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ABSTRACT
Nowadays, various approaches have been proposed for visual
target tracking, amongst which the sparse representation-based
approaches have shown efficiency. In this paper, a two-stage
approach for visual target tracking is proposed. In the first stage,
the approximate target position is determined based on the corner
points and sparse representation. In the following, the appearance
model memory of the target will be used to determine the exact
location of the target to perform the target localization accurately.
Experimental results demonstrate that the proposed approach can
effectively handle challenges such as abrupt illumination variation,
occlusion, and blurriness. Furthermore, based on the evaluations of
the qualitative and quantitative results, the proposed algorithm is
comparable in performance with other state-of-the-art algorithms.
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1. INTRODUCTION
The visual tracking problem is defined as the estimation of location
or motion parameters of one or more targets in a video sequence
and is known as a high-level task in computer vision science [1].
The drastic increase in computational power of processors in the
last decade and the availability of high-resolution cameras along
with the ever-growing need for automatic video analysis have led
to the development of new algorithms in the visual tracking domain
and made this topic a research hotspot in recent years [2]. The
applications of visual tracking are broad and vary from automatic
surveillance and motion analysis to human-computer interaction,
augmented reality, etc. [3]. Although the development of new

algorithms has addressed some of the challenges in the visual
tracking problem, yet general target tracking is still a challenge
to overcome. The challenges in visual tracking can be broadly
classified into two groups: 1) the similarity between the appearance
of target and its surrounding. 2) the changes in the appearance of
a target itself, which can be due to abrupt motion, state changes,
illumination changes, pose variation, and other destructive factors
[1]. A visual tracking algorithm is generally comprised of three
components:
1) target representation 2) dynamic model 3) search scheme.
Nevertheless, it is possible to combine these parts [4]. Target
representation can be thought of as the most crucial component
of the visual tracking algorithms since it is directly responsible
for overcoming challenges, i.e., choosing the best candidate in
the presence of distractive factors. Besides, the objective function
used for tracking is specified based on the target representation
in use [3, 4, 5]. The dynamic model is usually used for the
estimation of the possible target’s state in order to decrease the
computational complexity and reducing the area of the search
space [6]. These models are trained either prior to or during
the tracking process. Based on the search scheme, tracking
algorithms are classified into deterministic and stochastic classes
[7]. Having represented the target in a feature space, the tracking
problem is reduced to a search process and can be solved
using an optimization problem, i.e., maximizing or minimizing
objective function based on the dissimilarity or similarity measure.
Stochastic approaches usually optimize the objective function
by considering the target observations in multiple frames in a
Bayesian framework which, was first introduced for machine vision
applications in the condensation algorithm [3]. In recent years,
researchers have been using the convolutional neural network,
biologically inspired methods, and meta-heuristic optimization
techniques to track moving objects [8, 9, 10]. In this paper, a visual
tracking algorithm using corner points and sparse representation is
presented in which an accurate target localization approach based
on the updating target’s template using sparse representation is
proposed. In addition, to overcome tracking challenges, such as
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occlusion which has the highest degradation effect on the quality
of tracking, the template is updated in a way that encapsulates
the appearance changes of the target. The main contributions of
this paper can be summarized as: 1) Use of memory template for
handling tracking challenges. 2) Use of multiple templates with
different learning rates to achieve higher flexibility. Experiments
on the proposed algorithm prove its robustness and accuracy
compared to its rivals, which will be discussed in the conclusion
section. The paper is organized as follows: in the next section, the
proposed algorithm is discussed by introducing each different part
of the tracker. Then the proposed algorithm is evaluated with the
presented measures, and in the following section is the conclusion
of the paper. The rest of the paper is organized as follows: Section 2
describes related work on object tracking. The two-stage algorithm
for object tracking is proposed in Section 3. Experimental results
are reported and analyzed in Section 4. Finally, Section 5 presents
the conclusion of the whole paper.

