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ABSTRACT. Self-organized systems, genetic regulatory systems 
and other living systems can be modeled as synchronous Boolean 
networks with stable states, which are also called state-cycle 
attractors (SCAs). This paper summarizes three classes of SCAs 
and presents a new efficient binary decision diagram based 
algorithm to find all SCAs of synchronous Boolean networks. After 
comparison with the tool BooleNet, empirical experiments with 
biochemical systems demonstrated the feasibility and efficiency 
of our approach.
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INTRODUCTION

Recently, Boolean networks (Glass, 1985) have been widely used in biochemical sys-
tems. A book by Kauffman (Kauffman, 1995) gives a detailed description of this phenomenon. 
Each cell in our body coordinates the activities of about 100,000 genes along with the enzymes 
and proteins they produce. We can model a genetic regulatory system as a Boolean network. 
The genes follow Boolean rules to activate (switch ON) and inhibit (switch OFF) the next genes 
according to the activities of their molecular inputs, which lead to a network that follows a tra-
jectory in its state space. Ultimately, the trajectory converges onto a state-cycle attractor (SCA) 
around which the system will cycle persistently. Therefore, we can find all of the SCAs to under-
stand a biochemical system deeply. Before calculating all of the SCAs, we need to model a ge-
netic regulatory system as a Boolean network. The Boolean network consists of a set of Boolean 
nodes or elements whose values are determined by other nodes or elements in the network. An 
element or node of a Boolean network has the value 1 (ON) or 0 (OFF) at any given time. These 
values are equivalent to active and inhibited elements of a genetic regulatory system.

There are many ways to model genetic regulatory systems, such as synchronous (Faure 
et al., 2006; Remy et al., 2006), asynchronous (Faure et al., 2006; Garg et al., 2008) and semi-
asynchronous (Faure et al., 2006) models. Recently, Heidel (Heidel et al., 2003) and Farrow 
(Farrow et al., 2004) found the SCAs in synchronous Boolean networks. Zhao (Zhao, 2005) 
also proved the computing SCAs’ methods in synchronous Boolean networks to be a nondeter-
ministic polynomial time (NP) complete problem. Garg et al. (2008) proposed a resolution to 
calculate SCAs for synchronous and one class of asynchronous Boolean networks. Based on 
Garg’s contribution, Ay et al. (2009) developed a faster method to search for the SCAs of self-
loops and simple-loops. Dubrova (Dubrova et al., 2005) presented the basic principles of the 
tool BooleNet, which focuse on synchronous Boolean networks. Most of them used a binary 
decision diagram (BDD) (Lee, 1959) as the basic package to calculate the SCAs.

This paper summarizes three classes of SCAs and presents a new efficient BDD-based 
algorithm to find all SCAs of synchronous Boolean networks (FSSBN). The algorithm can 
calculate the number of SCAs and enumerate all of the states of the SCAs. When compared 
with BooleNet, experimental results show that our FSSBN algorithm is more efficient and 
feasible for large synchronous Boolean networks than pervious algorithms, and it can be used 
for real large biochemical system models.

The structure of this paper is organized as follows: in the next section 2, after a brief 
review of synchronous Boolean networks (SBNs), three classes of SCAs in SBNs are present-
ed and defined. Then, we take Boolean models of two real biochemical systems as examples. 
In the following section, we present two properties and a theorem of SBNs. Then, we devise 
an algorithm, FSSBN, wherein we can find all of the SCAs and enumerate all of the states of 
the SCAs. In the results section, we use two experimental benchmarks to demonstrate that our 
approach is highly efficient and feasible. All of these benchmarks are from realistic biochemi-
cal systems. The final section concludes the paper and touches on future work.

MATERIAL AND METHODS

Three classes of SCAs for SBNs

In this section, we give a brief review of the SBNs and define three classes of SCAs 
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in SBNs. Then, we take Boolean models of two real biochemical systems as examples. Syn-
chronous Boolean networks.

An SBN is a set of n nodes (node1, node2, node3,..., noden) which interact with each 
other in a synchronous manner (Farrow et al., 2004). At each given time t ∈ N each node has 
only one of two different values: 1 (ON) or 0 (OFF). Thus, the synchronous Boolean network 
can be described as a set of equations.

...

