
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 6, November 2013

14

An Empirical Study of HTML5 Websockets and their Cross

Browser Behaviour for Mixed Content and Untrusted

Certificates

Achin Kulshrestha

ABSTRACT

Websockets allow a full duplex connection to be made over a

single socket between the client and the server. Today,

Websockets is a finished standard and has greatly helped

modern web applications to achieve real time communication

without any overhead of sending HTTP headers with every

request. This research provides an overview of the Websocket

protocol and API, and focuses on the state of Websocket

security. The research also aims to explicate behavior of

different browser implementations of Websockets when

delivering mixed content (ws/https) and the browser response

when an untrusted certificate is encountered while making a

secure Websocket connection. The crux of this paper is to

analyze at the grassroots security concerns pertaining to

Websockets and discuss best practices for secure deployment.

Keywords

HTML5, HTTP, Mixed Content, Security, Websockets.

1. INTRODUCTION
Normally when a user accesses a URL, the browser sends a

HTTP request to the corresponding web server hosting the

page. The web server processes the request and sends back the

response. Once the browser has received the response, it is

rendered on the DOM. However, today is the age of

information accessed in “real-time” whether it is sports

updates, stock prices or movie ticket sales and it is necessary

that this information has to be updated on the user’s client

device without him/her refreshing the browser page.

Previously, attempts to provide data in real time was achieved

by methods of long-polling and server side push technologies

such as Comet. Since, all these technologies involved HTTP

request and response headers to be sent with each polling

request, it was an overhead to send unnecessary header data

with each request leading to increase in latency. Websockets

provided an approach to carry out a full duplex

communication without any overhead of http headers and that

translates to some serious performance improvements,

especially for applications requiring fast real-time updates.

Simply put, HTTP was designed to be a stateless protocol and

not for real-time, full-duplex communication. And that is

when Websockets were brought into existence.

2. THE WEBSOCKET PROTOCOL AT

THE GRASSROOTS
HTML5 Websockets allow up streaming and down streaming

connections with the server over a single TCP connection and

therefore place less overhead on servers, as the same machine

can support concurrent connections. The Websocket protocol

was designed to accommodate the existing infrastructure on

which Web functions. The Websocket connection uses the

same ports as HTTP (80) and HTTPS (443) that provides it

the ability to traverse firewalls and proxies without any

problems.

The RFC6455 [1] defines the specification of the Websocket

protocol standard. As part of the design principle to keep it

compatible with the existing state of web, the protocol

specification defines that the Websocket connection would

start with a handshake which marks a protocol switch from

HTTP to Websocket. The browser sends a Websocket request

to the server (ws:// or wss://), indicating to the server that it

wants to switch protocols from HTTP to Websocket. The

server gets to know about this through the Upgrade header

which is sent along with the connection request:

GET ws://example.com/?encoding=text HTTP/1.1

Origin: http://example.com

Cookie: __ASWE1241

Connection: Upgrade

Host: example.com

Sec-Websocket-Key: KJsdnkjwqel12ee454==

Upgrade: Websocket Sec-Websocket-Version: 13

If the server also has the knowledge of Websocket protocol, it

agrees upon switching the protocol from HTTP to Websocket.

HTTP/1.1 101 Websocket Protocol Handshake

Connection: Upgrade

Server: Websocket-Server

Upgrade: Websocket

Access-Control-Allow-Origin: http://Websocket.org

Access-Control-Allow-Credentials: true

Sec-Websocket-Accept: hAKDSL/WEKAldmQWmasdsAS=

Access-Control-Allow-Headers: content-type

After the handshake is complete the HTTP connection is

replaced by the Websocket connection over the same TCP

channel. Once the connection has been established, a full

duplex communication is created between the client and the

server and exchange of data frames continues.

2.1 Websocket Javascript API
Almost all Modern browsers support Websockets. A new

webscoket connection can be made to the Websocket server

by calling the Websocket constructor

var connection = new Websocket('ws://example.org')

One can also use wss://, which is the secure socket variant to

ws:// in the same way https is to http.

var connection = new Websocket('wss://secure.example.org’);

If your connection is accepted and established by the server,

then an onopen event is fired on the client’s side. On the client

side it can be handled as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 6, November 2013

15

connection.onopen = function(){ console.log('Connection is

now open!');}

If the connection is refused by the server, or for some other

reason is closed, then the onclose event is fired.

connection.onclose = function(){console.log('Connection has

been closed');}

The connection can also be explicitly closed.

connection.close();

In case of any errors, errors can be handled using the onerror

event.

connection.onerror = function(error){console.log('Error ' +

error);

Sending and Receiving Messages

Once a connection is successfully opened to the server,

messages can be sent and received from the server.

