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Abstract—In this fundamental work, higher derivatives of 

the standard Nield-Kuznetsov function of the first kind, 

and the polynomials arising from this function and Airy’s 

functions, are derived and discussed. This work provides 

background theoretical material and computational 

procedures for the arising polynomials and the higher 

derivatives of the recently introduced Nield-Kuznetsov 

function, which has filled a gap that existed in the 

literature since the nineteenth century. The ease by which 

the inhomogeneous Airy’s equation can now be solved is 

an advantage offered by the Nield-Kuznetsov functions. 

The current analysis might prove to be invaluable in the 

study of inhomogeneous Schrodinger, Tricomi, and Spark 

ordinary differential equations. 

 
Keywords— Airy’s Polynomials, Nield- Kuznetsov 

Derivatives  

I. INTRODUCTION 
iry’s differential equation, its associated Airy’s functions, 
[1], and extensions of Airy’s functions are of importance 
in the study of circuit theory, systems theory and signal 

processing since these special functions arise in solutions to 
Start and Schrodinger equations, (cf. [2,3,4] and the references 

 
 

therein) in addition to their direct applicability in the study of 
optics, fluid flow and electromagnetism. Many differential 
equations in mathematical physics and quantum theory can be 
reduced to Airy’s equation by an appropriate change of 
variables, thus adding to the importance of studies of Airy’s 
functions and their related functions, [4,5,6]. 
    Recently, Airy’s equation proved to be a valuable tool in the 
analysis of flow over porous layers in the presence of a 
transition layer. Brinkman’s equation governs the flow in the 
variable permeability transition layer, and Nield and 
Kuznetsov [7] model the flow in such a way that Brinkman’s 
equation reduced to Airy’s equation. The same problem was 
recently analyzed using the generalized Airy’s equation, [8]. 
In their analysis, Nield and Kuznetsov [7] found it convenient 
to define a new integral function in terms of Airy’s functions 
and their integrals, referred to as the standard Nield-Kuznetsov 
function of the first kind. The main properties of this newly 
introduced function were studied by Hamdan and Kamel [9], 
as it is of great utility in solving the inhomogeneous Airy’s 
equation.  
    In recent articles, recent developments in analysis of the 
Nield-Kuznetsov functions were discussed and documented. 
[10,11] and include methods of computations and solution 
methodologies to inhomogeneous Airy’s and generalized 
Airy’s equations with initial and boundary conditions. Recent 
work in this field includes pioneering work on the Nield-
Kuznetsov functions and the use of Laplace transform and 
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uniform asymptotic expansions [12,13], and to analyze Airy’s 
polynomials that arise when higher derivatives are involved, 
[14]. 
    Abramochkin and Razueva, [14], provided elegant analysis 
of Airy’s polynomials that arise when one considers higher 
derivatives of Airy’s functions or derivatives of their products. 
These same polynomials and other polynomials arise in the 
higher derivatives of the standard Nield-Kuznetsov function of 
the first kind, and are important from both a theoretical and a 
practical point of view. 
    The purpose of this work is to obtain generalizations of the 
higher derivatives, and polynomials associated with the 
Standard Nield-Kuznetsov function of the first kind, and 
introduce their efficient methods of computations. These 
higher derivatives might find their way in analysis of the Stark 
equation, Schrodinger equation and Tricomi’s inhomogeneous 
equation. 

II. STANDARD NIELD-KUZNETSOV FUNCTIONS 
   Consider the inhomogeneous Airy’s ordinary differential 
equation (ODE) 
 
𝑦′′ − 𝑥𝑦 = 𝑓(𝑥)                                                                        
(1) 
 
wherein prime notation denotes ordinary differentiation with 
respect to 𝑥. General solution to (1) depends on the forcing 
function (right-hand-side of (1)), 𝑓(𝑥), for which the scientific 
literature reports there are five subcases when 𝑓(𝑥) is 
continuous. These are summarized in Table 1, below. 
 
Table 1. Forms of General Solution of Inhomogeneous Airy’s 

Equation 
𝒇(𝒙)     General solution of (1) 

0 𝑦 = 𝑎1𝐴𝑖(𝑥) + 𝑎2𝐵𝑖(𝑥)                            
(2) 
𝑎1, 𝑎2 are arbitrary constants 

𝑓(𝑥) = −
1

𝜋
 𝑦 = 𝑏1𝐴𝑖(𝑥) + 𝑏2𝐵𝑖(𝑥) + 𝐺𝑖(𝑥)              

(3) 
𝑏1, 𝑏2 are arbitrary constants 

𝑓(𝑥) =
1

𝜋
 𝑦 = 𝑐1𝐴𝑖(𝑥) + 𝑐2𝐵𝑖(𝑥) + 𝐻𝑖(𝑥)             

(4) 
𝑐1, 𝑐2 are arbitrary constants 

𝑓(𝑥) = 𝑅 
(Any real 
constant) 

𝑦 = 𝑑1𝐴𝑖(𝑥) + 𝑑2𝐵𝑖(𝑥) − 𝜋𝑅𝑁𝑖(𝑥)       
(5) 
𝑑1, 𝑑2 are arbitrary constants 

𝑓(𝑥) is a 
differentiable 
function of 𝑥 

𝑦 = 𝑒1𝐴𝑖(𝑥) + 𝑒2𝐵𝑖(𝑥) + 𝜋𝐾𝑖(𝑥) 
−𝜋𝑓(𝑥)𝑁𝑖(𝑥)                                           
(6) 
𝑒1, 𝑒2 are arbitrary constants 

