches 
[19]. We prepare train and test set from the experimental graphs. For training dataset, we 

randomly select 90% existing links (termed as positive train set) and an equal number of non-

existing links (termed as negative train set). The remaining 10% existing links (termed as positive 
test set) and an equal number of non-existing links (termed as negative test set) form the test set. 

At the same time, the graph connectivity of the training set and the test set is guaranteed. We 

prepare five train and five test sets for evaluating the performance of the approaches. 

 
For evaluating the performance of similarity-based approaches, the graph is built from the 

positive training dataset whereas, for embedding-based approaches, the graph is built from 
original graph that contains both of positive train and test datasets. However, a link is temporarily 

removed from the graph to train it to the embedding-based approaches or to predict its existence. 

The performance is quantified by defining two standard evaluation metrics, precision and AUC 
(Area Under the Curve). All of the approaches are run on a Dell Latitude 5400 machine with 

32GB memory and core i7 (CPU 1.90GHz) processor. 

 

3.3. Precision and AUC Computation 
 

Precision describes the fraction of missing links which are accurately predicted as existent links 
[33]. To compute the precision, the predicted links from a test set are ranked in decreasing order 

of their scores. If 
Lr  is the number of existing links (in the positive test set) among the L-top 

ranked predicted links then the precision is defined as Equation 4. 

 

Precision=
L

r

L                                                   (4) 
 

An ideal prediction approach has a precision of 1.0 that means all the missing links are accurately 
predicted. We set L to the number of existent links in the test set. However, there are some 

challenges with this optimistic way of computing the precision. What if the similarity score is 

(close to) 0.0 of the lowest ranked link? This issue creates the difficulty to make a separation 
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between some positive and negative test links. Choosing a threshold when defining 
Lr  could be 

a potential solution to overcome this problem. The distribution of unnormalized similarity scores 

are different for graphs from different domains and even for two different datasets from the same 

domain. Moreover, it is nearly impossible to know the distribution of unnormalized similarity 
score in advance for graph dataset. These two facts make it infeasible task for the user to define 

the threshold. To overcome this problem, we define a threshold as the average of the maximum 

and minimum score in top-L links. We compute the number of positive test links in top-L links 

(as 
Lr ) as those having similarity scores above the threshold. 

 
On the other hand, the metric AUC is defined as the probability that a randomly chosen existing 

link has a higher similarity score than a randomly chosen non-existing link [33]. Suppose, n 

existent and n non-existent links are chosen from positive and negative test sets. If 
n

1  is the 

number of existent links having a higher score than non-existent links and 
n

2  is the number of 

existent links having equal score as non-existent links then AUC is defined as Equation 5. 
 

AUC=
n1+0.5n2

n       (5) 
 

We consider half of the total links in the positive test set and negative test set to compute AUC. 

 

4. EXPERIMENTAL RESULTS 
 

The prediction approaches are evaluated in each of the five sets (train and test set) of each graph 

and performance metrics (precision, AUC) are recorded. We measure the precision in two 
different ways based on the top-L test links as described in Section 3.3. We compute the 

threshold-based precision only for similarity-based approaches as embedding-based approaches 

do learn the threshold. The maximum and minimum similarity scores are computed from the top-

L for each test set of each graph. Table 3 shows the results in each of the seven small/medium 
and three large-size graphs. Each value of the table is the mean over the five test sets. The 

standard deviation values of both metrics for all approaches in all graphs are very small and they 

are not included in the table.  

 
It can be clearly seen from Table 3 that the ranges of unnormalized similarity scores are different 

for different similarity-based approaches and also different in different datasets for the same 
similarity-based approach. Moreover, the minimum similarity scores are very low (close to 0) in 

some datasets. These observations prove that in real-world applications, it is difficult to choose a 

threshold and to assess good precision for similarity-based approaches. 