It can also be described in a simplified form.

where nodes (node1,t, node2,t, node3,t,..., noden,t) are Boolean values at time t, NODEt = (node1,t, 
node2,t, node3,t,…, noden,t),  is the Boolean function from {0,1}n to {0,1}n, 
which will transition the Boolean value of n nodes at time t to their Boolean values at time t + 1.

Basic definition

Given an SBN with n nodes and its Boolean function f, the Boolean value of NODEt at 
time t is called a state. One computation by f is called a step. S is the set with 2n different states. 

Definition 1. Predecessor: Given an SBN with n nodes and a Boolean function f, 
state  is the predecessor of state , if , where , 1  We use 

 to represent that  is the predecessor state of .
Definition 2. Successor: Given an SBN with n nodes and a Boolean function f, 

state  is the successor of state , if , where , 1  We use 
(  to represent that  is the successor state of .

Remark 1. Given an SBN with n nodes, for all the states, if we choose an in-
put state, there will be only one determined output state by the Boolean function 

, where  and  represent the 
state at time t and t + 1, respectively. Just like Figure 1, there is only one  after 
each . However, if given an , there is at least one  
that will reach it, shown in Figure 2.
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Definition 3. Path: Given an SBN with n nodes, we call  a 
path, where .

Definition 4. SCA: Given an SBN with n nodes, the path  
is called an SCA, where all states in the path are different except state  and , 

. We use SCA to represent an SCA in an SBN. The state number of an SCA is Length 
(SCA).

Remark 2. Given an SBN with n nodes, all SCAs are paths, but a path is not neces-
sarily an SCA. Therefore, .

Three classes of SCAs

There are many kinds of SCAs in an SBN. Based on the nature of the SCA, SCAs can 
be categorized into one of three classes as follows:

Definition 5. SCA without a branch: Given an SCA of an SBN, if every state in the 
SCA has only one predecessor, it is an SCA without a branch, as shown in Figure 3A.

Definition 6. SCA with some branches: Given an SCA of an SBN, if some (but not 
all) states in the SCA have at least two predecessors, where , it is an SCA 
with some branches, as shown in Figure 3B.

Definition 7. SCA with all branches: Given an SCA of an SBN, if every state s in the 
SCA has at least two predecessors, it is an SCA with all branches, as show in Figure 3C.

We use two realistic biochemical system examples from previous reports (Robert, 
1986; Heidel et al., 2003) to analyze the conditions of the SCAs. To begin, we use a simple af-
fine system (line terms and constant terms) (Milligan and Wilson, 1993; Heidel et al., 2003) as 
an example. After reduction, the Boolean logic functions for this system are as follows. In this 
simple affine system, there are three Boolean nodes: A, B and C. Thus, the system has 23 dif-
ferent states. The visualized expressions of this example are shown in Figure 4A. The network 
contains two independent SCAs, and each state has only one predecessor state. Obviously, this 
SCA satisfies Definition 5 and is an SCA without a branch. Meanwhile, it is hard to resolve the 
large Boolean networks in this case. We will prove it in Section 3.

Figure 1. One input state determined one output state in synchromous Boolean network.

Figure 2. One output state exist at least one input state in synchromous Boolean network.
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The second example is found in sigmoidal kinetics systems (Glass, 1973; Heidel et 
al., 2003). We chose one condition from the complicated environment with the following dif-
ferential equations:

Figure 3. Model of each kind of state-cycle attractor (SCA). A. Model of SCA without branch; B. model of SCA 
with some branches; C. model of SCA with all branches.
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After simplification of the above differential equations, we can get the Boolean logic 
functions (Heidel et al., 2003). This is a nonlinear logic function with negative feedback.

This example shows that there are also three Boolean nodes: A, B, and C. According 
to the Boolean functions, we can get two independent SCAs (0,1,1)→(1,0,0)→(0,1,1) and 
(0,0,1)→(0,0,1), as shown in Figure 4B. The right SCA is a special case of Definition 7. The 
left SCA is suitable for Definition 6.

Figure 4. Example of each kind of state-cycle attractor (SCA). A. Example of SCA without branch; B. example of 
SCA with branches.
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The two above examples show that an SBN generally contains two or three kinds of 
SCAs mixed together. Suppose there are three different SBNs with the same SCA length. The 
SCAs of each SBN fall into one class of SCAs. We know that when the SCAs fall under the 
model of Figure 3C, it is the easiest to resolve, whereas falling under Figure 3B is the second 
most difficult to resolve, and falling under the model of Figure 3A is the most difficult to re-
solve. We will prove this in the next section.