    
  In Table 1, 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) are two linearly independent 
functions known as Airy’s homogeneous functions of the first 
and second kind, respectively, and are defined by the 
following integrals, [4]: 
 
𝐴𝑖(𝑥) =

1

𝜋
∫ cos (𝑥𝑡 +

𝑡3

3
) 𝑑𝑡

∞

0
                                                 

(7) 

𝐵𝑖(𝑥) =
1

𝜋
∫ [sin (𝑥𝑡 +

𝑡3

3
) + exp (𝑥𝑡 −

𝑡3

3
)]𝑑𝑡

∞

0
                      

(8) 
 
The non-zero Wronskian of 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥) is given by, [4]: 
 
𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) = 𝐴𝑖(𝑥)

𝑑𝐵𝑖(𝑥)

𝑑𝑥
− 𝐵𝑖(𝑥)

𝑑𝐴𝑖(𝑥)

𝑑𝑥
=

1

𝜋
               

(9) 
 
The functions  𝐺𝑖(𝑥) and 𝐻𝑖(𝑥) are the Scorer functions, [4], 
given by 
 
𝐺𝑖(𝑥) =

1

𝜋
∫ sin (𝑥𝑡 +

𝑡3

3
) 𝑑𝑡

∞

0
                                               

(10) 
 
𝐻𝑖(𝑥) =

1

𝜋
∫ exp (𝑥𝑡 −

𝑡3

3
) 𝑑𝑡

∞

0
                                             

(11) 
 
    The integral function 𝑁𝑖(𝑥) is called the Standard Nield-
Kuznetsov Function of the First Kind, and is given by, [7,9]: 
 
𝑁𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ 𝐵𝑖(𝑡)𝑑𝑡

𝑥

0
− 𝐵𝑖(𝑥) ∫ 𝐴𝑖(𝑡)𝑑𝑡

𝑥

0
                     

(12) 
 
    The function 𝐾𝑖(𝑥) is called the Standard Nield-Kuznetsov 
Function of the Second Kind, and takes the following 
equivalent forms, [9]: 
 
𝐾𝑖(𝑥) = 𝐴𝑖(𝑥) ∫ {∫ 𝐵𝑖(𝜏)𝑑𝜏

𝑡

0
}

𝑥

0
𝑓′(𝑡)𝑑𝑡 −

𝐵𝑖(𝑥) ∫ {∫ 𝐴𝑖(𝜏)𝑑𝜏
𝑡

0
}

𝑥

0
𝑓′(𝑡)                                                    

(13) 
 
𝐾𝑖(𝑥) = 𝑓(𝑥)𝑁𝑖(𝑥) − {𝐴𝑖(𝑥) ∫ 𝑓(𝑡)𝐵𝑖(𝑡)

𝑥

0
𝑑𝑡 −

𝐵𝑖(𝑥) ∫ 𝑓(𝑡)𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡}.                                                      (14) 

 
    The integral function 𝑁𝑖(𝑥) defined by (12) was introduced 
in the work of Nield and Kuznetsov [7] in their analysis of the 
transition layer in the study of flow over porous layers. 
Hamdan and Kamel [9] showed that the particular solution to 
Airy’s ODE (1) can be expressed in terms of 𝑁𝑖(𝑥) when the 
forcing function 𝑓(𝑥) = 𝑅 = any constant. 
    Hamdan and Kamel [9] introduced the function 𝐾𝑖(𝑥), 
equations (13) and (14), and showed that the particular 
solution of Airy’s inhomogeneous equation (1) can be 
represented using 𝐾𝑖(𝑥) when the forcing function 𝑓(𝑥) is any 
differentiable function of 𝑥. 
    The integral functions 𝑁𝑖(𝑥) and 𝐾𝑖(𝑥) have been termed 
the Standard Nield-Kuznetsov functions of the first and 
second kind, respectively. The term “standard” is used here to 
distinguish these functions from the Generalized Nield-
Kuznetsov functions of the first and second kind, used to 
express the particular solutions of the generalized 
inhomogeneous Airy’s equation, [8], and the Parametric 
Nield-Kuznetsov functions of the first and second kind, 
introduced in [10] and used to express particular solutions of 
the inhomogeneous Weber equation.  
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    The above Nield-Kuznetsov functions possess a large 
number of mathematically interesting properties and 
representations, some of which have yet to be studied (cf. [10] 
and the references therein). Extensions, further applications 
and properties of the Nield-Kuznetsov functions have also 
been discussed in [11-13].  
     In what follows, we discuss some relevant properties of 
𝑁𝑖(𝑥), its higher derivatives, the polynomials arising as a 
result of its derivatives, the differential equations it satisfies, 
its connections to other special functions, and its 
representations in terms of infinite series to facilitate its 
computations and computations of its derivatives. 