 
From Table 1, the similarity-based approaches are mostly defined based on the common 

neighbourhood. As expected, they show low precision (without defining threshold) and AUC 
values in sparse graphs (low CC, low node degree) like Power, router and high precision for other 

well-connected graphs in Table 3. Exceptionally, PA shows better prediction performance in 

sparse graphs as it considers individual node degree instead of common neighbourhood for 
computing similarity score. The precision scores using the threshold-based method drops 

drastically in most of the cases as many falsely predicted positive links are identified (i.e. 

predicted links with very low scores). Surprisingly, HPI shows competitive threshold-based 

precision value in NS dataset. No single similarity-based approach wins in all small/medium size 
graphs. 
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As expected, embedding-based approaches show very good precision and AUC scores across all 
of the small/medium size graphs compared to similarity-based approaches. What about their 

comparative performances? No single approach wins in all datasets. Node2Vec shows highest 

precision scores in some datasets though it is simpler than other embedding-based approaches. 

The consideration of more distant neighbours in embedding computation during random walk 
could be the most possible reason behind this success. The use of latent information along with 

structural information in SEAL for the datasets during prediction task likely explains the 

improvement of the metric AUC. The best tuning of parameters could be the most possible 
reason behind the best balance between the prediction metrics in GAT. Table 3 shows that 

embedding-based approaches provide high-performance metrics in all graphs while similarity-

based approaches perform well in some graphs (in terms of optimistic precision). 
Considering the three large graphs (FB15K, WN18 and YAGO3-10), the prediction metrics for 

similarity-based approaches are much lower than small/medium scale graphs, especially in 

WN18 and YAGO3-10 graphs. Likewise the results in small/medium size graphs, the precision 

scores of these approaches further drops drastically to less than 0.1 when applying the threshold. 
Unsurprisingly, the prediction scores for embedding-based approaches in large graphs are high as 

in small/medium scale graphs. The notable point in the prediction metrics for large graphs is that 

Node2Vec is less competitive than other embedding-based approaches in these large graphs. 
 

Table 3.  AUC and Precision (Prec) values with Max Scores (Mx scr) and Min Scores (Mn scr) in 

small/medium graphs. Precision with * mark (Prec*) is computed based on threshold in top-L links. Graph-

wise highest metrics are indicated in bold fonts while approach-wise highest metrics are shown in 

underline. 

 

Approach Metric Ecoli NS PB Power Router USAir Yeast FB15K WN18 YAGO 3-10 

 

AA 

Prec 0.9 0.87 0.86 0.17 0.07 0.92 0.83 0.77 0.13 0.15 
Prec* 0.06 0.15 0.01 0.02 0.01 0.16 0.06 0.0002 0.0002 0.0018 
Mx scr 32.84 5.83 33.41 3.04 5.6 16.69 23.71 418.6 57.32 24.44 
Mn scr 2.86 1.14 0.58 0 0 2.7 0 0.12 0 0 
AUC 0.93 0.94 0.92 0.58 0.54 0.94 0.91 0.82 0.56 0.48 

 

PA 

Prec 0.78 0.69 0.83 0.49 0.41 0.85 0.79 0.79 0.63 0.83 
Prec* 0.05 0.02 0.01 0.02 0.01 0.13 0.06 0.0003 0.0006 0.0006 
Mx scr 65679 362 61052 53 2397 8298 10642 9881842 10637 2426939 
Mn scr 3532 12 855.7 4 1 739.3 95 942.67 6.33 109 
AUC 0.8 0.66 0.90 0.46 0.43 0.90 0.86 0.88 0.64 0.88 

 
RA 

Prec 0.91 0.87 0.86 0.17 0.07 0.92 0.83 0.77 0.13 0.15 
Prec* 0.03 0.15 0.01 0.03 0.01 0.1 0.07 0.0003 0.0002 0.0011 
Mx scr 1.7 1.8 4.19 0.84 1.32 2.83 2.37 72.06 20.67 5.16 
Mn scr 0.19 0.4 0.03 0 0 0.32 0 0 0 0 
AUC 0.94 0.94 0.92 0.58 0.54 0.94 0.91 0.84 0.57 0.57 