The .send() method of the browser Websocket API can be

used to create a connection object.

connection.send(‘hello world');

Should the client receive a message from the server, it raises

the onmessage event which can be handled

connection.onmessage = function(e){

 var server_message = e.data;

 }

JSON objects can also be sent to the server rather than simple

messages. However, they should be serialized to a string, like

so:

var message = {

'name': 'deadbeef',

'job': ‘roller coster’

};

2.2 Websocket Frames
After a successful handshake, the application and the

Websocket server may exchange Websocket messages. A

message is composed as a sequence of one or more message

fragments or data “frames.”

Each frame includes information such as(Shown in Fig 1):

 Frame length

 Type of message (binary or text) in the first frame in

the message

 A flag (FIN) indicating whether this is the last

frame in the message

Fig 1 Websocket Frames

3. BROWSER BEHAVIOUR FOR

MIXED CONTENT – WEBSOCKETS
When using SSL, the connection between the two endpoints

(the web server and the browser) are encrypted and hence

protected from sniffers and MITM attacks. However, if there

is any content inside the HTTPS page that is being fetched

through regular, cleartext HTTP then the connection is only

partially encrypted as the non-https content can be easily

sniffed and modified by anyone who can act as a man in the

middle. So even though the browser would designate the

website as secure by showing gray padlock or green padlock

in the address bar, it actually isn’t. As per RFC6455 [6], if the

application origin is secure that is HTTPS, then if an insecure

Websocket connection is attempted then a security exception

has to be thrown. Mixed content handling by Websockets

differs slightly for different browsers. Following is an analysis

for different browser behaviours for dealing with mixed

content.

3.1 BROWSER BEHAVIOUR - HTTPS

AND INSECURE WEBSOCKETS(WS://)
Table 1. Browser Analysis – Mixed Content

Tests Chrome

27 on

Windows

Safari 5.1.7 Firefox 21

Is a

Websocket

insecure

(ws://)

connection

allowed from

a HTTPS

origin which

made the

request?

Yes,

chrome

allows a

ws://

connectio

n to be

made

from an

https://

origin

Yes, Safari

allows the

connection

No, it is not

allowed by

default. A

setting has to

be changed

“network.We

bsocket.allow

InsecureFrom

HTTPS =

True.”

By default, is

any security

warnings

showed if

mixed

connections

(HTTPS/WS:

//) are made?

No,

chrome

doesn’t

show any

Websock

et related

warnings

No error or

warning is

shown

Yes, Firefox

shows an

error

“SecurityErro

r: The

operation is

insecure.”

Table 2. Browser Analysis – Other Browsers Variants

Tests Chrome 25

on Android

(Jelly Bean)

Firefox on

Android

IE10 10.0

Is a Websocket

insecure (ws://)
connection

allowed from a

HTTPS origin
which made

the request?

Yes, chrome

allows a ws://
connection to

be made from

an https://
origin

No, it is not

allowed by
default.

Not allowed.

By default, is

any security
warnings

showed if
mixed

connections

(HTTPS/WS://
) are made?

No N/A Yes, Error is

shown”
SCRIPT5022:

SecurityError”

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 6, November 2013

16

4. BROWSER BEHAVIOR FOR

UNTRUSTED CERTIFICATES –

SECURE WEBSOCKET CONNECTIONS
Following is an analysis of different browser behaviours when

untrusted certificates are encountered while making WSS

connection.

Table 3 Browser Analysis – Untrusted Certificates

Tests Chrome

27 on

Windows

Firefox 21 Safari 5.1.7

Is a

connection

allowed to be

made using

an untrusted

certificate?

No, the

connectio

n is

dropped,

certificate

has to be

added to

the

trusted

list

No, the

connection is

dropped,

certificate has to

be added to the

trusted list

No, the

connection is

dropped,

certificate

has to be

added to the

trusted list

Does the

browser

show any

error for an

untrusted

certificate

when making

a wss

connection?

No No No

Table 4 Browser Analysis – Other browser Variants

Tests Chrome

on

Android

(Jelly

Bean)

Firefox on

Android

IE10 10.0

Is a

connection

allowed to be

made using

an untrusted

certificate?