2. RELATED WORK
Designing a visual tracking algorithm that is simultaneously
accurate and robust is a challenging task and becomes even more
challenging with the presence of destructive factors such as scale
and illumination variation, and rotation changes. Recent algorithms
proposed in the literature use generative or discriminative
approaches for target representation. In the generative approaches,
only the target is modeled, while in the discriminative approaches,
both the target and its background are modeled. Generative
approaches formulate the tracking problem as searching for the
region most similar to the target’s model in the feature space, and
generally, they do not require an extensive database for the training
phase. These models are based on either templates or subspace
models [3]. Kumar et al. [11] proposed a visual tracking algorithm
based on the `1 framework in which dictionaries consisting
of templates of overlapping target segments have been used.
Candidate’s segments are sparsely represented in the dictionary
space by solving the regularized squared minimization problem.
The dictionary is updated based on the target similarity map,
and as a result, the target’s motion is estimated by combining
the obtained information. Another approach is proposed in [12],
which is based on a robust approach. In this paper, the challenge
of partial occlusion is handled by modeling the target with its
components. The weighted component-based approach is used
in which the weights are calculated by the difference between
the components’ colors and the background. Discriminative
approaches treat visual tracking as a classification problem, where
the goal is to distinguish the target from the background [13,
14]. Hence, the information from target and background are
extracted for training a discriminative classifier. These approaches
generally require a massive database in order to achieve acceptable
performance. The database can be either obtained through the
tracking process (online) or offline [15, 16, 17, 18, 19]. Yang
et al. [16] proposed a discriminative model for the target’s
appearance based on the super-pixel algorithm for distinguishing
the target from its surrounding background. In the proposed
approach, tracking is done by calculating a confidence map
and finding the best candidate using a maximum a posteriori
probability (MAP). Zhang et al. [17] proposed a discriminative
feature selection algorithm in which the trained classifier directly
relates its scores with each samples’ importance. Then the trained
classifier is used for discriminating between the target and the
background. Furthermore, in order to make the algorithm robust
against target loss in the tracking process, a two-stage algorithm

for using the target’s information in the first frame and the acquired
online information is proposed. In [18] an algorithm with an
appearance model based on features extracted from the multi-scale
image feature space was proposed. A sparse measurement matrix
for feature extraction was used, and the tracking was done
with a binary classification utilizing a naive Bayes classifier
which is updated online. In [20], a tracking method based on
sparse representation in a particle filter framework is presented.
Discriminating the target from its background is achieved by
activating the target templates or the background templates in a
linear system in a competitive manner, and the target’s appearance
variations are directly modeled as the representation error. Qi et
al. [21] proposed a structure-aware local sparse coding algorithm
that encodes a target candidate using templates with both global
and local sparsity constraints. For robust tracking, they showed
local regions of a candidate region should be encoded only with
the corresponding local regions of the target templates that are
the most similar from the global view. Thus, a more precise and
discriminative sparse representation is obtained which accounts for
appearance changes.

3. PROPOSED ALGORITHM
3.1 Key Points
The feature extraction and the applications based on these features
are indispensable parts of computer vision and image processing
applications such as image-stitching and object recognition as
well as visual tracking. Features used for such applications are
usually extracted from particular regions of the image known as
interest points or key points. SURF [22] and SIFT [23] are among
feature detectors that are accompanied by their specific descriptors.
Features detected by these algorithms are scale-invariant, and
their corresponding descriptor makes them robust to rotation as
well. Despite the advantages of these algorithms, the computations
required for detecting SIFT features is demanding, and henceforth
these algorithms cannot be used in tracking applications effectively.
The computational burden for detecting the SURF features is less
demanding than the SIFT features, but it is still not applicable to
fields with time-critical conditions such as online tracking. Key
points specify salient regions in an image and can be obtained with
less computational complexity. Despite SIFT and SURF, corner
detectors only detect points and their corresponding positions. A
corner can be defined as a crossing of two edges or as a point
with two edges in its neighborhood with different directions. One
of the characteristics which are essential for corner detectors is
the ability to detect the same corner in many similar images
under different conditions such as illumination changes, pose,
and rotation variations. A corner detection procedure used in two
well-known corner detectors [24] and [25] (Harris and KLT) is as
follows:

(1) The gradient operator is applied in two directions x and y in
order to obtain Ix and Iy (i.e. using [-1 0 1] and [-1; 0; 1]
filters).