III. DERIVATIVES OF 𝑁𝑖(𝑥) 
    Abramochkin and Razueva [14] showed that the nth 
derivative of 𝐴𝑖(𝑥) can be expressed in terms of 𝐴𝑖(𝑥), 
𝐴′𝑖(𝑥), and some polynomials, 𝑃𝑛(𝑥) and 𝑄𝑛(𝑥). Similarly, 
nth derivative of 𝐵𝑖(𝑥) can be expressed in terms of 𝐵𝑖(𝑥), 
𝐵′𝑖(𝑥), and the same polynomials, 𝑃𝑛(𝑥) and 𝑄𝑛(𝑥). Not 
surprising, the nth derivative of 𝑁𝑖(𝑥) can be expressed in 
terms of 𝑁𝑖(𝑥), 𝑁′𝑖(𝑥), the same polynomials 𝑃𝑛(𝑥) and 
𝑄𝑛(𝑥) of [14], and a polynomial 𝑅𝑛(𝑥), for 𝑛 ≥ 2. This 
realization was also reported in [9]. 
    The first derivative of 𝑁𝑖(𝑥) is obtained by direct 
differentiation of (12). Clearly, the first derivative is not a 
polynomial. The second to fifteenth derivatives of 𝑁𝑖(𝑥) are 
polynomials and take the following forms, obtained by 
repeated differentiation and simplification, with the help of the 
Wronskian, equation (9). The choice of the first fifteen 
derivatives has been made to parallel, and compare with, the 
fifteen derivatives obtained in [14]. 
 
𝑁′𝑖(𝑥) = 𝐴′𝑖(𝑥) ∫ 𝐵𝑖(𝑡)

𝑥

0
𝑑𝑡 − 𝐵′𝑖(𝑥) ∫ 𝐴𝑖(𝑡)

𝑥

0
𝑑𝑡.          (15) 

 
𝑁′′𝑖(𝑥) = 𝑥𝑁𝑖(𝑥) −

1

𝜋
                                                            

(16) 
 
𝑁′′′𝑖(𝑥) = 𝑁𝑖(𝑥) + 𝑥𝑁′𝑖(𝑥)                                                 
(17) 
 
𝑁𝑖𝑣𝑖(𝑥) = 𝑥2𝑁𝑖(𝑥) + 2𝑁′𝑖(𝑥) −

𝑥

𝜋
                                      

(18) 
 
𝑁𝑣𝑖(𝑥) = 4𝑥𝑁𝑖(𝑥) + 𝑥2𝑁′𝑖(𝑥) −

3

𝜋
                                     

(19) 
 
𝑁𝑣𝑖𝑖(𝑥) = (𝑥3 + 4)𝑁𝑖(𝑥) + 6𝑥𝑁′𝑖(𝑥) −

𝑥2

𝜋
                         

(20) 
 
𝑁𝑣𝑖𝑖𝑖(𝑥) = 9𝑥2𝑁𝑖(𝑥) + (𝑥3 + 10)𝑁′𝑖(𝑥) −

8𝑥

𝜋
                    

(21) 
 
𝑁𝑣𝑖𝑖𝑖𝑖(𝑥) = (𝑥4 + 28𝑥)𝑁𝑖(𝑥) + 12𝑥2𝑁′𝑖(𝑥) −

(𝑥3+18)

𝜋
        

                                                                                              (22) 
𝑁𝑖𝑥𝑖(𝑥) = (16𝑥3 + 28)𝑁𝑖(𝑥) + (𝑥4 + 52𝑥)𝑁′𝑖(𝑥) −

15𝑥2

𝜋
        

                                                                                              (23) 
𝑁𝑥𝑖(𝑥) = (𝑥5 + 100𝑥2)𝑁𝑖(𝑥) + (20𝑥3 + 80)𝑁′𝑖(𝑥) −
(𝑥4+82𝑥)

𝜋
                                                                                           

(24) 
𝑁𝑥𝑖𝑖(𝑥) = (25𝑥4 + 280𝑥)𝑁𝑖(𝑥) + (𝑥5 + 160𝑥2)𝑁′𝑖(𝑥) −
(24𝑥3+162)

𝜋
                                                                                          

(25) 
𝑁𝑥𝑖𝑖𝑖(𝑥) = (𝑥6 + 260𝑥3 + 280)𝑁𝑖(𝑥) + (30𝑥4 +

600𝑥)𝑁′𝑖(𝑥) −
(𝑥5+232𝑥2)

𝜋
                                                      

(26) 
𝑁𝑥𝑖𝑖𝑖𝑖(𝑥) = (36𝑥5 + 1380𝑥2)𝑁𝑖(𝑥) + (𝑥6 + 380𝑥3 +

880)𝑁′𝑖(𝑥) −
(35𝑥4+1064𝑥)

𝜋
                                                    

(27) 
 
𝑁𝑥𝑖𝑣𝑖(𝑥) = (𝑥7 + 560𝑥4 + 3640𝑥)𝑁𝑖(𝑥) + (42𝑥5 +

2520𝑥2)𝑁′𝑖(𝑥) −
(𝑥6+520𝑥3+1944)

𝜋
                                         

(28) 
 
𝑁𝑥𝑣𝑖(𝑥) = (49𝑥6 + 4760𝑥3 + 3640)𝑁𝑖(𝑥) + (𝑥7 +

770𝑥4 + 8680𝑥)𝑁′𝑖(𝑥) −
(48𝑥5+4080𝑥2)

𝜋
                              

(29) 
 
Continuing in this manner, the nth derivative of 𝑁𝑖(𝑥) can be 
expressed as: 
 