No, the

connectio

n is

dropped,

certificate

has to be

added to

the

trusted

list

No, the

connection is

dropped,

certificate has to

be added to the

trusted list

No, the

connection is

dropped,

certificate

has to be

added to the

trusted list

Does the

browser

show any

error for an

untrusted

certificate

when making

a wss

connection?

No No Yes, Error

shown is

“SCRIPT120

38:

Websocket

Error:

Network

Error 12038,

The host

name in the

certificate is

invalid or

does not

match or

certificate is

invalid”

5. THE STATE OF WEBSOCKET

SECURITY
The RFC 6455 of the Websocket protocol states that “The

Websocket Protocol enables two-way communication

between a client running untrusted code in a controlled

environment to a remote host that has opted-in to

communications from that code.”

Although the Websocket protocol differs from HTTP in

various ways, Most of the issues relevant to HTTP based web

application such as MITM, authentication and authorization

are relevant to Websockets as well. Also unlike HTTP,

Websocket messages do not include HTTP headers. This may

affect the behavior of web proxies and firewalls as most of

them do some amount of packet inspection by identifying the

headers. Security issues that may arise while using Websocket

protocol are described in more detail in the following sections.

5.1 Websocket handshake
The most critical part of a Websocket connection is the

handshake and most of the times; the real purpose of the

handshake is misinterpreted by application developers. A

Websocket handshake just defines the establishment of a

mutual agreement between the client and the server; it is not

at all intended to prove trust or identity. For

authentication/authorization of end points either the implicit

authentication mechanisms like Basic authentication or

cookies can be employed. Another option is use a challenge

response kind of mechanism to prove authenticity.

5.2 Websockets and the Same Origin

Policy
The Websocket API allows making request cross domain to

any server. This is a useful mechanism for app developers as

it allows for communication between two completely different

services. The parameter which allows a server to decide to

whether allow/disallow the connection request is the Origin

header. The data frames of Websockets do not include the

HTTP headers, so the origin header is sent to the server during

the Switch protocol and upgrade HTTP request. The onus lies

with the server to verify the origin header. Despite this

verification check, it is always possible for the attacker to

spoof the origin header and connect to the server. However,

verification is worth the risk as it protects the server against

Cross Site Request Forgery attacks [2].

The Origin header can be considered analogous to the X-

Requested-With [3] header used while making AJAX

requests. Web browsers send a header of X-Requested-With:

XMLHttpRequest which is used to identify AJAX requests

made by a browser and those made directly. However, this

header can be easily set by non-browser clients. In a nutshell,

the Origin header can be used to differentiate Websocket

requests from different locations and hosts they should be

used a medium of authenticating the source.

5.3 Denial of Service Attacks using

Websockets
The slowloris attack [4] allowed keeping many connections

open to the target web server and holding them open as long

as possible. This feat is accomplished by sending partial http

requests to the web server. Since every Websocket connection

is persistent, slowloris can be applied to it as well. Moreover,

the specification says that for the client, only one handshake is

required per origin and multiple Websocket connections can

be made. Therefore any server which doesn’t have effective

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 6, November 2013

17

thread management capabilities would be susceptible to these

kinds of attacks.

5.4 Websockets Data frame security
Websockets have been made to solve connection problems

only. The specification does not provide any information

about data validation and authentication. A Websocket

server should never blindly trust any data coming from the

client. A defensive strategy [5] for handling data frames have

to be kept in mind while consuming any data on the server

side. These include:

 Verify payload lengths to avoid buffer overflows

and under runs

 Avoid resource exhaustion. For example, allocation

of memory without checking the size of the input

buffer.

 Out of sequence data

 Client sending messages in wrong order.

If any invalid data is received, the connection should be

closed after sending close frames. The same approach applies

to the client as well for any data that is being received from

the server.

6. WEBSOCKET IMPLEMENTATION

CONSIDERATION

6.1 Restrict the browser’s resources using

CSP
Content Security policy [7] is an added layer of security

which acts as a blacklisting/Whitelisting for resources loaded

by web applications. On the web, the CSP policy can be

implemented via a HTTP header or a meta element. Similar to

HTTP, a Websocket endpoint is defined by a URL which

means origin-based security can be applied. With the help of

CSP, we can restrict all script resources to be loaded from

authorized sources. Also Websockets and XHR connections

can be restricted using the connect-src attribute.

 script-src ‘self’ – Load scripts only from the same

origin

 script-src https://example.com – allow scripts to be

loaded from a particular origin

 connect-src wss://example.com

6.2 Connect with WSS:// scheme
The Websocket communication channel can be encrypted the

same way TLS is used to encrypt HTTP, using certificates. A

WSS communication begins with an establishment of a TLS

handshake and then the protocol is upgraded to Websockets.

