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ABSTRACT. Despite recent advances in osteosarcoma diagnosis and 
therapy, much remains unclear about the molecular mechanisms involved 
in the disorder, and the discovery of novel drug-targeted genes is essential. 
We explored the potential molecular mechanisms and target genes 
involved in the development and progression of osteosarcoma. First, we 
identified the differentially expressed genes in osteosarcoma patients and 
matching normal controls. We then constructed a differential expression 
network based on differential and non-differential interactions. Pathway-
enrichment analysis was performed based on the nodes contained in 
the main differential expression network. Centrality analysis was used to 
select hub genes that may play vital roles in the progression of human 
osteosarcoma. Our research revealed a total of 176 differentially expressed 
genes including 82 upregulated and 94 downregulated genes. A differential 
expression network was constructed that included 992 gene pairs (1043 
nodes). Pathway-enrichment analysis indicated that the nodes in the 
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differential expression network were mainly enriched in several pathways 
such as those involved in cancer, cell cycle, ubiquitin-mediated proteolysis, 
DNA replication, ribosomes, T-cell receptor signaling, spliceosomes, 
neurotrophin signaling, oxidative phosphorylation, and tight junctions. 
Six hub genes (APP, UBC, CAND1, RPA, YWHAG, and NEDD8) were 
discovered; of these, two genes (UBC and RPA) were also found to be 
disease genes. Our study predicted that UBC and RPA had potential as 
target genes for the diagnosis and treatment of osteosarcoma.
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INTRODUCTION

Osteosarcoma (OSA) is the most frequently diagnosed primary bone tumor, and mainly 
occurs in children and young adults, with a second peak in middle age (Osaki et al., 2011). OSA 
is characterized by aberrant proliferation of malignant mesenchymal cells accompanied by the 
production of an osteoid matrix, immature bone, and intricate karyotypes (Federman et al., 2009). 
The tumor is characterized by very high morbidity, early location metastasis, and poor survival rate 
(Nagarajan et al., 2011; Salah et al., 2014). Currently, the prognosis for patients with metastatic 
diseases including OSA remains serious. Although many studies have described significant 
advances in surgery and adjuvant chemotherapy in OSA (Bacci et al., 2006; D’Adamo, 2011), 
surgery cannot halt the rapid metastasis of the tumor lesions, and chemotherapy is largely restricted 
by the development of resistance and severe side effects. Therefore, the discovery of new targets 
that have potential for OSA diagnosis and therapy is imperative.

Gene copy number alterations in OSA have been confirmed by comparative genomic 
hybridization (CGH) and single-nucleotide polymorphism (SNP) microarray analysis following the 
introduction of high-speed and high-throughput DNA microarray technologies. It is universally 
acknowledged that the occurrence and development of OSA is closely associated with the 
chromosome arms 6p, 8q, and 17p, and there are many additional reported regions (Squire et 
al., 2003; Kresse et al., 2010). The effects of copy number changes can be demonstrated by the 
upregulation or downregulation of gene expression levels in the affected chromosomal regions. 
To date, various published works have focused on analyzing OSA-related gene expression 
individually, but few researchers have explored the underlying mechanisms and target genes of 
OSA using robust bioinformatics.

Recently, a “differential network” (DN) technique (Ideker and Krogan, 2012) has been 
developed to extract disease-related edges by comparing interactions occurring across different 
static networks. Since genes and gene products operate not as a single unit but as part of a 
biochemical interaction, we assume that molecular interactions are disrupted by epigenetic 
or genetic factors; the disruption ultimately leads to molecular dysfunction. Therefore, the 
“dysfunctional interaction” concept, defined by the molecular interactions that show obvious 
differences between the wild-type and the disease condition, is proposed as a means of modeling 
the underlying human disease development and progression. However, a molecular interaction 
comprises two nodes and one edge, and the quantitative assessment of its change under different 
conditions is not straightforward. We combine the two types of perturbations when referring to 
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“dysfunctional interaction”. Type I dysfunctional interactions are caused by edge perturbations. In 
other words, the co-expression relationship of the molecular interaction is changed differentially, 
and it is called a “differential interaction” because it directly changes the molecular interactions. 
Type II dysfunctional interactions are called “non-differential interactions” because they indirectly 
affect interactions through node changes. Note that non-differential interactions involve an edge 
that lacks significant differential strength, but its two linked nodes are both differentially expressed 
genes, and are therefore closely associated with biological processes. With the dysfunctional 
interaction concept, a novel type of molecular network, the “differential expression network” (DEN), 
has been developed. Compared with the traditional differential gene (DG) and DN techniques, 
DEN is better at describing the phenotype differences at the network level. From the network 
perspective, DEN not only includes DG and DN, but also covers “non-differential interactions”, 
which are all missed by the DN method.