𝑁𝑖(𝑛)(𝑥) = 𝑃𝑛(𝑥)𝑁𝑖(𝑥) + 𝑄𝑛(𝑥)𝑁′𝑖(𝑥) − 𝑅𝑛(𝑥)/𝜋            
(30) 
 
where 𝑃𝑛(𝑥), 𝑄𝑛(𝑥) and 𝑅𝑛(𝑥) are the polynomial coefficients 
of 𝑁𝑖(𝑥), 𝑁′𝑖(𝑥) and 𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)), respectively, in the 
nth derivative of 𝑁𝑖(𝑥), for 𝑛 ≥ 2. With the knowledge of the 
nth derivative, the n+1st derivative can be obtained as: 
 
𝑁𝑖(𝑛+1)(𝑥) = [𝑃′

𝑛(𝑥) + 𝑥𝑄𝑛(𝑥)]𝑁𝑖(𝑥) + [𝑃𝑛(𝑥) +

𝑄′
𝑛

(𝑥)]𝑁′𝑖(𝑥) −
1

𝜋
[𝑄𝑛(𝑥) + 𝑅′

𝑛(𝑥)                                     
(31) 
 
Equation (31) takes the following form in terms of 𝐴𝑖(𝑥) and 
𝐵𝑖(𝑥): 
 

𝑁(𝑛+1)(𝑥) = {[𝑃′𝑛(𝑥) + 𝑥𝑄𝑛(𝑥)]𝐴𝑖(𝑥) + [𝑃𝑛(𝑥) +

𝑄′𝑛(𝑥)]𝐴′𝑖(𝑥)} ∫ 𝐵𝑖(𝑡)
𝑥

0
𝑑𝑡 − {[𝑃′𝑛(𝑥) + 𝑥𝑄𝑛(𝑥)]𝐵𝑖(𝑥) +

[𝑃𝑛(𝑥) + 𝑄′𝑛(𝑥)]𝐵′𝑖(𝑥)} ∫ 𝐴𝑖(𝑡)
𝑥

0
𝑑𝑡 − [𝑄𝑛(𝑥) +

𝑅′(𝑥)]𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)).                                   (32) 
 
Using  (30) in (32) yields the n+1st derivative as: 
 
𝑁𝑖(𝑛+1)(𝑥) = 𝑃𝑛+1(𝑥)𝑁𝑖(𝑥) + 𝑄𝑛+1(𝑥)𝑁′𝑖(𝑥) −

𝑅𝑛+1(𝑥)

𝜋
  (33) 

 
Comparing (31) and (32), establishes the following: 
 
𝑃𝑛+1(𝑥) = 𝑃′

𝑛(𝑥) + 𝑥𝑄𝑛(𝑥)                                                 
(34) 
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𝑄𝑛+1(𝑥) = 𝑄′

𝑛
(𝑥) + 𝑃𝑛(𝑥)                                                    

(35) 
 
𝑅𝑛+1(𝑥) = 𝑅′

𝑛(𝑥) + 𝑄𝑛(𝑥)                                                    
(36) 
 

Polynomials, for 𝑛 ≥ 2, appearing in the above derivatives 
can be tabulated as shown in Table 2. 
 

Table 2. Polynomial Coefficients of 𝑁𝑖(𝑥), 𝑁′𝑖(𝑥) and 
𝑊(𝐴𝑖(𝑥), 𝐵𝑖(𝑥)) 

n 𝑃𝑛(𝑥) 𝑄𝑛(𝑥) 𝑅𝑛(𝑥) 

2 x 0 1 
3 1 x 0 
4 𝑥2 2 x 

5 4x 𝑥2 3 

6 𝑥3 + 4 6𝑥 𝑥2 
7 9𝑥2 𝑥3 + 10 8x 

8 𝑥4 + 28𝑥 12𝑥2 𝑥3 + 18 
9 16𝑥3 + 28 𝑥4 + 52𝑥 15𝑥2 
10 𝑥5 + 100𝑥2 20𝑥3 + 80 𝑥4 + 82𝑥 
11 25𝑥4 + 280𝑥 𝑥5 + 160𝑥2 24𝑥3 + 162 
12 𝑥6 + 260𝑥3 

+280 
30𝑥4 + 600𝑥 𝑥5 + 232𝑥2 

13 36𝑥5

+ 1380𝑥2 
𝑥6 + 380𝑥3 
+880 

35𝑥4 + 1064𝑥 

14 𝑥7 + 560𝑥4 
+3640𝑥 

42𝑥5

+ 2520𝑥2 
𝑥6 + 520𝑥3 
+1944 

15 49𝑥6

+ 4760𝑥3 
+3640 

𝑥7 + 770𝑥4 
+8680𝑥 

48𝑥5

+ 4080𝑥2 

 

The notation used by Abramochkin and Razueva, [14], in that 
“n” refers to order of the derivative and not the degree of the 
polynomial is echoed in this work. In fact, degrees of these 
polynomials are provided in the following Table 3. 
 