(2) Calculation of matrix A with the Gaussian mask is as follows:

A = ΣuΣvw(u, v)

[
I2x IxIy
IxIy I2y

]
=

[
I2x IxIy
IxIy I2y

]
(1)

where w(u, v) is as follows:

w(u, v) = exp− (u2 + v2)

2σ2
(2)
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 Fig. 1: Matching corner points (left: target corner points in frame t, middle: candidate corner points in frame t + 1, right: matched corner
points in frame t+ 1)

In order to calculate the corners, matrix A must have two
eigenvalues. If both eigenvalues are large and positive, then the
pixel under consideration is a corner.

A = Mc = λ1λ2 − k(λ1 + λ2)2 = det(A)− ktrace2(A) (3)

Where k is the sensitivity factor and by solving equation Eq.3 the
position of the feature point for Harris detector will be equivalent
to the local maximums. For the KLT corner detector, the position
of the corner is obtained by min(λ1, λ2)[25]

3.2 Sparse Representation
Sparse representation has shown its efficiency in many computer
vision applications, including image reconstruction, denoising,
pattern recognition, as well as tracking [26, 27, 28, 29]. By
assuming T = ti as a series of patches extracted from the target
centered at the detected key points which are represented as l2
normalized vectors. The candidate key points y which are obtained
by searching the current frame can be represented as a sparse linear
combination of the dictionary’s element of the target:

y ≈ Ta = a1t1 + a2t2 + ...+ antn (4)

Where the target coefficient vector is defined as a =
(a1, a2, · · · , an)T . Because of the destructive nature of noise
and occlusion, using y = Ta + ε will model these destructive
factors where ε is called the error vector, and its nonzero elements
specify any irregularity in the appearance caused by occlusion or
illumination variations. Therefore with the partial template I =
[i1, i2, . . . , id] ∈ Rd×d, the noise is removed and will result in:

y = [T, I]

[
a
e

]
, Bc s.t. c ≥ 0 (5)

The partial template I is equal to the identity matrix and e =
(e1, e2, · · · , ed)T ∈ Rd is the partial coefficient vector. The
above equation does not have a unique solution for c and with the
assumption that in every two consecutive frames, the changes in the
appearance of the object only affect a limited number of pixels in
the appearance model; therefore, limited nonzero e+ and e− would
exist, and a sparse solution is required for c. Therefore, for solving
this problem, the l1 regularized squared minimization problem is
used [29]:

min
ci
‖y −B ci‖22 s.t. ‖ci‖ ≤ λ (6)

Where ‖ . ‖1 and ‖ . ‖2 are `1 and `2 norms, respectively. In the
proposed tracker, the object under consideration will be tracked

by matching between the target feature points and the candidate
feature points. Candidate feature points that are crossly matched
with the target dictionary would be used for location estimation of
the object. Thus if n is assumed to be the number of feature points
in the current frame, only k of them would match the dictionary’s
atoms (k < n) in such a way that each target’s key point is
represented as a linear combination of the candidate key points:

tj = Y aj + ε = aj1y1 + · · ·+ ajnyn + cj1i1 + · · ·+ cjnin (7)

Therefore, the correct candidates can be obtained by finding the
maximum of the candidate dictionary’s coefficients aj . If aji
coefficient is matched with the candidate dictionary’s element
as the largest value, then tj key points of the target would be
chosen as the corresponding matched points (Fig. 1). In the tracker
proposed in reference [28] for removing wrong and noisy matches,
a recursive approach is used, where each candidate key point is
represented as a sparse linear combination of the target’s points,
and then the displacement of the target is calculated using the
median displacement vector. This vector is calculated as follows:

x = x0 +median(dxi) , dxi = xci − xti (8)

y = y0 +median(dyi) , dyi = yci − yti (9)

Where (x0, y0) is the position of the target in the last frame and
(dxi, dyi) are displacement vectors in x and y directions. In cases
where the number of matched points is not sufficient, the median of
the displacement vector does not show the right direction, and since
there is no memory model of the target, the tracking would fail. To
tackle this problem, an accurate target localization approach will be
used.