A variety of attacks against Websockets become impossible

such as MITM if the transport is secured.

6.3 The client is not trustworthy
It is possible that Websocket connections are established

outside the purview of a browser. So the server side

Websocket implementation should be robust enough to handle

arbitrary data. Injection attacks are just as possible over

Websockets as they are over HTTP. Also verify the origin

header matches the expected value.

6.4 Validate data from the server
Equal validation has to be applied to any data received from

the server. All data has to be encoded in proper format before

inserting to the DOM and no code has to be evaluated

directly. In most of the contemporary web application, JSON

is used for sending/receiving data. Use JSON.parse [8] to

parse the data securely.

6.5 HTML5 Security Cheat Sheet
Below are the general guidelines for the safe deployment of a

web application utilizing WebSockets. The list is based on the

guidelines placed by the HTML5 Security Cheat Sheet [9]

 Recommended protocol version is versions above hybi-

00. Popular Hixie-76 version (hiby-00) and older are

outdated and insecure.

 Recommended version supported in latest versions of all

current browsers is RFC 6455 (Supported by Firefox

11+, Chrome 16+, Safari 6, Opera 12.50 and IE10).

 XSS vulnerabilities may exist and usage of TCP services

through WebSockets such as VNC, FTP can act as a

backdoor.

 Websockets don't handle authorization and/or

authentication. Application-level protocols should handle

that separately as per the need.

 Process the messages received by the websocket as data.

It should not be assigned to DOM directly or evaluated.

For JSON response never use the insecure eval()

function, use the safe option JSON.parse() instead.

 Use Secure Websockets WSS://

 Spoofing the client is possible outside browser, so

WebSockets server should be able to handle

incorrect/malicious input. Validation of input coming

from the remote site is important, as it might have been

altered.

 When implementing servers, check the Origin: header in

Websockets handshake. Though it might be spoofed

outside browser, browsers always add the Origin of the

page which initiated Websockets connection. This can

also help in Prevent CSRF attacks.

7. CONCLUSIONS
Websockets is a relatively new technology and being a

modern protocol, cross origin communication is embedded

right inside them. While we can always make sure that we are

communicating with trusted clients and servers, but

Websocket does provide the flexibility to communicate

between parties on any domain. This has made Websockets a

very powerful piece of technology for real time application.

At the same time it is important that security risks that

Websockets are considered while developing applications and

security mechanisms pertaining to authentication and

authorization are put in place. Most importantly, Websockets

have been designed to solve communication problems not

security problems.

8. REFERENCES
[1] I. Fette and A. Melnikov, 2011, The WebSocket Protocol

RFC 6455 Websocket Specification, Internet Engg. Task

Force, URL: http://tools.ietf.org/html/rfc6455

[2] Jussi-Pekka Erkkilä, The Websocket security analysis,

Aalto University School of Science, 2012,URL

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 6, November 2013

18

"http://juerkkil.iki.fi/files/writings/Websocket2012.pdf",

pp 2-3

[3] Adam Barth, Collin Jackson and John C. Mitchell,

Robust Defenses for Cross-Site Request Forgery, CCS,

2008, pp 6-7

[4] Slowloris attack and tool, http://ckers.org/slowloris/

[5] Mike Shema, Using HTML5 Websockets Securely, URL

"http://deadliestwebattacks.files.wordpress.com/2013/03/

asec-f41-mike-shema.pdf", 2013

[6] The Web Socket API, W3c Working Draft

http://dev.w3.org/html5/Websockets/#the-Websocket-

interface, 2009

[7] Joel Weinberger, Adam Barth, Dawn Song, Towards

Client-side HTML Security Policies URL

"https://www.usenix.org/legacy/event/hotsec11/tech/final

_files/Weinberger.pdf4", pp 3-4, CCS 2008

[8] Json.parse, msdn, http://msdn.microsoft.com/en-

us/library/ie/cc836466(v=vs.94).aspx.

[9] Websockets- HTML5 Security Cheat Sheet, URL

https://www.owasp.org/index.php/HTML5_Security_Ch

eat_Sheet.

IJCATM: www.ijcaonline.org

http://msdn.microsoft.com/en-us/library/ie/cc836466(v=vs.94).aspx
http://msdn.microsoft.com/en-us/library/ie/cc836466(v=vs.94).aspx