Table 3. Coefficient Polynomial Degrees 
Polynomial Degree 

(when 𝑛 is even) 
Degree 
 
(when 𝑛 is odd) 

𝑃𝑛(𝑥) 𝑛

2
 ;  𝑛 ≥ 2 𝑛 − 3

2
 ;   𝑛 ≥ 3 

𝑄𝑛(𝑥) 𝑛

2
− 2  ;   𝑛 ≥ 4 𝑛 − 1

2
 ;   𝑛 ≥ 3 

𝑅𝑛(𝑥) 𝑛

2
− 1  ;   𝑛 ≥ 2 𝑛 − 5

2
 ;   𝑛 ≥ 5 

 

A. Values of Polynomials and Derivatives of Ni(x) at x=0 

    Evaluating (30) at 𝑥 = 0, gives 
 
𝑁𝑖(𝑛)(0) = 𝑃𝑛(0)𝑁𝑖(0) + 𝑄𝑛(0)𝑁′𝑖(0) −

𝑅(0)

𝜋
                    

(37) 
 
Equations (12) and (15) provide 𝑁𝑖(0) = 0  and  𝑁′𝑖(0) = 0, 
and (36) yields 

 
𝑁𝑖(𝑛)(0) = −

𝑅(0)

𝜋
                                                                   

(38) 
 
In addition, using (32), gives 
 
𝑁𝑖(𝑛+1)(0) = −

𝑅𝑛+1(0)

𝜋
= −

[𝑄𝑛(0)+𝑅′
𝑛(0)]

𝜋
                             

(39) 
 
The following recursive relation can also be established. 
 
𝑁𝑖(𝑛)(0) = (𝑛 − 2)𝑁𝑖(𝑛−3)(0) for n = 3, 4, 5, …                
(40) 
 
𝑁𝑖(𝑛+1)(0) = (𝑛 − 1)𝑁𝑖(𝑛−2)(0) for n = 2,3, 4, …               
(41) 
 
Values of polynomials 𝑃𝑛(𝑥), 𝑄𝑛(𝑥), and 𝑅𝑛(𝑥) and 
derivatives of 𝑁𝑖(𝑥) at 𝑥 = 0 are shown in the following 
Table 4. 
 

Table 4. Values of Coefficient Polynomials and 
Derivatives of 𝑁𝑖(𝑥) at 𝑥 = 0 

n 𝑃𝑛(0) 𝑄𝑛(0) 𝑅𝑛(0) 𝑁𝑖(𝑛)(0) 
2 0 0 1 

−
1

𝜋
 

3 1 0 0 0 
4 0 2 0 0 

5 0 0 3 
−

3

𝜋
 

6 4 0 0 0 
7 0 10 0 0 
8 0 0 18 

−
18

𝜋
 

9 28 0 0 0 
10 0 80 0 0 
11 0 0 162 

−
162

𝜋
 

12 280 0 0 0 
13 0 880 0 0 
14 0 0 1944 

−
1944

𝜋
 

15 3640 0 0 0 
 

B. Derivatives of Ni(x) in Terms of Bessel Functions 

    With the knowledge of the expressions of 𝐴𝑖(𝑥)and 𝐵𝑖(𝑥), 
their first derivatives and integrals in terms of Bessel’s 
function of the first kind as, [4]: 
 
𝐴𝑖(𝑥) =

√𝑥

3
[𝐼

−
1

3

(𝜇) − 𝐼1

3

(𝜇)]                                                    

(42) 
 
𝐴′𝑖(𝑥) = −

𝑥

3
[𝐼

−
2

3

(𝜇) − 𝐼2

3

(𝜇)]                                                    

(43) 
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𝐵𝑖(𝑥) = √
𝑥

3
[𝐼

−
1

3

(𝜇) + 𝐼1

3

(𝜇)]                                                 

(44) 
 
𝐵′𝑖(𝑥) =

𝑥

√3
[𝐼

−
2

3

(𝜇) + 𝐼2

3

(𝜇)]                                                 

(45) 
 
∫ 𝐴𝑖(𝑡)𝑑𝑡 =

1

3
∫ [𝐼

−
1

3

(𝑡) − 𝐼1

3

(𝑡)]𝑑𝑡
𝜇

0

𝑥

0
                                    

(46) 
 
∫ 𝐵𝑖(𝑡)𝑑𝑡 =

1

√3
∫ [𝐼

−
1

3

(𝑡) + 𝐼1

3

(𝑡)]𝑑𝑡
𝜇

0

𝑥

0
                                     

(47) 
 
where 𝜇 =

2

3
𝑥3/2. The function 𝑁𝑖(𝑥), its fist derivative, and 

its higher derivatives, can be expressed in terms of Bessel’s 
function, as 
 
𝑁𝑖(𝑥) =

2√𝑥

3√3
[𝐼

−
1

3

(𝜇). ∫ 𝐼1

3

(𝑡)𝑑𝑡
𝜇

0
− 𝐼1

3

(𝜇) ∫ 𝐼
−

1

3

(𝑡)𝑑𝑡]
𝜇

0
         

(48) 
 
𝑁′𝑖(𝑥) =

2𝑥

3√3
[𝐼2

3

(𝜇). ∫ 𝐼1

3

(𝑡)𝑑𝑡
𝜇

0
− 𝐼

−
2

3

(𝜇). ∫ 𝐼
−

1

3

(𝑡)𝑑𝑡]
𝜇

0
       

(49) 

𝑁𝑖(𝑛)(𝑥) = 𝑃𝑛(𝑥) 
2√𝑥

3√3
{𝐼

−
1

3

(𝜇). ∫ 𝐼1

3

(𝑡)𝑑𝑡
𝜇

0
−

 𝐼1

3

(𝜇) ∫ 𝐼
−

1

3

(𝑡)𝑑𝑡] 
𝜇

0
}   + 𝑄𝑛(𝑥)

