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ABSTRACT 

 
In distributed ensemble model-building algorithms, the performance and statistical validity of models are 

dependent on sizes of the input data partitions as well as the distribution of records among the partitions.  

Failure to correctly select and pre-process the data often results in the models which are not stable and do 

not perform well.  This article introduces an optimized approach to building the ensemble models for very 

large data sets in distributed map-reduce environments using Pass-Stream-Merge (PSM) algorithm.  To 

ensure the model correctness the input data is randomly distributed using the facilities built into map-

reduce frameworks. 
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1. INTRODUCTION 
 
Ensemble models are used to enhance model accuracy (boosting) [1], enhance model stability 

(bagging) [2], and build models for very large datasets (pass, stream, merge) [3]. In distributed 

ensemble model- building algorithms, one so-called base model is built from each data partition 

(split) and evaluated against a sample set aside for this purpose. The best-performing base models 

are then selected and combined into a model ensemble for purposes of prediction. Both model-

building performance and the statistical validity of the models depend on data records being 

distributed approximately randomly across roughly equal-sized partitions. When implemented in 

a map-reduce framework, base models are built in mappers [4]. Sizes of data partitions and the 

distribution of records among them are properties of the input data source. The partition size of 

the input source is often uneven and rarely of appropriate size for building models. Furthermore, 

data records are frequently arranged in some systematic order and not randomly ordered. As a 

result, base models sometimes fail to build or, what is worse, produce incorrect or suboptimal 

results. The algorithm proposed in this paper eliminates any partition size and ordering variability 

and as a result improves performance and statistical validity of the generated models. 

 

2. METHODOLOGY 
 

We implement the PSM features Pass, Stream and Merge through ensemble modeling [2], [5], 

[6], [7], [8], [9]. Pass builds models on very large data sets with only one data pass [3]; Stream 

updates the existing model with new cases without the need to store or recall the old training data; 

Merge builds models in a distributed environment and merges the built models into one model. In 

an ensemble model, the training set will be divided into subsets called blocks, and a model will be 

built on each block. Because the blocks may be dispatched to different processing nodes in the 

map reduce environment, models can be built concurrently. As new data blocks arrive, the 
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algorithm repeats the procedure. Therefore, it can handle the data stream and perform incremental 

learning for ensemble modeling [10]. The Pass operation includes following steps: 

 

1. Splitting the data into training blocks, a testing set and a holdout set. 

2. Building base models on training blocks and a reference model on the testing set. 

One model is built on the testing set and one on each training block. 

3. Evaluating each base model by computing its accuracy based on the testing set and 

selecting a subset of base models as ensemble elements according to accuracy. 

                    During the Stream step when new cases arrive and the existing ensemble model  

 

Needs to be updated with these cases, the algorithm will: 

 

1. Start a Pass operation to build an ensemble model on the new data, and then 

2. Merge the newly created ensemble model and the existing ensemble model.  

 

The Merge operation has the following steps: 

 

1. Merging the holdout sets into a single holdout set and, if necessary, reducing the set 

to a reasonable size. 

2. Merging the testing sets into a single testing set and, if necessary, reducing the set to 

a reasonable size. 

3. Building a merged reference model on the merged testing set. 

4. Evaluating every base model by computing its accuracy based on the merged testing 

set and selecting a subset of base models as elements of the merged ensemble model 

according to accuracy. 

5. Evaluating the merged ensemble model and the merged reference model by 

computing their accuracy based on the merged holdout set. 

 
 

Figure 1.  Data blocks and base models 
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Figure 2.  File sizes and base models 

 

It can be shown that in map reduce environments the training block or partition size of the input 

source is often uneven and rarely of appropriate size for building models. The simplest example 

of uneven partition sizes is one caused by the fact that the last block of a file in the distributed file 

system is almost always a different size from those before it. 

 

In the example of Figure 1, the base model built from the last block is built from a smaller 

number of records. When the dataset is comprised of multiple files as is often the case, the 

number of small partitions increases. This is illustrated in Figure 2. 

 

Another assumption that is frequently violated is that the input records are randomly distributed 

among partitions. If the records in the dataset are ordered by the values of the modeling target 

field, an input field, or a field correlated with them, base models cannot be built or exhibit low 

predictive accuracy. In the example shown in Figure 3, records are ordered by the binary-valued 

target. No model can be built from the first or the last partition because there is no variation in the 

target value. A model can probably be built from the second partition but its quality depends on 

where the boundary between the two target values lies. 