3.3 Accurate Localization
The displacement vector obtained from matched corners in the
first stage of the tracking (without considering the recursive stage)
specifies possible locations of the object since the median vector
does not formulate the object’s motion and therefore is not an
appropriate measure for determining the target’s location. Using the
target displacement vector, the target’s template can be represented
by the sparse representation of each new candidate target. This
process is similar to that used in the previous stage but with the
difference that the same target’s template is used here to utilize
most of the visual information. To do so, the target’s templates and
candidates are converted to the matrices with the same size as [20
by 20]. Target’s dictionary B with some partial templates is like
B = [B In − In]. Where I ∈ Rn×nis the identity matrix. As
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Fig. 2: Updating the target template using different coefficients (top image is the target template, and bottom images are the target templates
stored by different learning factors)

mentioned before, this approach is suitable for the removal of noise
and wrong information in the sparse representation framework.
The candidate dictionary Y can be obtained in the same similar
way. Then just as the previous stage, each image patch’s vector
in the candidate dictionary Y can be represented as a sparse linear
combination of template dictionary patches B. The performance
of the proposed algorithm can be improved by using the memory
model. In order to improve the robustness of the algorithm, the
proposed algorithm updates its target’s template with the changing
appearance of the target. Local patches and the whole template
is updated in this procedure. In order to tackle the deformation
challenge, five target templates were used, each of which is updated
with their related coefficient so that in the tracking process the
best target’s template is used for matching with the object being
changed (Fig. 2). Besides, the proposed update method enables the
proposed tracker to tackle challenges such as illumination changes
and changes in the target’s appearance and state. The target’s
template in the proposed algorithm is updated as follows:

ρt+1 = ρt(1− µ) + ψ(µ) (10)

Where ρt+1 is the acquired template model as the target in the
frame t + 1and µ is the update coefficient (learning rate) for the
target’s template and ψ is the target’s template acquired from the
current frame. In the final stage, after the calculation of sparse
codes related to each area bounded by interest point, now the
time for choosing the best candidate has come which is done by
comparing the value of M in the following formula:

M =

N∑
i=1

N∑
i=1

diag(Sparse Code Matrix) (11)

4. EXPERIMENTAL RESULTS
In this section, the performance of the proposed algorithm, along
with five other algorithms will be evaluated. For evaluation, the
dataset [30] designed for this aim is utilized, which has been
referenced by many pieces of research. The mentioned dataset
contains many challenges such as illumination variation, pose

variation, sudden movement of the target, and blurriness, which
makes it proper for trackers’ performance assessment. In total,
sixteen sequences namely, Subway, Fish, Man, Deer, David2,
Coupon, Crowds, Crossing, Blurcar4, Blurbody, Blurowl, Dudek,
Jumping, Skating1, Faceocc1, and Boy have been used for the
evaluation of the trackers’ performance which cover a wide range
of challenges. The default settings of each tracker were used
to have a fair comparison. Visual tracker IPT [28] which was
introduced previously as well as the tracker in [31] STC and
[32] also known as FCT and IVT [33] and finally [34] which is
briefly called VTD are compared with the proposed algorithm.
Qualitative and quantitative comparisons have been carried out
in order to illustrate the performance of the trackers. It is worth
mentioning that in order to remove any distrust in the correctness
of the simulation process of these algorithms the results of the VTD
algorithm are obtained from reference [34] and the other algorithms
are obtained from the respective author(s)’ personal website. To
solve the `1 minimization problem, a package called SPAMS [35]
which is implemented in MATLAB is used with the regularization
parameter set to λ = 0.15 for all experiments. As it was stated
before, target’s templates of size [20 20] and patches of size [5 5]
are used for sparse representation leading to 16 feature vectors for
each candidate. The proposed algorithm has been implemented in
Matlab on an Intel 2.4 GHz Corei7 with 6 GB memory machine,
which runs at 7.9 frames/sec. In order to compare and assess the
performance of the proposed algorithm, qualitative and quantitative
evaluations will be utilized.

