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Abstract. Ribonucleotide reductase (RNR) of the yeast Saccharomy-
ces cerevisiae is a tetrameric protein complex, consisting of two large and 
two small subunits. The small subunits Y2 and Y4 form a heterodimer and 
are encoded by yeast genes RNR2 and RNR4, respectively. Loss of Y4 in 
yeast mutant rnr4∆ can be compensated for by up-regulated expression of 
Y2, and the formation of a small subunit Y2Y2 homodimer that allows for 
a partially functional RNR. However, rnr4∆ mutants exhibit slower growth 
than wild-type (WT) cells and are sensitive to many mutagens, amongst 
them UVC and photo-activated mono- and bi-functional psoralens. Cells 
of the haploid rnr4∆ mutant also show a 3- to 4-fold higher sensitivity to 
the oxidative stress-inducing chemical stannous chloride than those of the 
isogenic WT. Both strains acquired increased resistance to SnCl2 with age 
of culture, i.e., 24-h cultures were more sensitive than cells grown for 2, 
3, 4, and 5 days in liquid culture. However, the sensitivity factor of three 
to four (WT/mutant) did not change significantly. Cultures of the rnr4∆ 
mutant in stationary phase of growth always showed higher frequency of 
budding cells (budding index around 0.5) than those of the corresponding 
WT (budding index <0.1), pointing to a delay of mitosis/cytokinesis. 
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Introduction

Ribonucleotide reductase (RNR) has a central role in cellular metabolism as it 
catalyzes, using free-radical chemistry (Thelander and Reichard, 1979; Stubbe and van 
Der Donk, 1998), the reduction of ribonucleoside diphosphates to the corresponding 
deoxyribonucleoside diphosphates, an essential step in de novo biosynthesis of 
deoxyribonucleoside triphosphates (dNTPs). The active RNR of yeast is a tetrameric 
protein complex consisting of two large subunits, either a Y1Y1 homo- or a Y1Y3 
heterodimer and two small ones that form the Y2Y4 heterodimer (Huang and Elledge, 
1997; Wang et al., 1997). Y2 and Y4 are encoded by yeast genes RNR2 and RNR4 and 
share extensive sequence homologies to all characterized Rnrp small subunits from 
other organisms. Rnr4p is unique in that it lacks 6 of 16 residues conserved in nearly all 
Rnr2ps, including 3 residues involved in coordinating iron. As a result, Rnr4p cannot 
accommodate a diiron center. Rnr4p is required for viability in some yeast strains under 
all conditions and in some others only at lower temperature (Huang and Elledge, 1997; 
Wang et al., 1997).

The critical role of adequate RNR activity in providing correct dNTP pools during 
the cell cycle and after repair-requiring DNA damage is secured by complex and multi-
layered mechanisms of transcriptional and feedback regulation (Elledge et al., 1993; Yao 
et al., 2003; Klinkenberg et al., 2006; An et al., 2006). Imbalanced dNTP pools with one 
(Brendel, 1985) or all (Chabes et al., 2003) dNTPs at higher-than-normal concentrations lead 
to increased mutation rates, while an rnr4Δ mutant with a Y2Y2 small subunit homodimer 
that contains 15 times less diferric-tyrosyl radical co-factor (Perlstein et al., 2005) and 
apparently lower dNTP pools exhibits slow growth, increased mutagen sensitivity and 
lower induced mutagenesis (Strauss et al., 2007). 

When demand in yeast for dNTPs is low, the Y2Y4 small RNR heterodimer co-
localizes in the nucleus whereas the large subunit Y1Y1 homodimer resides outside the 
nuclear membrane (Yao et al., 2003). Upon DNA damage, when demand for dNTPs is high, 
the Y2Y4 heterodimers leave the nucleus as one protein complex (An et al., 2006) to bind to 
the large RNR homo- or heterodimer subunit (Lee and Elledge, 2006; An et al., 2006). 

Stannous chloride (SnCl2) is a weak mutagen as defined by its genotoxicity in 
unicellular prokaryotes (Bernardo-Filho et al., 1994; Dantas et al., 1996) and eukaryotes 
(Pungartnik et al., 2005) as well as with respect to its DNA interactions in mammalian cells 
(McLean and Kaplan, 1979). SnCl2 is known to produce reactive oxygen species (ROS) 
(McLean et al., 1983; Dantas et al., 1999), most probably via Fenton-like reactions (McLean et 
al., 1983), and thus the genetic endowment of yeast with anti-oxidative defense systems, e.g., 
superoxide dismutases, catalases, glutathione, and their oxidative stress-induced expression 
could contribute to Sn2+-resistance (Viau et al., 2006). 

Anaerobically growing microorganisms, especially obligate anaerobes, generally 
have a higher metal sensitivity than aerobically living microbial species. The facultative 
anaerobe yeast Saccharomyces cerevisiae can grow in the presence or absence of 
respiratory metabolism in glucose-containing cultures (sugar fermentation, followed by 
alcohol respiratory metabolism after the diauxic shift); therefore, cells of different stages 
of the same culture serve as a good model to test the influence of general metabolism 
on sensitivity to Sn2+ (Viau et al., 2006). Since Strauss et al. (2007) have shown that the 
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rnr4Δ mutant strain has a higher-than-wild-type (WT) budding index, and exponentially 
growing (LOG) cells are known to be much more sensitive to SnCl2 exposure (Viau et al., 
2006), we hypothesized that the lack of fully functional RNR would leave the cells in a 
LOG-type growth phase and more sensitive to SnCl2.

