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ABSTRACT. With the development of molecular marker technology, 
crop breeding has been accelerated by marker-assisted selection for the 
improvement of quantitative traits. However, due to the traits’ polygenic 
nature, traditional marker-assisted selection methods are ill-suited for 
identification of quantitative trait loci. Genomic selection (GS) was 
introduced into crop breeding to achieve more accurate predictions by 
considering all genes or markers simultaneously. We used dozens of 
sequence-characterized amplified region (SCAR) markers for genotyping 
soybean varieties, and we identified markers associated with hundred-seed 
weight. The best linear unbiased predictor and Bayesian liner regression 
methods were used to construct GS models to predict the hundred-seed 
weight trait based upon genotype information for trait selection. Both 
GS models showed good prediction performance in soybean, as the 
correlation coefficient between genomic estimated breeding values and 
true breeding values was as high as 0.904. This indicated that GS was 
performed effectively based on dozens of SCAR markers in soybean; 
these markers were of low density but easily detectable. Therefore, the 
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combination of GS modeling and highly effective molecular marker 
technology involving SCAR markers can facilitate genetic breeding in 
soybean. This approach may also be suitable for genetic selection in other 
crops, such as wheat, maize, and rice.

Key words: Genomic selection; SCAR markers; Hundred-seed weight; 
Soybean

INTRODUCTION

Over the past 2 decades, molecular marker technology has advanced rapidly and been 
successfully applied to the genetic breeding domain of animals and crops (Varshney et al., 
2005). Molecular markers allow for the detection of stable genetic elements in individuals, and 
are more reliable than phenotype traits, which are variable under different environments. There-
fore, molecular markers have gained popularity among genetic breeders aiming to improve spe-
cific desirable traits of animals or plants. This approach is known as marker-assisted selection 
(MAS), and involves screening of major genes, or genetic loci known widely as quantitative 
trait loci (QTL), that control development of some traits. Breeders screen groups of individuals 
with the trait of interest to identify the related genetic loci, which can then be used for genetic 
improvement by backcrossing the associated genomic fragments into target individuals. Mean-
while, the QTL information is analyzed to identify the precise genes or other genetic elements 
that determine the trait’s development. This method is known as map-based cloning.

MAS is currently used in genetic breeding of many animal and plant species, espe-
cially for crop genetic improvement, from mapping QTL by making bi-parental populations 
to cloning and applying the genes. However, 3 flaws that are inherent to the MAS approach 
have limited its widespread adoption. First, the bi-parental mapping populations used in most 
QTL studies, for which representative genetic elements are inadequate, do not readily translate 
to breeding applications. Second, the QTL analysis is based on many assumptions, including 
no interaction between genotype and environment, no epistatic effect, and no pleiotropism. It 
assumes that the genes or genetic elements controlling the traits are unbiased, which is likely 
not the case since it is known that complex genetic-regulatory networks exist between most 
of the genetic elements and traits studied to date. Third, QTL analysis is used to determine the 
major effective loci of a quantitative trait, which often identifies a genomic region that con-
tains many genes that may act in concert or contribute to a trait to a different extent. However, 
many traits of crops are not determined by single genes mediating large effects. Instead, they 
are controlled by several small-effect genes. When QTL are used to estimate these effects, the 
results will be biased, and the small-effect QTL will be missed entirely as a result of using 
stringent significance thresholds (Gross and Olsen, 2010).

The development of molecular detection technology in recent years has yielded sig-
nificantly cost-effective methods for detecting genotypes. Due to the large amount of molecu-
lar markers identified to date, geneticists have developed association mapping (AM) for use 
in natural populations. AM has been proposed to mitigate the lack of relevance of bi-parental 
populations in QTL identification; therefore, many QTL of crops have been mapped in this 
way (Zhu et al., 2008). For example, the use of AM in wheat, maize, and soybean has greatly 
promoted crop genetic breeding. Nevertheless, AM retains the disadvantage of biased effect 
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estimates, making it a poor predictor of line performance. AM is also better suited for manipu-
lating QTL controlled by a few large-effect genes than those controlled by many small-effect 
genes. Unfortunately, complex polygenic traits are always determined by complex combina-
tions of small-effect genes, which are crucial for the formation of new crop varieties. There-
fore, AM is not well suited for many alleles of small-effect segregates, and substantial, reliable 
effects determined by many small-effect genes cannot be identified.