4.1 Qualitative Evaluations
In the qualitative evaluation, visual comparisons of the tracked
region (i.e., the bounded area for target representation) amongst
different algorithms are made. The closer the tracked area
to the reference target, the more robust will be the tracker
under consideration. Fig. 3 shows qualitative comparisons of the
proposed tracker along with five trackers. Sequences should be
categorized based on the type of destructive factors that are
associated with them to evaluate the weakness and strength of
the trackers. For this task, nine different attributes have been
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Fig. 3: Qualitative evaluation of trackers (sequences from top to bottom: subway, fish, man, deer, david2, coupon, crowds, crossing, blurcar4)

assigned to the related sequences, and one sequence can have up
to six attributes. Table 1 illustrates the challenges associated with

each sequence. Illumination Variation (IV) and Scale Variation
(SV) indicate that the illumination and the scale of the desired
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Fig. 4: Quantitative evaluation of trackers using Center Error Pixels (from left to right: 1st row: Subway, Fish, Man. 2nd row: Deer, david2,
Coupon. 3rd row: Crowds, Crossing, Blurcar4.)

object in the target region that is shown with a bounding box are
changed significantly. For instance, Fish is designed especially for
examining trackers when the illumination varies in consecutive
frames. In the following, Occlusion (OCC) and Deformation (DEF)
are the most challenging destructive factors when the target is
partially or fully occluded and the non-rigid object has undergone
deformation respectively. Fast Motion (FM) and Motion Blur (MB)
are prevalent phenomena in the dataset and are linked together
in a way that the direct result of the abrupt motion of the object
is blurriness. In-Plane-Rotation (IPR) and Out-of-Plane-Rotation
(OPR) can also have a damaging effect on the sequences and occur
when the target rotates in the image plane and out of the image
plane respectively. Background Clutters (BC) is the last attribute
and occurs when the background near the target has a similar color
or texture as the target. The coupon is a perfect example that tests
the trackers when the duplicate of the same object exists.
As Fig. 3 illustrates the Proposed algorithm exhibits a fine
performance in comparison with other tracking algorithms,
especially in challenging scenes such as Deer and Bluecar4 which

Table 1. : Attributes of the Sequences [30]

Factor Sequences
IV Fish, Man, Crowds, Skating1
SV Crossing, Blurowl, Dudek, Skating1

OCC Subway, Coupon, Dudek, Skating1, FaceOcc1
DEF Subway, Crowds, Crossing, BlurBody, Dudek, Skating1
MB Deer, BlurCar4, BlurBody, Blurowl, Jumping, Boy
FM Deer, BlurCar4, BlurBody, Blurowl, Dudek, Jumping, Boy
IPR Deer, David2, BlurBody, Blurowl, Dudek, Boy
OPR David2, Dudek, Skating1, Boy
BC Subway, Deer, Coupon, Crowds, Crossing, Dudek, Skating1

are known for the fast motion and motion blur. It should be noted
that one of the advantages of the proposed approach is to use
the different target templates to handle various shape deformation
of the target in the aforementioned sequences. Moreover, Subway
which undergoes drastic occlusion is also a challenging case for
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Fig. 5: Quantitative evaluation of trackers using overlap ratio rate (from left to right: 1st row: Subway, Fish, Man. 2nd row: Deer, david2,
Coupon. 3rd row: Crowds, Crossing, Blurcar4.)

all of the trackers, and the performance of the proposed tracker
has shown favorable results in this regard which outperforms its
counterparts.

4.2 Quantitative Evaluations
In quantitative evaluation, several measures can be used which
one of the common measures is Center Error. In fact, the distance
between the center of the tracked region in each frame and center
of the target’s region in the given dataset will be determined. The
less this distance, the better performance of the tracker. Another
measure that is used is the overlap ratio of the tracker which
calculates the intersection between the tracked region and target
of interest provided by the dataset. This measure will be presented
by a diagram whose vertical axis illustrates this value, which is
between 0 and 1, and the horizontal values correspond to the
tracked frames. If ra equals to the tracked region by the proposed
algorithm and rb equals to the target region provided by dataset,
then G = |ra

