METACOGNITION AND CHEMICAL EDUCATION: AN EXPERIENCE IN TEACHING GEOMETRICAL ISOMERISM

DOI: 10.48127/gu-nse/13.10.17a

Author's Information
Author Institutional affilation - Country Author's Email Author's ORCID

Solange W. Locatelli
Agnaldo Arroio

University of São Paulo - Brazil
University of São Paulo - Brazil

sol.locatelli@gmail.com
agnaldoarroio@yahoo.com

0000-0002-7639-6772
0000-0001-9242-5337


Volume/Issue :
Volume 10
,
Issue 2


Article type :

Original article


Page No :

18-26


Abstract :

The purpose of the work presented is to analyze a way to introduce the concept of geometrical isomerism within a metacognitive perspective. This research was conducted with six students from high school, whose task was to build and distinguish geometric isomers with models made of plastic balls. The results indicate that this type of activity was favorable for expression of metacognition and metavisualization and, to some extent; this may have helped the students to identify the cis and trans isomers, allowing the construction of the initial concept of geometrical isomerism. Furthermore, there was the identification of other factors that affected the development of the task, in particular, the visual skills that seem very important for the student to become metavisual.


Keywords :

geometric isomerism, metacognition, metavisualization, visual ability visualization


References :

Anderson, D., Nashon, S., & Thomas, G. P. (2009). Evolution of research methods for probing and understanding metacognition. Research in Science Education, 39, 181–195.
Chang, R. (1994). Química (5.a Ed.). Portugal: McGraw-Hill.
Chiara, V. L., Silva, R., Jorge, R., & Brasil, A. P. (2002). Ácidos graxos trans: doenças cardiovasculares e saúde materno-infantil. Revista Nutrição, 15 (3), 341–349.
Chiu, J. L., & Linn, M. C. (2012). The role of self-monitoring in learning chemistry with dy-namic visualizations. Metacognition in Science Education: trends in current research, 40, 133-163.
Ferk, V., Vrtacnik, M., Blejec, A., & Gril, A. (2003). Student’s understanding of molecular structure representations. International Journal of Science Education, 25 (10), 1227–1245.
Flavell, J. H. (1976). Metacognitive aspects of problem solving. Em L. B. Resnick (Orgs), The nature of intelligence. Hillsdale, N.Y.: Erlbau, 231–235.
Gilbert, J. K. (2005). Visualization: A Metacognitive Skill in Science and Science Education. In J. K. Gilbert (Eds.) Visualization in Science Education. Holland: Springer, 9–27.
Gilbert, J. K., Reiner, M., & Nakleh, M. (2008). Introduction. In J. K. Gilbert et al (Eds.) Vis-ualization: Theory and Practice in Science Education, Holland: Springer, 1–24.
Locatelli, S., Ferreira, C., & Arroio, A. (2010). Metavisualization: an important skill in the learning chemistry. Problems of Education in the 21st Century, 24, 75–83.
Locatelli, S. (2011). A análise da manifestação de elementos de metavisualização na aprendizagem de Química. 155p. Dissertação – Universidade de São Paulo, São Paulo.
Parolo, M. E., Barbieri, L. M., & Chrobak, R. (2004). La metacognición y el mejoramiento de la enseñanza de química universitaria. Enseñanza de las ciencias, 22 (1), 79–92.
Rickey, D., & Stacy, A. M. (2000). The role of metacognition in learning chemistry. Journal of Chemical Education, 77 (7), 915–920.
Santos, W. L. P., & Mortimer, E. F. (2002). Uma análise de pressupostos teóricos da aborda-gem C-T-S (Ciência – Tecnologia – Sociedade) no contexto da educação brasileira. Ensaio, Pesquisa em Educação em Ciências, 2 (2), 1–23.
Veenman, M. V. J., Prins, F. J., & Verheij, J. (2003). Learning styles: Self-reports versus thinking aloud measures. British Journal of Educational Psychology, 73, 357–372.
Wu, H., & Shah, P. (2004). Exploring visuospatial thinking in chemistry learning. Science Education, 88, 465–492.



Cite as :

Locatelli, S., & Arroio, A. (2013). Metacognition and chemical education: An experience in teaching geometrical isomerism. Gamtamokslinis ugdymas / Natural Science Education, 10(2), 18-26. https://doi.org/10.48127/gu-nse/13.10.17a