2𝑥

3√3
{𝐼2

3

(𝜇). ∫ 𝐼1

3

(𝑡)𝑑𝑡
𝜇

0
−

 𝐼
−

2

3

(𝜇). ∫ 𝐼
−

1

3

(𝑡)𝑑𝑡
𝜇

0
} −

𝑅𝑛(𝑥)

𝜋
                                                 

(50) 
 

𝑁𝑖(𝑛+1)(𝑥) = [𝑃′
𝑛(𝑥) + 𝑥𝑄𝑛(𝑥)]

2√𝑥

3√3
{𝐼

−
1

3

(𝜇). ∫ 𝐼1

3

(𝑡)𝑑𝑡
𝜇

0
−

 𝐼1

3

(𝜇) ∫ 𝐼
−

1

3

(𝑡)𝑑𝑡] 
𝜇

0
} + [𝑃𝑛(𝑥) +

𝑄′
𝑛

(𝑥)]
2𝑥

3√3
{𝐼2

3

(𝜇). ∫ 𝐼1

3

(𝑡)𝑑𝑡
𝜇

0
−  𝐼

−
2

3

(𝜇). ∫ 𝐼
−

1

3

(𝑡)𝑑𝑡
𝜇

0
} −

1

𝜋
[𝑄𝑛(𝑥) + 𝑅′

𝑛(𝑥)                                                                 
(51) 
 

C. Differential Equations that 𝑁𝑖(𝑥) Satisfies 

    The function 𝑁𝑖(𝑥) satisfies the following nth order 
ordinary differential equations, obtained from (30): 
 
𝑦(𝑛) − 𝑄𝑛(𝑥)𝑦′ − 𝑃𝑛(𝑥)𝑦 = −𝑅𝑛(𝑥)/𝜋                               
(52) 
 
For instance, 𝑁𝑖(𝑥) is a solution of the following second- and 
third-order equations, respectively: 
 
𝑦′′ − 𝑥𝑦 = −1/𝜋                                                                   
(53) 
 
𝑦′′′ − 𝑥𝑦′ − 𝑦 = 0                                                                             
                                                                                              (54) 
 

    It is worth noting that (54) is a special case of the well-
known comparison ordinary differential equation that 
received interest in the literature (see [4], page 108, and 
Langer, [15]), namely: 
 
𝑦′′′ − 𝑥𝑦′ − 𝜆𝑦 = 0.                                                      (55) 
 
    When 𝜆 = 1, equation (55) reduces to (54). Solutions to 
(55) have been discussed in detail in [4]. However, it is seen 
here that 𝑁𝑖(𝑥) is a solution to (55) for the case of 𝜆 = 1. 
Furthermore, as discussed in [4], if 𝑦 is a solution of (55) then 
𝑧 = 𝑦′ is a solution of the equation: 
 
𝑧′′′ − 𝑥𝑧′ − (1 + 𝜇)𝑧 = 0.                                  (56) 
 
    Accordingly, since the function 𝑦 = 𝑁𝑖(𝑥) is a solution to 
(54), the function 𝑧 = 𝑁𝑖′(𝑥) is a solution of 
 
𝑧′′′ − 𝑥𝑧′ − 2𝑧 = 0.                                           (57) 
 

IV. REPRESENTATIONS OF 𝑁𝑖(𝑥) AND 𝑁′𝑖(𝑥) 

A. Series Representations and Computation of  𝑁𝑖(𝑥) and 

𝑁′𝑖(𝑥) 

    Computing and evaluating 𝑁𝑖(𝑥) and 𝑁′𝑖(𝑥) are necessary 
in solving initial and boundary value problems involving the 
inhomogeneous Airy’s equations and in evaluating higher 
derivatives of 𝑁𝑖(𝑥), which are expressed in terms of 𝑁𝑖(𝑥) 
and 𝑁′𝑖(𝑥). Typically, Airy’s functions are expressed in terms 
of asymptotic or ascending series that provide approximations 
to these functions at given values of 𝑥. Since 𝑁𝑖(𝑥) is defined 
in terms of Airy’s functions, we will rely on their 
approximations to express 𝑁𝑖(𝑥) in terms of asymptotic and 
ascending series for 𝐴𝑖(𝑥) and 𝐵𝑖(𝑥), their derivatives and 
integrals. 

B. Asymptotic approximations 

    The functions 𝑁𝑖(𝑥) and 𝑁′𝑖(𝑥) can be expressed using the 
following asymptotic series approximations, given in [12], 
wherein 𝜇 =  

2

3
𝑥3/2: 

 
𝐴𝑖(𝑥) ≈

exp(−𝜇)

2√𝜋𝑥
1
4

[1 +
(3)(5)

1!(−216𝜇)
+

5(7)(9)(11)

2!(−216𝜇)2 + ⋯ ]                  

(58) 
 
𝐵𝑖(𝑥) ≈

exp(𝜇)

√𝜋𝑥
1
4

[1 +
(3)(5)

1!(216𝜇)
+

5(7)(9)(11)

2!(216𝜇)2 + ⋯ ]                       

(59) 
 

𝐴′𝑖(𝑥) ≈ −
𝑥

1
4 exp(−𝜇)

2√𝜋
[1 −

(3)(7)

1!(−216𝜇)
−

5(7)(9)(13)

2!(−216𝜇)2 + ⋯ ]         
(60) 
 