⋂
rb |

|ra
⋃

rb |
which ∩ and ∪ are intersection and union

of the regions respectively, and | . | equals the number of pixels.
G is equal to the overlap rate in each frame. Fig. 4 and Fig. 5
illustrate diagrams of the center error pixels and overlap rate. Also,

the average values of the center error and overlap rate for more
and diverse sequences are given in Table 2 and Table 3 for which
the best result is shown by red and the second-best value is shown
by blue. As the Figure. 4 and Fig. 5 suggest, IPT has the weakest
performance among other trackers and the reason lies in the fact
that the mentioned algorithm lacks a proper target model leading
to losing the object during the process, and this is also reflected
in both tables, where the amount of center error and overlap rate
is measured. In fact, the proposed tracker relies on the authentic
target template approach which takes occlusion, motion blur, and
deformation and or any destructive factor into account by using a
memory model and a large search space that makes the algorithm
resistant to losing the target in comparison with its most similar
tracker (i.e., IPT).

5. CONCLUSION
In this paper, a visual tracking algorithm based on corner
feature points and sparse representation is proposed. The proposed
algorithm comprises a two-stage tracking procedure, which in the
first stage, the approximate location of the target, and in the second
stage, the exact location of the target will be determined. As is
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Table 2. : Average values of the center error

Sequence Proposed IPT STC FCT IVT VTD
Subway 7.596 116.0 1244 9.562 119.5 141.3

Fish 4.819 26.55 3.977 10.47 5.384 16.79
Man 5.650 15.25 1.495 4.321 2.502 22.48
Deer 8.328 64.78 401.9 9.507 241.1 134.8

David2 6.763 32.67 5.577 10.08 1.426 2.855
Coupon 5.545 63.2 2.29 18.72 11.39 10.65
Crowds 5.816 1.170 6.14 459.1 396.8 447.3
Crossing 5.737 33.3 34.0 3.155 2.838 26.12
Blurcar4 6.286 79.1 475 196.2 134.1 185.2
Blurbody 12.432 36.927 148.033 35.095 162.792 146.9
Blurowl 29.681 81.568 50.092 117.666 112.609 252.297
Dudek 14.631 19.812 25.403 33.2 13.7315 10.296

Jumping 27.674 103.846 67.288 39.2085 12.031 41.387
Skating1 18.583 61.973 63.498 152.468 145.973 9.347
Faceocc1 27.264 63.612 31.985 35.591 16.810 20.202

Boy 9.145 32.888 25.920 7.2329 45.376 7.573

Table 3. : Average values of overlap rate

Sequence Proposed IPT STC FCT IVT VTD
Subway 0.759 0.116 0.242 0.602 0.163 0.156

Fish 0.825 0.558 0.510 0.692 0.669 0.556
Man 0.846 0.632 0.871 0.709 0.765 0.302
Deer 0.756 0.272 0.040 0.675 0.017 0.057

David2 0.847 0.481 0.588 0.474 0.696 0.685
Coupon 0.914 0.368 0.841 0.609 0.696 0.644
Crowds 0.687 0.612 0.523 0.043 0.089 0.024
Crossing 0.626 0.240 0.248 0.693 0.293 0.316
Blurcar4 0.745 0.410 0.134 0.055 0.144 0.072
Blurbody 0.791 0.560 0.1613 0.4716 0.0845 0.2362
Blurowl 0.523 0.328 0.1383 0.1363 0.0531 0.0482
Dudek 0.725 0.684 0.5874 0.5959 0.7478 0.799

Jumping 0.356 0.215 0.0693 0.1927 0.4351 0.1232
Skating1 0.8012 0.380 0.3513 0.1282 0.0799 0.525
Faceocc1 0.648 0.284 0.584 0.547 0.753 0.683

Boy 0.584 0.317 0.543 0.6138 0.2706 0.6257

said, the first stage contains the determination of the approximate
location of the target using corner points and sparse representation,
i.e., matching corner points in the current frame and achieving the
displacement vector. By using the displacement vector obtained
from the previous stage of tracking, some candidate regions will
be extracted and then by using the sparse representation of the
target template which is updated by different learning factors as
a dictionary, the exact location of the target will be determined by
considering the most similar candidate to the target template. As
mentioned, a memory’s model for the target’s template is utilized in
order to cope with challenges like illumination changes, occlusion,
motion blur, etc. Experimental results indicate that the proposed
algorithm has favorable results in comparison with other trackers.
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