In this study, we constructed a DEN by extracting “differential interactions” and “non-
differential interactions”, which are capable of characterizing the initiation and progression of 
OSA. First, we downloaded the microarray data of the OSA model and sham controls from the 
ArrayExpress database. The altered expression profile was analyzed to identify the differentially 
expressed genes (DEGs). Additionally, the DEN was built based on the protein-protein interactions 
(PPI) combined with the gene expression profiles to determine hub genes via the degree centrality 
analysis of the DEN. Furthermore, we employed Database for Annotation, Visualization and 
Integrated Discovery (DAVID) software to show the significant Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways included in the DEN revealing abnormal biological processes. In 
our study, the elucidation of genes and pathways using the DEN method revealed potential new 
therapeutic targets.

MATERIAL AND METHODS

Data source

We extracted the gene microarray expression profiles of osteoblasts and mesenchymal 
stem cells (MSCs) E-GEOD-33382 (Kresse et al., 2010) from the ArrayExpress database (http://
www.ebi.ac.uk/arrayexpress/). Gene expression analysis was performed on the seven normal 
controls and pretreatment diagnostic biopsies of 84 resectable osteosarcoma samples (Kresse et 
al., 2010). The clinical details of these samples are listed in Table 1. All the microarray datasets in 
CEL form and annotation information were downloaded for further exploration.

Screening of DEGs

After obtaining the raw expression datasets, quartile data normalization was performed 
using the Robust Multi-array Average (RMA) method (Ma et al., 2006). We then used the Student 
t-test to identify DEGs between OSA patients and normal controls (Ritchie et al., 2007). Finally, we 
selected the DEGs with values meeting the cut-off criteria (P value of less than 0.05 and |log-fold 
change (FC)| larger than 2).

Generic PPI network

Because proteins rarely exert their functions individually, it is very important to explore 
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protein interactions by studying functional protein groups (Srihari and Leong, 2012). For this paper, 
we downloaded the whole PPI datasets from the Biological General Repository for Interaction 
Datasets (BioGrid, http://thebiogrid.org/). Cytoscape 2.1 software was employed to establish PPI 
networks (Shannon et al., 2003). In the original PPI network, a total of 15,750 genes and 248,584 
interactions were contained in the BioGrid. Based on the transcript data of E-GEOD-33382, we 
then secured another PPI network including 10,084 genes and 11,6546 interactions.

LUMC = Leiden University Medical Center; WWUM = Westfälische Wilhelms-Universität Münster; IOR = Istituto 
Ortopedico Rizzoli.

Category	 Patient characteristics	 Number of biopsies (%)

Institution	 LUMC, Netherlands	 36 (42.9)
	 WWUM, Germany	 32 (38.1)
	 IOR, Italy	 12 (14.3)
	 Sweden	 3 (3.6)
	 Norway	 1 (1.2)
Gender	 Male	 54 (64.3)
	 Female	 29 (34.5)
	 Unknown	 1 (1.2)
Age	 >20 years	 19 (22.6)
	 <20 years	 64 (76.2)
	 Unknown	 1 (1.2)
Location	 Femur	 40 (47.6)
	 Tibia/Fibula	 28 (33.3)
	 Humerus	 11 (13.1)
	 Axial skeleton	 1 (1.2)
	 Elsewhere	 4 (4.8)
Histological subtype	 Osteoblastic	 52 (61.9)
	 Minor subtype	 11 (13.1)
	 Chondroblastic	   9 (10.7)
	 Fibroblastic	 7 (8.3)
	 Telangiectatic	 4 (4.8)
	 Unknown	 1 (1.2)
Metastasis	 Yes	 14 (16.7)
	 No	 69 (82.1)
Huvos grade	 1 or 2	 38 (45.2)
	 3 or 4	 33 (39.3)
	 Unknown	 14 (16.7)

Table 1. Clinical details of the 84 patients selected.