Finding SCAs
In this section, we first prove the main properties of an SBN. Then, we present our al-

gorithm: finding SCAs in synchronous Boolean networks (FSSBN). Lastly, we use a theorem 
to demonstrate which kind of SCA is easy to resolve.

Theoretical result

Property 1. Given an SBN with n nodes,  If 
we start from , we will get to an SCA before 2n steps by the Boolean function 

.
Proof: Given an input state and applying it to the Boolean function 

, there will be 2n+1 states after 2n steps. However, there 
are 2n different states. Applying the pigeonhole principle, an SCA will be reached.

Property 2. Given an SBN with n nodes where , for all of the states of the Bool-
ean network, the network contains at least one SCA. 

Proof: According to Property 1, if we choose one state , it will 
reach an SCA. Thus, there exists at least one SCA.

FSSBN algorithm

We used BDD to find SCAs in SBNs. First, we imported the Boolean logic function 
model or formula, which corresponds to the structure of the SBN. Using on the model, we can 
set up the BDD functions for the transition relations. We then initialized all variables, as shown 
in Step 1 of Algorithm 1. The integer variable SCA_num saves the number of SCAs. The BDD 
variable current_set stores all of the states that are not past. The BDD variable current_path 
records the current passed state. The BDD variable tmp_set covers all of the states that can 
reach the current_path. The BDD variables s_input and s_output are the input state and output 
state, respectively. The BDD variable travel_state covers all of the passed states. The function 
Choose_A_State() will pick a state from current_set. We can enumerate the states of SCAs us-
ing the Print() function. According to Property 2, given a Boolean function of an SBN, there is 
at least one SCA. Hence, if we start from any random state, we will eventually reach an SCA. 
Combining the above properties with BDD operations, we can compute the number of SCAs 
and enumerate them. The pseudo code is shown in Algorithm 1.

Theorem 1. Given three different synchronous Boolean networks with n nodes and 
their Boolean functions  and , their SCAs have the same length .  The SCAs of  fall 
under Definition 5 and are represented by . The SCAs of  fall under Definition 6 and 
are represented by , in which the states of branches have only one predecessor and all of 
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the branches have a length . The SCAs of  fall under Definition 7 and are represented by 
, in which the states of branches have only one predecessor and all of the branches have 

a length . The computing time will be .
Proof: Suppose the function time of  is . 

There are 2n different states. We analyzed the time of the above SBNs as a list according to Al-
gorithm 1.

1.	 The number of  is . The computing time of one SCA is . The 

total computing time is .

2.	 Suppose that the  have m branches, where . The worst com-

puting time of the SCAs is . The best comput-

ing time of the SCAs is . The average computing 

time of the SCAs is .

3.	 The number of  is . The worst computing time of the SCAs 

is . The best computing time of the SCAs is 

. The average computing time of the SCAs is

.

Then, we see that

Algorithm 1. Finding SCAs in SBNs using BDD (FSSBN)

Input: Import the formula of SBNs, including n Boolean nodes. According to the 
formula, setup the BDD function  and its BDD set 

.
1: Initial:
int SCAs_num = 0;
BDD current_set = S;
BDD current_path = ;
BDD tmp_set = ;
BDD s_input = ; s_output = ;
2: while(current_set≠ )do
3: s_input = Choose_A_State (current_set);
4: current_path = current_path + s_output;

.
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5: f(s_input,s_output) = 1;
6: while((current_path∩s_output)== )do
7: current_path = current_path + s_output;
8: s_input = s_output;
9: f(s_input, s_output) = 1;
10: end while
11: Print (s_output, f);
12: //Find all the reachable states to current_path set
13: f(tmp_set, current_path) = 1;
14: while((tmp_set−current_path)≠ )do
15: current_path = current_path + tmp_set;
16: f(tmp_set,current_path) = 1;
17: end while
18: SCAs_num+ +;
19: current_set = currentset - currentpath;
20: current_path = ;
21: tmp_set = ;
22: s_input = ;
23: s_output = ;
24: end while
25: Output: return SCAs_num

RESULTS AND DISCUSSION

In this section, we performed some experiments and compared the results of our algo-
rithm to the results of BooleNet (Dubrova et al., 2005). The results show that our algorithm is 
efficient and highly feasible. We divided our experiments into two parts. The first part contains 
seven Boolean models of realistic organisms. The second part is a simple example that was 
previously published (Heidel, et al., 2003; Farrow et al., 2004. We generated some random 
benchmarks according to its features. All experiments are performed on an Intel CoreTM CPU 
4300 1.80 GHz with 2 gigabytes memory on an Ubuntu 9.04 Linux server.