Material and Methods

Yeast strains and growth conditions

The genotypes of the isogenic yeast strains used in this study are haploid WT BY10000 
(BY4742) Mata his3∆1 leu2∆0 lys2∆0 ura3∆0 and haploid mutant rnr4∆ which contains the 
disruption cassette YGR180c::kanMX4 in its RNR4 gene [EUROSCARF]. Media, solutions 
and buffers were prepared according to Burke et al. (2000). Complete medium (YPD - 2% 
glucose, 2% peptone, 1% yeast extract) was used for routine growth of yeast cells. To ascertain 
yeast respiratory competence and for elimination of spontaneously accumulated petites, all 
strains were pre-grown on YPG media (glucose replaced by 2% glycerol) before being grown 
in YPD. Exponential growth of cells (LOG) was ascertained by microscopic counting (cell 
titer <2 x 107/mL with budding frequency >30%). 

Yeast exposure to SnCl2 and survival 

Stationary (STAT) cells were harvested from YPD liquid shaking cultures (30°C) 
after growth for 1 to five days. Sensitivity to SnCl2 [25 mM, 60 min at 30°C] of twice 
saline-washed STAT cell suspensions was routinely determined in saline (0.9% NaCl). 
Thereafter, SnCl2-mediated cell aggregates were de-clumped in 0.067 M phosphate buffer, 
pH 7.4, followed by vigorous vortexing before further dilution in phosphate buffer and 
plating (Pungartnik et al., 2005). Cells were plated on YPD and survival was determined 
after 2 days at 30°C. The results presented are the means of at least 3 independent 
experiments, and the standard deviation and statistical analyses were calculated by 
GraphPad Prism program.

Results and Discussion

Cells of yeast mutant rnr4∆ exhibited 3- to 4-fold higher sensitivity to SnCl2 
exposure than that of the isogenic WT. Both WT and the sensitive rnr4∆ mutant acquired 
increased resistance to SnCl2 with age, i.e., time of the STAT phase, with highest resistance 
reached after five days of liquid culture. However, the sensitivity factor of three to four 
(WT/mutant) did not change significantly (Figure 1). Cultures of the rnr4∆ mutant in 
STAT phase always showed a higher frequency of budding cells (budding index not lower 
than 0.5) than did the corresponding WT cells (budding index <0.1, Figure 2) pointing to a 
delay of mitosis/cytokinesis in the mutant. Thus, the failure of rnr4∆ mutant cells to reach 
truly STAT phase may make them more vulnerable to the genotoxic action of SnCl2. Yeast 
LOG cells are known to be highly sensitive to SnCl2, i.e., an exposure to a thousand-fold 
lower SnCl2 concentration than that used with STAT cells has the same cytotoxicity, this 
effect being independent of repair or anti-ROS protection genes (Viau et al., 2006).
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Figure 1. Sensitivity to SnCl2 exposure (1 h, 25 mM) of WT and rnr4Δ mutant grown for up to 5 days in liquid 
culture. WT (filled squares); rnr4∆ (open squares).

Figure 2. Budding index of WT (filled columns) and rnr4∆ (open columns) strains during 5 days in liquid culture. 
Error bars are not visible when deviation is very small.
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A yeast cell in STAT phase has an intrinsic acquired higher resistance to most 
genotoxic agents (with the exception of some radiation damage) as it has a dramatically changed 
metabolism with respect to many stress factors, amongst them metal import, exogenous or 
endogenous ROS; exponentially growing (LOG) cells, on the other hand, interact highly 
with the environment in that there is abundant transport via the membranes (active import 
and export permeases). Thus, LOG cells are much more sensitive to toxic metals, as active 
transport of one exogenously abundant metal ion, e.g., Sn2+, interferes negatively with metal 
homeostasis, which in turn may cause severe metabolic disturbances, leading to cell death 
(Viau C, personal communication). 

The failure of rnr4∆ mutants to reach a true STAT phase, therefore, may explain 
their higher sensitivity to SnCl2. This would imply that failure to complete mitosis/cytokinesis 
after up to 5 days in liquid culture would be associated with some metabolic steps typical 
of LOG cells. The lower processivity of RNR in an rnr4Δ mutant (Y1Y3Y2Y2) that is due 
to the replacement of the small subunit heterodimer Y2Y4 by the homodimer Y2Y2 leaves 
the cell with significantly lower-than-normal dNTP pools (Perlstein et al., 2005). These non-
adequate dNTP pools lead to somewhat slower cell growth and to significantly increased UVC 
sensitivity apparently by not allowing efficient repair of DNA damage in rnr4Δ (Strauss et 
al., 2007) and in the mutant harboring the leaky RNR4 mutant allele pso3-1 (Henriques and 
Moustacchi, 1980; Cassier et al., 1980; Brendel et al., 1998). The observed sensitivity to SnCl2 
of the mutant rnr4Δ may thus reflect the (partial) loss of capacity to repair DNA damage. 
The increased Sn2+ sensitivity of several repair mutants is on the same order of magnitude 
as that seen for rnr4Δ (Viau et al., 2006), and the lack of UVC-induced mutagenesis in 
rnr4Δ points to impaired function of error-prone translesion repair processes (Strauss et al., 
2007). It is, therefore, most plausible that an rnr4Δ mutant cell will show a moderate higher-
than-WT sensitivity to SnCl2 regardless of cell age (i.e., its LOG or STAT status). This was 
verified by comparing the SnCl2 sensitivity of WT and rnr4∆ mutant cells in LOG phase, 
where exponentially growing rnr4∆ mutant cells were again 3-4 times more sensitive than 
cells of the isogenic WT in the same growth phase (data not shown). Thus, the most plausible 
explanation is that the generally higher Sn2+ sensitivity of the rnr4Δ mutant is due to its lower-
than-WT dNTP pools that impair the repair of SnCl2-induced DNA lesions.
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