Calculating Spearman correlation coefficients of gene pairs

The Spearman correlation coefficient method was applied to evaluate the strength of 
gene interactions. For each edge in the PPI network, the Spearman correlation coefficient was 
calculated separately using gene expression values under different conditions (healthy controls 
and OSA patients), which served as A1 and A2, respectively.

Determining the threshold of differential interaction

Two models (one for cases, the other for controls) were established randomly, and each 
model contained 200,000 gene pairs. The Spearman correlation coefficients in the two models 
(A1, A2) were computed. The absolute correlation coefficient values (|A1-A2|) were obtained. After 
aligning the absolute correlation coefficient values in descending order and setting the P value 
threshold at 0.01, we observed that the absolute value was 1.422. The Spearman value of the 
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116,546 relationships based on BioGrid and transcript data were arrayed in descending order. We 
selected those differential relationships that had an absolute correlation coefficient value of greater 
than 1.422, and at least one Spearman correlation coefficient of greater than 0.7.

Construction of DEN

The edges with absolute correlation coefficient values of greater than 1.422 and at least 
one of A1 or A2 greater than 0.7 were considered to represent differential interactions. Other gene 
pairs with |A1-A2| values of less than or equal to 1.422 and two nodes that were both DEGs were 
taken to represent non-differential interactions. The DEN was constructed by incorporating all the 
differential and non-differential interactions. The network was constructed using Cytoscape 2.1 
software.

Node centrality analysis

We used classical network centrality analysis in this study. Network centrality analysis, in 
which each centrality presents a possible biological meaning in a protein network, plays a signifi-
cant role in the investigation of biological networks. The centrality method involves degree central-
ity, closeness centrality, betweenness centrality, etc. As the simplest topological index, the degree 
corresponds to the number of adjacent nodes, where “adjacent” means directly connected (Kos-
chützki and Schreiber, 2008). Nodes with a high degree are called “hub genes”, and combine some 
nodes with a lower degree, thereby indicating a central role in the network (He and Zhang, 2006). 
Networks that display a distribution approximating a power law are referred to as scale-free net-
works (Pietsch, 2006). A scale-free network is typically a natural network, is mainly dominated by 
hub genes, and is intrinsically robust to random attacks, but is susceptible to selected alterations 
(Jeong et al., 2001).

Identification of the disease genes contained in the DEN

We downloaded the genes associated with OSA (denoted as “disease genes” for 
convenience in this study) from the GeneCards database at the website http://www.genecards.
org/. GeneCards is a recognized and comprehensive human gene database that provides all 
known and predicted transcriptomic, genomic, proteomic, and functional genetic information (Harel 
et al., 2009). The disease genes underlying disease development and progression in the DEN 
were selected in a complex statistical way.

Pathway-enrichment analysis

The KEGG pathway database is a comprehensive and authoritative database that 
provides almost all biochemical pathways. In our study, the online DAVID software, which includes 
a set of novel and powerful tools, was used for KEGG pathway enrichment to identify the main 
biochemical pathways for the nodes in DEN (Huang et al., 2007). We selected P values of less 
than 0.01 and gene counts of larger than or equal to 9 as the cut-off criteria for KEGG pathway-
enrichment analysis.
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RESULTS

Identification of DEGs

Based on the statistical analysis of microarray datasets between OSA patients and the 
normal controls, a total of 176 DEGs (82 upregulated and 94 downregulated genes) were screened 
according to the criteria: |logFC| > 2.0 and P value <0.05.

Construction of DEN

As described above, the DEN should be constructed by complementarily considering both 
differential and non-differential interactions. We identified 966 differential interactions with |A1-A2| 
>1.422 and at least one of A1 or A2 >0.7. Moreover, there were 26 gene pairs with |A1-A2| values 
of less than or equal to 1.422 but with corresponding nodes that were both DEGs. In other words, 
there were 26 non-differential interactions. Therefore, a DEN including 992 gene pairs (1043 nodes) 
was constructed. The main DEN is shown in Figure 1. By comprehensive statistical analysis, we 
constructed a DEN comprising 101 disease genes constituting 247 disease gene pairs.

