

Corrigendum

Removal of reactive azo dye using platinum-coated titanium electrodes with the electro-oxidation process*

Gökçe Didar Değermenci

Department of Environmental Engineering, Kastamonu University, Kastamonu 37150, Turkey email: gdegermenci@kastamonu.edu.tr/gokcendidar@gmail.com

Received 20 July 2020; Accepted 21 December 2020

The original version of the above article was published with errors in the order of Figures 1 to 6. The correct order of figures is as below.

The author apologizes for any confusion caused. The original article has been updated.

Fig. 1. Effect of current density on dye removal (C_0 = 100 mg/L, pH= 7, T= 20°C, Electrolyte= 0.5 g/L NaCl).

Fig. 2. Effect of NaCl concentration on dye removal (C_0 =100 mg/L, pH= 7, T= 20°C, J= 1.74 mA/cm²).

1944-3994 / 1944-3986 © 2023 Desalination Publications. All rights reserved.

^{*}Published in *Desalination and Water Treatment*, Volume 218, April 2021, pp. 436–443 doi number of the original article is 10.5004/dwt.2021.26981

Fig. 3. Effect of electrolyte type on dye removal (C_0 = 100 mg/L, pH = 7, *T* = 20°C, *J* = 1.74 mA/cm², Electrolyte = 4 g/L).

Fig. 5. Effect of initial dye concentration on dye removal (pH = 7, $T = 20^{\circ}$ C, Electrolyte = 4 g/L NaCl, $J = 1.74 \text{ mA/cm}^2$).

Fig. 4. Effect of pH on dye removal (C_0 = 100 mg/L, T = 20°C, Electrolyte = 4 g/L NaCl, J = 1.74 mA/cm²).

Fig. 6. Effect of temperature on dye removal (pH=7, C_0 =200 mg/L, Electrolyte = 4 g/L NaCl, J = 1.74 mA/cm²).