

Mitigation of biofouling in forward osmosis process by bacteria-oriented quorum quenching molecules

Seung-Ju Choi^a, Duksoo Jang^a, Jung-Kee Lee^b, Yeo-Myeong Yun^a, Seoktae Kang^{a,*}

^aDepartment of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea, Tel. +82 42 350 3635; Fax: +82 42 350 3610; email: stkang@kaist.ac.kr (S. Kang) ^bDepartment of Biomedicinal Science and Biotechnology, Paichai University, Daejeon, 35345, Korea

Received 27 August 2017; Accepted 28 October 2017

ABSTRACT

In this study, the intervention of bacterial communication or quorum quenching (QQ) technique has been investigated to mitigate biofouling in forward osmosis (FO) membrane processes. The 10 mg-C/L lysate of QQ enzyme-producing *Rhodococcus* sp. BH4 successfully degraded 79% of the bacterial signal molecule (*N*-acyl homoserine lactone, AHL). In a continuous lab-scale FO experiment using *Pseudomonas aeruginosa* PAO1 as a model bio-foulant, flux recovery after physical cleaning was higher in the presence of 10 mg/L of *Rhodococcus* lysate. The retardation of biofouling in the presence of *Rhodococcus* lysate was largely due to the reduced amount of bio-volume and extracellular polymeric substances (EPS), which were reduced by 68% and 75% compared with the control. In conclusion, the application of bacteria-oriented QQ molecules could be the potential solution not only to mitigate biofouling but also to meet the economic demands.

Keywords: Biofouling; Quorum sensing; Quorum quenching; *Rhodococcus* sp.; Extracellular polymeric substances

* Corresponding author.