Figure 1. Differential expression network analysis of osteosarcoma. Nodes represent the proteins (genes) and edges 
represent the protein interaction. Blue indicates genes with a lower degree and green indicates hub genes.

Centrality analysis to obtain hub genes

Analysis of the nodes degree of the DEN revealed that the degree distribution was close 
to a power law, illustrating that the DEN was a scale-free network, as depicted in Figure 2. Six 
genes (APP, UBC, CAND1, RPA, YWHAG, and NEDD8) with high connectivity degree (>14) 
were selected as the hub nodes and might play an important role in the progression of OSA. The 
connectivity degrees of the hub genes are shown in Table 2. Two of the hub genes, UBC and RPA, 
are also disease genes, which indicates their more crucial role in the oncogenesis of OSA.
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Figure 2. Scattergram of gene degree distribution in the differential expression network. The degree distribution 
presents a power law, indicating the character of the scale-free network.

Gene	 Gene description	 Degree	 DEGs	 Disease genes

APP	 Amyloid precursor protein	 52	 False	 False
UBC	 Ubiquitin-conjugating enzyme gene	 35	 False	 True
CAND1	 Cullin-associated and neddylation-dissociated 1	 20	 False	 False
RPA	 Replication protein A	 19	 False	 True
YWHAG	 Musculus tyrosine 3 monooxygenase/tryptophan 5-monooxygenase activation protein	 14	 False	 False
NEDD8	 Neural precursor cell expressed, developmentally down-regulated 8	 14	 False	 False

Table 2. Statistical results of connectivity degrees and other information of hub genes.

DEGs = differentially expressed genes. Gene symbols also represent the corresponding proteins; degree represents 
the degree of connectivity for each gene.

KEGG pathway-enrichment analysis

To gain further insight into the function of the nodes in the DEN, the DAVID software 
was used to determine the significant dysregulated KEGG enrichment pathways. The obtained 
pathways with P values < 0.01 and gene counts ≥9 are shown in Table 3. From the results, we can 
see that the genes in the DEN were mainly enriched in pathways involving cancer, the cell cycle, 
ubiquitin-mediated proteolysis, DNA replication, ribosomes, T-cell receptor signaling, spliceosomes, 
neurotrophin signaling, oxidative phosphorylation, and tight junctions.

DISCUSSION

OSA is the most common malignant bone cancer that occurs in humans. Although the 
aggressive use of surgical techniques and chemotherapy have improved survival, the prognosis for 
OSA patients remains poor, and treatment still presents severe challenges (Akiyama et al., 2008). 
Therefore, more effective anti-OSA targets are urgently sought.
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In this study, we researched the gene expression profiles of OSA through DEN, expecting 
to select target genes associated with OSA. Analysis of the constructed DEN revealed that six 
genes (APP, UBC, CAND1, RPA, YWHAG, and NEDD8) were hub nodes and none was a DEG. 
DEGs, showing significantly different expression profiles in the case and control groups, are usually 
found using traditional statistical techniques, such as the t-test or fold change (Goñi et al., 2008; 
Ray and Zhang, 2010). Although DEGs are regarded as candidates for a role in pathogenesis, 
they are generally selected out separately, while co-expression of genes is ignored (Kostka and 
Spang, 2004). In this paper, six hub genes, not including the DEGs, were screened by DEN, which 
comprised “differential interactions” and “non-differential interactions”. DEN, which complements 
traditional methods, can be used to interpret gene interactions from a new perspective. Among the 
six hub genes obtained using DEN, UBC and RPA were also disease genes, which suggested that 
UBC and RPA might be more selectively involved in OSA.

