DOI QR코드

DOI QR Code

Development of Spray Coating Methods for Large Area Sol-Gel ZnO/Ag Nanowire Composite Transparent Conducting Substrates

대면적 졸-겔 산화아연/은 나노선 복합 투명 전도 기판 제조를 위한 스프레이 코팅법 개발

  • Cho, Wonki (Department of Electrical, Electronic and Control Engineering, Hankyong National University) ;
  • Baik, Seung Jae (Department of Electrical, Electronic and Control Engineering, Hankyong National University)
  • 조원기 (한경대학교 전기전자제어공학과) ;
  • 백승재 (한경대학교 전기전자제어공학과)
  • Received : 2017.10.04
  • Accepted : 2017.11.16
  • Published : 2018.01.01

Abstract

Transparent conductive thin films (TCFs) are essential materials for solar cells, organic light-emitting diodes, and display panels. Indium tin oxide (ITO) is one of the most widely used commercial materials to create TCFs'; however, new materials that can possibly replace ITO at a lower cost and/or those possessing mechanical flexibility are urgently needed. Silver nanowire (AgNW) is one of those promising materials, as it is less expensive and possesses superior mechanical flexibility as compared to ITO. We used AgNW and sol-gel ZnO to fabricate composite thin films by spray coating. We propose two spray-coating methods: the 'metal-organic chemical vapor deposition (MOCVD)/AgNW' method and the Mixture method. These two methods are expected to be commercialized for high-quality and low-cost products, respectively.

Keywords

References

  1. J. D. Yang and W. G. Choi, Ceramist, 15, 53 (2012). [DOI: http://www.dbpia.co.kr/Journal/ArticleDetail/NODE01883232]
  2. P. Zhang, I. Wyman, J. Hu, S. Lin, Z. Zhong, Y. Tu, Z. Huang, and Y. Wei, Mater. Sci. Eng., B, 223, 1 (2017). [DOI: https://doi.org/10.1016/j.mseb.2017.05.002]
  3. L. Znaidi, Mater. Sci. Eng., B, 174, 18 (2010). [DOI: https://doi.org/10.1016/j.mseb.2010.07.001]
  4. C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, New York, 1990) p. 2. [DOI: https://doi.org/10.1016/c2009-0-22386-5]
  5. D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J. P. Simonato, Nanotechnology, 24, 452001 (2013). [DOI: https://doi.org/10.1088/0957-4484/24/45/452001]
  6. W. J. Shin, B. S. Kim, C. S. Moon, W. K. Cho, and S. J. Baik, Current Photovoltaic Research, 2, 110 (2014). [DOI: http://www.dbpia.co.kr/Journal/ArticleDetail/NODE06521644]
  7. A. Kim, Y. Won, K. Woo, C. H. Kim, and J. Moon, ACS Nano, 7, 1081 (2013). [DOI: https://doi.org/10.1021/nn305491x]
  8. L. Hu, Y. Cui, H. S. Kim, J. Y. Lee, and P. Peumans, ACS Nano, 4, 2955 (2010). [DOI: https://doi.org/10.4016/27361.01]
  9. V. Scardaci, R. Coull, P. E. Lyons, D. Rickard, and J. N. Coleman, Small, 7, 2621 (2011). [DOI: https://doi.org/10.1002/smll.201100647]
  10. D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Nanoscale, 5, 977 (2013). [DOI: https://doi.org/10.1039/c2nr32221h]
  11. G. Susanna, L. Salamandra, T. M. Brown, A. D. Carlo, F. Brunetti, and A. Reale, Sol. Energy Mater. Sol. Cells, 95, 1775 (2011). [DOI: https://doi.org/10.1016/j.solmat. 2011.01.047]
  12. M. Ohyama, H. Kouzuka, and T. Yoko, Thin Solid Films, 306, 78 (1997). [DOI: https://doi.org/10.1016/s0040-6090(97) 00231-9]
  13. Y. J. Kang, K. Lim, S. Jung, D. G. Kim, J. K. Kim, C. S. Kim, S. H. Kim, and J. W. Kang, Sol. Energy Mater. Sol. Cells, 96, 137 (2012). [DOI: https://doi.org/10.1016/j.solmat.2011.09.045]
  14. Y. K. Lee, J. Lee, H. Lee, J. Y. Lee, and J. Y. Park, Appl. Phys. Lett., 102, 123112 (2013). [DOI: https://doi.org/10.1063/1.4799156]
  15. J. Lee, I. Lee, T. S. Kim, and J. Y. Lee, Small, 9, 2887 (2013). [DOI: https://doi.org/10.1002/smll.201203142]
  16. B. S. Kim and S. J. Baik, J. Korean Inst. Electr. Electron. Mater. Eng., 29, 241 (2016). [DOI: https://doi.org/10.4313/jkem.2016.29.4.241]