𝐵′𝑖(𝑥) ≈
𝑥

1
4 exp(𝜇)

√𝜋
[1 −

(3)(7)

1!(216𝜇)
−

5(7)(9)(13)

2!(216𝜇)2 + ⋯ ]                
(61) 
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∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑥

0
≈

1

3
−

exp(−𝜇)

2√𝜋𝑥
3
4

[1 −
41

48𝑥
3
2

+
9241

4608𝑥2 + ⋯ ]               

(62) 
 
∫ 𝐵𝑖(𝑡)𝑑𝑡

𝑥

0
≈

exp(𝜇)

√𝜋𝑥
3
4

[1 +
41

48𝑥
3
2

+
9241

4608𝑥2 + ⋯ ]                       

(63) 
 
Substituting (58)-(63) in (12) and (15), we obtain: 
 
𝑁𝑖(𝑥) ≈

1

2𝜋𝑥2   −
1

3
𝐵𝑖(𝑥) =

1

2𝜋𝑥2 − 
exp (𝜇)

3√𝜋𝑥1/4                      (64)     
              
𝑁′𝑖(𝑥) ≈ −

1

2𝜋𝑥3/2 −
1

3
B𝑖′(𝑥) =  −

1

2𝜋𝑥3/2 −
𝑥1/4 exp (𝜇)

3√𝜋
        (65)

            
For large x, expressions (64) and (65) take the following 
forms: 
 
𝑁𝑖(𝑥) ≈ −

1

3
𝐵𝑖(𝑥) = −

exp (𝜇)

3√𝜋𝑥1/4                                           (66)   
   
              
𝑁′𝑖(𝑥) ≈ −

1

3
B𝑖′(𝑥) = −

𝑥1/4exp (𝜇)

3√𝜋
                                  (67)

  
    Using (66) and (67) in (30) and (31), we obtain the 
following expressions for the nth and n+1st derivatives, 
respectively, that are valid for large values of 𝑥:      
   
 
𝑁𝑖

(𝑛)
(𝑥) = −

exp (𝜇)

3√𝜋𝑥1/4 𝑃𝑛(𝑥) −
𝑥1/4exp (𝜇)

3√𝜋
𝑄𝑛(𝑥) − 𝑅𝑛(𝑥)/𝜋                                         

                                                                                              (68) 
 
𝑁𝑖

(𝑛+1)
(𝑥) = −

exp (𝜇)

3√𝜋𝑥1/4
[𝑃′

𝑛(𝑥) + 𝑥𝑄𝑛(𝑥)] −

𝑥1/4exp (𝜇)

3√𝜋
[𝑃𝑛(𝑥) + 𝑄′

𝑛
(𝑥)] −

1

𝜋
[𝑄𝑛(𝑥) + 𝑅′

𝑛(𝑥)                
(69) 
 

C. Ascending Series Representation: 

    In order to develop ascending series representations for 
𝑁𝑖(𝑥) and 𝑁′𝑖(𝑥), we employ the ascending series 
representations of the Airy functions, their derivatives and 
integrals, reported in [4], using Airy’s atoms, as follows, 
wherein 𝐹′ = 𝑓: 
 
𝐴𝑖(𝑥) = 𝑎1𝐹′1(𝑥) − 𝑎2𝐹′2(𝑥)                                               
(70) 
 
𝐵𝑖(𝑥) = √3𝑎1𝐹′1(𝑥) + √3𝑎2𝐹′2(𝑥)                                      
(71) 
 
𝐴′𝑖(𝑥) = 𝑎1𝐹′′1(𝑥) − 𝑎2𝐹′′2(𝑥)                                            
(72) 
 
𝐵′𝑖(𝑥) = √3𝑎1𝐹′′1(𝑥) + √3𝑎2𝐹′′2(𝑥)                                  
(73) 
 

∫ 𝐴𝑖(𝑡)𝑑𝑡
𝑥

0
= 𝑎1𝐹1(𝑥) − 𝑎2𝐹2(𝑥)                                         

(74) 
 
∫ 𝐵𝑖(𝑥)𝑑𝑡

𝑥

0
= √3𝑎1𝐹1(𝑥) + √3𝑎2𝐹2(𝑥)                                

(75) 
 
where 
 
𝑎1 = 𝐴𝑖(0) =

1

32/3Γ(
2

3
)
                                                             

(76) 
  
𝑎2 = −𝐴′𝑖(0) =

1

31/3Γ(
1

3
)
                                                        

(77) 
 

𝐹1(𝑥) = ∑ (
1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘+1)!
                                                    

(78) 
 

𝐹′1(𝑥) = ∑ (
1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘

(3𝑘)!
                                                      

(79) 
 

𝐹′′1(𝑥) = ∑ (
1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘−1

(3𝑘−1)!
                                                  

(80) 
 
𝐹2(𝑥) = ∑ (

2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+2

(3𝑘+2)!
                                                    

(81) 
 

𝐹′2(𝑥) = ∑ (
2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘+1)!
                                                   

(82) 
 

𝐹′′2(𝑥) = ∑ (
2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘

(3𝑘)!
                                                     

(83) 
 
and (𝑏)𝑘 is the Pochhammer symbol, defined by, [4]: 
 
(𝑏)𝑘 =𝛤(𝑏+𝑘)

𝛤(𝑏)
= 𝑏(𝑏 + 1)(𝑏 + 2) … (𝑏 + 𝑘 − 1); (𝑏)0 = 1.                 