By performing KEGG pathway enrichment analysis of the nodes contained in DEN, we 
found that the hub gene UBC participates in the ubiquitin-mediated proteolysis pathway. The 
expression of ubiquitin-conjugating enzyme (E2) UBC13, which belongs to the UBC family, is 
significantly upregulated in metastatic breast cancer (Fidler, 2003). UBC13 first heterodimerizes 
with Uev1a and then catalyzes the formation of lysine 63-linked polyubiquitin chains, which govern 
the PPIs associated with protein kinase activation and DNA damage repair (Bhoj and Chen, 2009; 
Wang et al., 2012). For some immune cells, UBC13 is indispensable for IκB kinase (IKK)-NF-
κB activation, but a more important function of UBC13 is the activation of the MAPK signaling 
pathway (Yamamoto et al., 2006a; Yamamoto et al., 2006b). It has been reported that UBC13 
is also required for triggering MEKK1 (mitogen-activated protein kinase kinase kinase 1), TGFβ 
(transforming growth factor β)-activating kinase 1 (TAK1), and the downstream MAPK cascade 
(Matsuzawa et al., 2008). Crucially, MEKK1 and TAK1 are also required for the metastasis of 
cancer cells (Cuevas et al., 2006; Safina et al., 2008). A recently published paper showed that 
UBC13 controls breast cancer metastasis via TAK1-p38 MAP kinase cascades (Wu et al., 2014).

The KEGG functional enrichment results showed that RPA is involved in the DNA replication 
pathway. RPA is a heterotrimeric ssDNA-binding protein and plays a crucial role in S-phase DNA 

ID	 Term	 Count	 P value

hsa03010	 Ribosome	 30	 8.41E-12
hsa04120	 Ubiquitin-mediated proteolysis	 34	 4.60E-09
hsa04110	 Cell cycle	 29	 3.67E-07
hsa03420	 Nucleotide excision repair	 14	 2.45E-05
hsa05130	 Pathogenic Escherichia coli infection	 16	 2.71E-05
hsa03050	 Proteasome	 14	 5.30E-05
hsa05120	 Epithelial cell signaling in pylori infection	 16	 2.40E-04
hsa03430	 Mismatch repair	   9	 2.68E-04
hsa04114	 Oocyte meiosis	 21	 3.85E-04
hsa05220	 Chronic myeloid leukemia	 16	 7.32E-04
hsa04660	 T-cell receptor signaling pathway	 20	 8.19E-04
hsa05212	 Pancreatic cancer	 15	 1.46E-03
hsa03040	 Spliceosome	 21	 2.24E-03
hsa04722	 Neurotrophin-signaling pathway	 20	 4.29E-03
hsa05215	 Prostate cancer	 16	 4.34E-03
hsa03030	 DNA replication	   9	 6.55E-03
hsa00190	 Oxidative phosphorylation	 20	 7.21E-03
hsa05200	 Pathways in cancer	 40	 7.39E-03
hsa04914	 Progesterone-mediated oocyte maturation	 15	 7.88E-03
hsa04530	 Tight junction	 20	 9.94E-03

Table 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway-enrichment results.
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replication, DNA excision repair, DNA recombination, and other DNA metabolic pathways (Wold, 
1997; Fanning et al., 2006). Additionally, RPA is involved in the ATR/Chk1 pathway and it recruits 
and interacts with other proteins, such as ATRIP, Nbs1, Rad17, and Rad9, that are required for 
the replication stress response (Zou et al., 2003; Majka et al., 2006; Xu et al., 2008; Oakley et al., 
2009). Recruitment of ATRIP, Nbs1, Rad17, and Rad9 entails the loading of TopBP1 followed by 
the activation of ATR (Zou and Elledge, 2003; Xu et al., 2008; Shiotani et al., 2013). This triggers a 
critical surveillance network of signaling pathways that mediate the cellular response to replication 
stress. Cancer cells with activated oncogenes cause a massive increase in stress during replication. 
Compared with normal cells, the presence of higher replication stress levels in cancer cells opens 
up a therapeutic opportunity to target RPA for preferentially killing cancer cells.

CONCLUSION

In light of the preliminary study, we discovered that the pathogenesis of osteosarcoma is 
closely related to several other pathways including those involving cancer, the cell cycle, ubiquitin-
mediated proteolysis, DNA replication, and ribosomes. Based on the DEN, we also confirmed that 
six genes (APP, UBC, CAND1, RPA, YWHAG, and NEDD8) might play key roles in osteosarcoma, 
and that two genes (UBC and RPA) have potential as biomarkers for the diagnosis and treatment 
of human osteosarcoma.
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