 

HPI 

Prec 0.9 0.87 0.8 0.17 0.07 0.91 0.83 0.69 0.13 0.15 
Prec* 0.2 0.96 0.15 0.13 0.02 0.45 0.7 0.0959 0.0796 0.0476 
Mx scr 1 1 1 1 1 1 1 1 1 1 
Mn scr 0.33 0.83 0.21 0 0 0.77 0 0.05 0 0 
AUC 0.94 0.94 0.85 0.58 0.54 0.91 0.9 0.75 0.56 0.47 

 

LLHN 

Prec 0.89 0.87 0.74 0.17 0.07 0.87 0.83 0.64 0.13 0.15 
Prec* 0.001 0.13 0.001 0.03 0.003 0.03 0.01 0.0008 0.0046 0.0003 
Mx scr 0.32 1 0.42 2.06 0.83 0.58 0.67 0.28 1 1 
Mn scr 0 0.1 0 0 0 0.01 0 0 0 0 
AUC 0.91 0.93 0.76 0.58 0.53 0.77 0.9 0.57 0.57 0.45 

 
CCLP 

Prec 0.96 0.73 0.86 0.08 0.07 0.91 0.82 0.78 0.08 0.14 
Prec* 0.06 0.21 0.01 0.01 0.01 0.18 0.06 0.0015 0.0006 0.0013 
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Mx scr 30.6 8 27 1.2 1.1 21.1 39.2 51.74 1.67 20.77 
Mn scr 1.8 0.3 0.3 0 0 2.9 0 0.01 0 0 
AUC 0.95 0.87 0.91 0.54 0.53 0.94 0.9 0.84 0.54 0.57 

WLNM 
Prec 0.87 0.84 0.78 0.84 0.89 0.85 0.87 0.67 0.84 0.68 
AUC 0.93 0.95 0.93 0.76 0.92 0.86 0.86 0.68 0.79 0.72 

SEAL 
Prec 0.81 0.96 0.8 0.66 0.8 0.91 0.89 0.77 0.61 0.86 
AUC 0.95 0.99 0.94 0.77 0.94 0.94 0.98 0.96 0.87 0.97 

GAT 
Prec 0.84 0.93 0.84 0.72 0.81 0.88 0.91 0.85 0.74 0.84 
AUC 0.85 0.90 0.86 0.7 0.79 0.87 0.89 0.87 0.79 0.83 

Node2Vec 
Prec 0.91 0.97 0.91 0.86 0.8 0.81 0.85 0.79 0.83 0.82 
AUC 0.9 0.96 0.9 0.82 0.75 0.85 0.94 0.88 0.79 0.8 

 

Embedding-based link prediction approaches show better performance because they learn 

heuristics from graphs. However, it is not clear which heuristic(s) are learned. We want to take 
benefit from this study to get insight of such heuristics by comparing the performances of 

similarity-based heuristics with performances of embedding-based approaches on the same 

datasets. In one hand, from Table 1 and Table 3, AA, RA and CCLP –which heuristically assign 

high weights to nodes with high degrees or cluster coefficients – show better precision on 
FB15K, PB, NS, USAir, and Yeast compared to other graphs. GAT also shows better precision 

on these graphs than other graphs. This may indicate that GAT learns similar heuristics as AA, 

RA and CCLP. In the other hand, WLNM considers the role of each neighbour equally like HPI, 
LLHN, and PA. WLNM, HPI, LLHN and PA show better performance scores on Power, Router, 

and WN18 graphs, confirming that they are heuristically compatible.  

 
Table 4.  Top-2 ranked similarity-based approaches with higher agreement with embedding-based 

approach for test link decision. Numbers in () represent the agreement percentages.  