Seven classical models

In this subsection, we used seven classical SBNs models of real organisms: Arabi-
dopsis thaliana (Chaos et al., 2006), budding yeast (Li et al., 2004), Drosophila melanogaster 
(Albert and Othmer, 2003), fission yeast (Davidich and Bornholdt, 2008), mammalian cell 
(Faure et al., 2006), T-cell receptor (Klamt et al., 2006) and T-helper cell (Luis and Ioannis, 
2006). The experimental results are shown in Table 1.

Table 1 shows the runtime of Algorithm 1 and BooleNet (Dubrova, et al., 2005) using 
the same conditions. “Timeout” represents the running time over 12x3600 = 43,200 s. “E” 
indicates that no result was returned. According to the results, we know that the number of 
SCAs is low. Almost all of the SCAs have some branches; therefore, it is easy to calculate. 
For D. melanogaster (Alber and Othmer, 2003), our routine wastes too much time to set up 
its Boolean functions. As the experimental results show, Algorithm 1 computes faster and 
resolves larger SBNs than BooleNet.
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Random benchmarks

The experimental results of the previous section show that the number of SCAs is too 
small. Therefore, in this subsection, we will use a real organism model of protein-protein in-
teractions (Gonze and Goldbeter, 2001; Heidel, et al., 2003) to extend our benchmarks. This is 
a model of phosphorylation/DE phosphorylation cycles. The Boolean logic function equations 
are the following. There are A, B, C, and D Boolean nodes. Each node can only be determined 
by the next one’s current value. This is a feature that is very easy to obtain. It can be extended 
to any number of nodes.

Table 2 shows the protein experimental results. The SCAs of the protein network fall 
under Definition 5. Therefore, every state in the protein network Boolean model is in an SCA. 
The number of SCAs will increase with more Boolean nodes. The experimental results show 
that our algorithm is more efficient than BooleNet.

Benchmark	 Nodes	                    Time (s)		                          SCA No.

		  BooleNet	 FSSBN	 BooleNet	 FSSBN
		  (Dubrova et al., 2005)		  (Dubrova et al., 2005)

Arabidopsis thaliana (Chaos et al., 2006)	 15	 0.024	 0.023	 10	 10
Budding yeast (Li et al., 2004)	 12	 0.042	 0.009	   7	   7
Drosophila melanogaster (Albert and Othmer, 2003)	 52	 Timeout	 1576	 E	   7
Fission yeast (Davidich and Bornholdt, 2008)	 10	 0.044	 0.009	 13	 13
Mammalian cell (Faure et al., 2006)	 10	 0.019	 0.010	   2	   2
T-cell receptor (Klamt et al., 2006)	 40	 0.036	 0.018	   9	   9
T-helper cell (Luis and Ioannis, 2006)	 23	 0.045	 0.009	   3	   3

Table 1. Experiment results of seven classical models.

Benchmark	 Nodes	                           Time (s)		                              SCA No.

		  BooleNet (Dubrova et al., 2005)	 FSSBN	 BooleNet (Dubrova et al., 2005)	 FSSBN

Protein
	   4	   0.005	 0.002	       6	 6
	   9	   0.040	 0.013	     60	 60
	 18	 14.231	 4.714	 14602	 14602
	 27	 Timeout	   4453.169	 E	 4971068
	 30	 Timeout	 39625.512	 E	 35792568
	 33	 Timeout	 Timeout	 E	 E

Table 2. Experiment results of protein.

In this paper, we applied BDD to SBNs of biochemical systems. We summarized and 
defined three classes of SCAs in SBNs. We listed two properties and one theorem of SBNs and 
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we devised an automatic algorithm (FSSBN) to find SCAs in SBNs. The experimental results 
demonstrate that the algorithm (FSSBN) can resolve large SBNs and calculate the number of 
SCAs in SBNs effectively.
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