

Physicochemical characterization of La-doped $g-C_3N_4$ for degradation of phenol and organic dye

A. Bouzidi^a, Mai S.A. Hussien^{b,c}, Hisham S.M. Abd-Rabboh^{d,e}, Ayman A.H. Abdelrhim^{d,f}, I.S. Yahia^{c,g,h}, Nasser S. Awwad^{d,*}

^aResearch Unit, Physics of Insulating and Semi-insulating Materials, Faculty of Sciences, University of Sfax, B.P. 1171, 3000 Sfax, Tunisia, email: bouzidi.abdelfatteh@yahoo.fr (A. Bouzidi)
^bDepartment of Chemistry, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo, Egypt, email: maisalehamar@gmail.com (M.S.A. Hussien)
^cNanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Laboratory and Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo, Egypt, email: dr_isyahia@yahoo.com (I.S. Yahia)
^dDepartment of Chemistry, Faculty of Science, King Khalid University, P.O. Box: 9004, Abha, Saudi Arabia, Tel. +966 549323204; emails: aawvad@kku.edu.sa (N.S. Awwad), hasalah@hotmail.com (H.S.M. Abd-Rabboh), aymanabdelrhim@gmail.com (Ayman A.H. Abdelrhim)
^eDepartment of Chemistry, Faculty of Science, Ain Shams University, Abbassia, 11566 Cairo, Egypt
^fDepartment of Industrial Design–Faculty of Applied Arts–Damietta University, Damietta, Egypt
^sAdvanced Functional Materials and Optoelectronic Laboratory, Department of Physics, Faculty of Science, King Khalid University, P.O. Box: 9004, Abha, Saudi Arabia
^hResearch Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, P.O. Box: 9004, Saudi Arabia

Received 3 September 2019; Accepted 9 June 2020

ABSTRACT

A series of La-doped (0.001–1 g) graphitic carbon nitride $(g-C_3N_4)$ samples was prepared through the air atmospheric pyrolysis of melamine. Different analytical techniques were employed to characterize the structural, morphological, optical, and photocatalytic properties of both pure and doped $g-C_3N_4$ samples. The phase structures of pure and La-doped $g-C_3N_4$ samples were revealed by X-ray diffraction. The scanning electron microscopy analysis expressed that the well-defined particle shape became ambiguous, and the particle size gradually decreased with the increasing doping amount of La nitrate ions. Due to La doping on $g-C_3N_4$, the optical properties of the samples were improved. In comparison to pure $g-C_3N_4$, La-doped $g-C_3N_4$ manifested higher photocatalytic degradation efficiency toward methylene blue (MB) and phenol under visible light irradiation.

Keywords: Graphitic carbon nitride; Photocatalytic efficiency; Pyrolysis; La nitrate ions; Phenol; Methylene blue

* Corresponding author.

1944-3994/1944-3986 $\ensuremath{\mathbb{C}}$ 2020 Desalination Publications. All rights reserved.