 

Graph WLNM SEAL GAT Node2Vec 
Ecoli HPI(69), RA(69) LLHN(80), RA(79) HPI(70),RA(69) RA(70), LLHN(70) 
NS CCLP(65),AA(63) AA(70),CCLP(68) AA(61),PA(61) AA(70),CCLP(68) 
PB HPI(68),PA(64) RA(68),PA(66) LLHN(61),RA(59) AA(68),RA(68) 
Power HPI(63),LLHN(63) PA(63),HPI(62) AA(67),RA(67) PA(63),RA(62) 
Router PA(52),LLHN(47) PA(66),LLHN(51) CCLP(65),RA(65) CCLP(69),AA(68) 
USAir AA(78),CCLP(78) LLHN(90),HPI(88) CCLP(77),AA(75) RA(90),LLHN(90) 
Yeast CCLP(75),PA(74) CCLP(70),AA(69) CCLP(75),AA(71) CCLP(70),AA(69) 
FB15K RA(32),HPI(31) LLHN(30),HPI(28) HPI(28),LLHN(27) HPI(26),AA(24) 
WN18 PA(44),LLHN(42) PA(40),HPI(32) PA(28), AA(26) PA(36), CCLP(31) 
YAGO3-10 PA(34),AA(26) PA(44), AA(24) PA(38),CCLP(32) PA(42),RA(34) 

 

In order to further explore their connections, we compute the percentage of agreements in link 

existence between the embedding-based and the similarity-based approaches. Table 4 shows the 
top-2 ranked similarity-based approaches when they are ranked in decreasing order of their 

percentage of agreements on each graph for each embedding-based approach. Overall, 

embedding-based approaches show higher percentages of agreements to similarity-based 

approaches in small/medium graphs than in large graphs. Considering all graphs, HPI, PA and 
LLHN are three frequent heuristics which have higher agreement to WLNM and SEAL 

approaches. On the other hand, AA, RA and CCLP show frequent agreements with GAT. These 

agreements align to the previous discussion on the nature of learned heuristics in embedding-
based methods. However, low agreement percentage values (in Table 4) but high precision scores 

(in Table 3) for embedding-based approaches in many graphs like FB15K, Ecoli, NS suggest the 

existence of other learned heuristics that are not included in this study. 
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The performance of the studied methods was also assessed in terms of average computational 
time (data will be made available on request). As expected, similarity-based approaches are faster 

as they don’t require training. As for embedding-based approaches, Node2Vec requires the 

smallest time as it does not use deep NN like the other embedding-based methods. The 

computational time of SEAL is the best as it utilizes the structural and explicit features like 
WLNM and GAT along with latent features like Node2Vec. We also noticed that the 

computational time of embedding-based methods grows with the size of datasets by more amount 

than the similarity-based methods. 
 

5. CONCLUSIONS 
 

In this paper, we study several link prediction approaches, looking for their performances and 
connections. We focused on two categories of methods: similarity-based methods and 

embedding-based learning methods. The studied approaches were evaluated on ten graph datasets 

with different properties from various domains. The precision of similarity-based approaches was 
computed in two different ways to highlight the difficulty of tuning the threshold for deciding the 

link existence based on the similarity score. The experimental results show the expected 

superiority of embedding-based approaches. Still, each of the similarity-based approaches is 

competitive on graphs with specific properties. The possible links between the handcrafted 
similarity-based approaches and current embedding-based approaches were explored using (i) 

prediction performance comparison to get an idea about the learned heuristics and (ii) agreement 

percentage on the diverse graphs. Our observations constitute a modest contribution to the ’black 
box’ limitation of GNN-based methods. 
 

One perspective of this work is to achieve a good trade-off between prediction accuracy and 

computational time by developing an embedding-based link prediction approach in a distributed 

and parallel environment. In addition, the approach is expected to be applicable to heterogeneous 
graphs such as knowledge graphs. 
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