 

 
Figure 3.  The data sort order and base models 
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An existing partial solution to the problem is to first run a map-reduce job that shuffles the input 

records and creates a temporary data set. Shuffling is achieved by creating a random-valued field 

and sorting the data by that field. The ensemble-building program is subsequently run with the 

temporary data set as input. The solution is only partial because, while records are now randomly 

ordered, the partitioning of data is determined by the needs of the random sorting. The resulting 

partitioning is rarely optimal because the upper limit on the partition size is still dependent on the 

default block size employed by the map-reduce framework, and smaller, unevenly sized partitions 

may be created. This approach also requires the duplication of all the input data in a temporary 

data set. 

 

We propose a method that provides optimally-sized partitions of shuffled, or randomly ordered, 

records to model-building steps using facilities built into map-reduce frameworks. The model-

building step is run in reducers with input partitions whose size is configurable automatically or 

by the user. The contents of the partitions are randomly assigned. Our approach allows the 

partition size to be set at runtime. The partition size may be based on statistical heuristic rules, 

properties of the modeling problem, properties of the computing environment, or any 

combination these factors. Each partition consists of a set of records selected with equal 

probability from the input. The advantages of using our method over the known explicit shuffling 

solution are: 

 

1. Our method guarantees partitions of uniform optimal size. The explicit shuffling 

solution cannot guarantee a given size or uniform sizes. 

2. Map-reduce frameworks have built-in mechanisms for automatically grouping 

records passed to reducers. Explicit shuffling incurs the additional cost of the creation 

of a temporary dataset and a sort operation. This description is confined to the portion 

of ensemble modeling process where base models are built because that is the step 

our approach improves. 

 

In addition to partitions for building base models, ensemble modeling requires the creation of two 

small random samples of records called the validation and the holdout samples. The sizes of these 

samples are preset constants. A so-called reference model is built from the validation sample in 

order to compare with the ensemble later. The validation sample is also used to rank the 

predictive performance of the base models in a later step. Also in a later step, the holdout sample 

is used to compare the predictive performance of the ensemble with that of the reference model. 

The desired number of models in the final ensemble, E, is determined by the user. It is usually in 

the range 10-100. The rules we use to determine how to partition the data balance the goal of a 

desirable partition size with that of building an ensemble of the desired size. 

 

To compute the average adjusted partition size we pick an optimal value for the size of the base 

model partition, B. B may be based on statistical heuristic rules, properties of the modeling 

problem, properties of the computing environment, or any combination of these factors. 

 

We also determine a minimum acceptable value for the size of the base model partition, Bmin, 

based on the same factors. Given N, the total number of records in the input dataset, the size of 

the holdout sample H, and the size of the validation sample V, we determine the number of base 

models, S, as follows: 
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Given S, compute an average adjusted partition size, B′ as 

B′ = (N−H−V)/S. 

B′ is usually not a whole number. Sampling probabilities for base partitions, the validation 

sample, and the holdout sample are B′/N, V/N, and H/N, respectively. Note that 

S ∗ (B′/N) + V/N + H/N = N/N = 1 

so that the sampling probabilities add up to 1. 
 

The map stage consists of randomly assigning each record one of k+2 keys 1, 2, ... S+2. Key 

values 1 and 2 correspond to the holdout and validation samples, respectively. Thus, a given 

record is assigned key 1 with probability H/N, key 2 with probability V/N, and keys 3..S+2 each 

with probability B′/N. The resulting value is used as the map-reduce key. The key is also written 

to mapper output records so that the reducers can distinguish partitions 1 and 2 from the base 

model partitions. The sizes of the resulting partitions will be approximately B′, H and V. 

In the reduce stage, we build models from each partition except the holdout sample. 

 
Figure 4.  The data flow through mappers to reducers 
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Figure 4 shows the flow of input data through an arbitrary number K of mappers to the reducers 

where base and reference models are built. Regardless of the order and grouping of the input data, 

the expected sizes of the holdout, validation and base model training partitions are as determined 

above and their contents are randomly assigned. 

 

3. CONCLUSIONS 
 

We have presented an algorithm for creating optimally-sized random partitioning for data- 

parallel ensemble model building in map-reduce environments. The approach improves 

performance and statistical validity of the generated ensemble models by introducing random 

record keys that reflect probabilities for the holdout, validation and training samples. The keys are 

also written to mapper output records so that the reducers can distinguish holdout and validation 

partitions from the base model partitions. In the reduce stage, we build models from each partition 

except the holdout sample. 

 

The future plan is to implement the algorithm in the real cloud setup and test the performance and 

statistical validity by considering the anticipated workload. 
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