                                                                                              (84) 
Using (70)-(75) in (12), yields 
 
𝑁𝑖(𝑥) = 2√3𝑎1𝑎2{𝐹2𝐹′1 − 𝐹1𝐹′2}                                        
(85) 
 
Differentiating (85) gives 
 
𝑁′𝑖(𝑥) = 2√3𝑎1𝑎2{𝐹2𝐹′′1 − 𝐹1𝐹′′2}                                      
(86) 
 
Upon substituting (76)-(84), the following series are obtained 
for 𝑁𝑖(𝑥) and 𝑁′𝑖(𝑥): 
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𝑁𝑖(𝑥) = 2√3𝑎1𝑎2 [{∑ (
1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘

(3𝑘)!
} {∑ (

2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+2

(3𝑘+2)!
} −

{∑ (
2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘+1)!
} {∑ (

1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘+1)!
}]                               

(87) 
 
𝑁′𝑖(𝑥) =

2√3𝑎1𝑎2 [{∑ (
1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘−1

(3𝑘−1)!
} {∑ (

2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+2

(3𝑘+2)!
} −

{∑ (
2

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘

(3𝑘)!
} {∑ (

1

3
)

𝑘

∞
𝑘=0

3𝑘𝑥3𝑘+1

(3𝑘+1)!
}]                                  

(88) 
 
Equations (87) and (88) can be expressed in the following 
form when use is made of the definition of Cauchy product: 
 
𝑁𝑖(𝑥) =

2√3𝑎1𝑎2 ∑ 3𝑘 {∑ (
1

3
)

𝑙
(

2

3
)

𝑘−𝑙
(

−3𝑘+6𝑙−1

(3𝑙+1)!(3(𝑘−𝑙)+2)!
) 𝑘

𝑙=0 }∞
𝑘=0 𝑥3𝑘+2                                                                                              

                                                                                              (89) 
𝑁′𝑖(𝑥) = 2√3𝑎1𝑎2 ∑ 3𝑘(3𝑘 +∞

𝑘=0

2) {∑ (
1

3
)

𝑙
(

2

3
)

𝑘−𝑙
(

−3𝑘+6𝑙−1

(3𝑙+1)!(3(𝑘−𝑙)+2)!
) 𝑘

𝑙=0 } 𝑥3𝑘+1                    
(90) 
 
Using (89) and (90) in (30) and (31) yields 
 
𝑁𝑖

(𝑛)(𝑥) = 2√3𝑎1𝑎2𝑃𝑛(𝑥) ∗  
∑ 3𝑘 {∑ (

1

3
)

𝑙
(

2

3
)

𝑘−𝑙
(

−3𝑘+6𝑙−1

(3𝑙+1)!(3(𝑘−𝑙)+2)!
) 𝑘

𝑙=0 }∞
𝑘=0 ∗  

𝑥3𝑘+2 + 2√3𝑎1𝑎2𝑄𝑛(𝑥) ∑ 3𝑘(3𝑘 +∞
𝑘=0

2) {∑ (
1

3
)

𝑙
(

2

3
)

𝑘−𝑙
(

−3𝑘+6𝑙−1

(3𝑙+1)!(3(𝑘−𝑙)+2)!
) 𝑘

𝑙=0 } 𝑥3𝑘+1 − 𝑅𝑛(𝑥)/𝜋                                                                                                   
                                                                                              (91)  
 
𝑁𝑖

(𝑛+1)(𝑥) = 2√3𝑎1𝑎2[𝑃′
𝑛(𝑥) + 𝑥𝑄𝑛(𝑥)]  

∑ 3𝑘 {∑ (
1

3
)

𝑙
(

2

3
)

𝑘−𝑙
(

−3𝑘+6𝑙−1

(3𝑙+1)!(3(𝑘−𝑙)+2)!
) 𝑘

𝑙=0 }∞
𝑘=0 𝑥3𝑘+2 +

2√3𝑎1𝑎2[𝑃𝑛(𝑥) + 𝑄′
𝑛

(𝑥)] ∑ 3𝑘(3𝑘 +∞
𝑘=0

2) {∑ (
1

3
)

𝑙
(

2

3
)

𝑘−𝑙
(

−3𝑘+6𝑙−1

(3𝑙+1)!(3(𝑘−𝑙)+2)!
) 𝑘

𝑙=0 } 𝑥3𝑘+1 −
1

𝜋
[𝑄𝑛(𝑥) +

𝑅′
𝑛(𝑥)]                                                                                         

(92) 
 

V. CONCLUSION 
    In this work, a fundamental framework in which efficient 
expressions for the nth derivative of the standard Nield-
Kuznetsov function of the first kind are obtained and 
represented using ascending and asymptotic series has been 
presented. The framework was achieved through 
generalizations of the associated coefficient polynomials and 
using them in the computational series expressions of the nth 
derivative. Expressions for the nth derivative of 𝑁𝑖(𝑥) in 
terms of Bessel functions have also been obtained. 
    Although this work is fundamental in nature, it is hoped that 
future research will show some value of the knowledge of the 
nth derivative of 𝑁𝑖(𝑥) and its associated polynomials in 
obtaining and computing solutions to Schrodinger, Stark and 
Tricomi inhomogeneous equations. 
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