To minimize the limitations of traditional MAS, a new model has been proposed for 
genetic breeding, known as genomic selection (GS) (Heffner et al., 2009; Jannink et al., 2010). 
GS is a form of MAS that simultaneously estimates all marker effects (or genetic loci) across 
the whole genome to calculate genomic estimated breeding values (GEBVs) (Meuwissen et 
al., 2001). The GS does not define or identify subsets of significant markers, which could be 
used for MAS in QTL analysis or AM. Instead, it analyzes all markers of a population in total, 
to explain the total genetic variance with dense genome-wide markers, and sums all markers’ 
effects to predict the breeding value of individuals. GS has been successfully applied in ge-
netic breeding of both animals and plants, including bovine (e.g., Meuwissen et al., 2001; de 
Roos et al., 2007; Hayes et al., 2010), mouse (Legarra et al., 2008), wheat (e.g., Crossa et al., 
2007; Pérez et al., 2010; Ober et al., 2011), and maize (Messina et al., 2011). In addition, many 
statistical models have been developed to analyze the different types of genetic and trait data 
from GS, such as best linear unbiased predictor (BLUP), stepwise regression, ridge regression 
(RR), and Bayesian estimation (Bayes A or B) (e.g., Messina et al., 2001; Lee et al., 2008; de 
los Campos et al., 2009; Luan et al., 2009; Hayes et al., 2010; Pérez et al., 2010; Crossa et al., 
2010; Macciotta et al., 2010; Schulz-Streeck and Piepho, 2010; Zhang et al., 2010; Ober et al., 
2011). These statistical models are used for training the GS models with a training population, 
and predicting which GEBVs will have significantly improved polygenic traits controlled by 
many loci of small effect (e.g., Solberg et al., 2008; Rafalski, 2010).

Soybean, one of the most important oil and vegetable protein sources for animals and 
humans, is an ancient tetraploid with a complicated genome and large numbers of repeated 
regions. Therefore, efforts in genetic breeding of soybean are complicated and advancements 
have been slow. Genomic duplications have resulted in many small-effect genes, which hin-
ders QTL identification. In addition, since parental genomic features limit QTL identification 
by the population mapping method, its use is also restricted in soybean.

Therefore, in this study, sequence-characterized amplified region (SCAR) markers 
were selected for genotyping soybean varieties. By combining these data with hundred-seed 
weight (HSW) phenotype data, association analysis was performed to screen large-effect 
markers for MAS in soybean. In addition, the genotype and phenotype data from the various 
soybean varieties were used as a training population to construct genomic selection models 
by RR-BLUP and Bayesian linear regression (BLR), and the accuracy of GEBV predictions 
in GS was estimated.

MATERIAL AND METHODS

Plant materials

A total of 288 soybean varieties were used for association mapping and genomic se-
lection, all of which were obtained from the Chinese Crop Germplasm Information System 
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(CGRIS; http://icgr.caas.net.cn/cgris_english.html), and phenotypic data about HSW of these 
soybean varieties were also collected from CGRIS websites (seen in Table S1). DNA was 
extracted from fresh leaf samples of all soybean varieties by the cetyltrimethylammonium 
bromide procedure (Murray and Thompson, 1980), and the products were dissolved in 50 µL 
distilled water. Quality of DNA was checked by resolution on 0.8% agarose gels, and DNA 
concentration was determined by spectrophotometric measurements (UV-2550; Shimadzu).

Genotyping soybean varieties by SCAR markers

A total of 79 SCAR markers from across the whole genome were selected according 
to previous research (e.g., Shu et al., 2010; Shu et al., 2011; the accession numbers of these 
markers are listed in Table S2) for use in our study. These markers were amplified for genotyp-
ing of the soybean varieties. Amplifications were performed in 25-μL reaction mixtures con-
taining 30 ng template DNA, 0.2 μM each primer, 800 μM dNTPs, 1.5 mM MgCl2, 1 U rTaq 
polymerase, and 2.5 μL 10X PCR buffer. All primer pairs were first tested with the touchdown 
PCR program: 10 min at 94°C; 30 cycles of 30 s at 94°C, 30 s at 60°C minus 0.5°C per cycle, 
and 40 s at 72°C; and 10 min at 72°C for a final extension. PCR products were resolved on 
a 2% agarose gel stained with ethidium bromide, and dominant and recessive homozygous 
results were recorded as “zero” and “one”, respectively.

Association mapping in soybean

The genome-wide association mapping was performed using the mixed model de-
scribed by Kang et al. (2010):

y u xβ ε= + + (Equation 1)

where y is the phenotypic outcome (the HSW); the variable u models the genetic background 
of each variety as a random effect; β is a vector of fixed effects that can model both envi-
ronmental factors and population structure; and ε  is a model residual. The parameter β was 
estimated using the generalized least-squares approach, as described by Kang et al. (2010).

Statistical models

In parametric models for GS, the linear model was expressed in matrix notion as follows:

(Equation 2)y X β ε= +

where y = {yi}, which is the phenotypic outcome (HSW); β = {βi} is a marker covariate matrix; 
and X = {xij} is a weight matrix regressed on marker covariates, while ε = {εi} is a model residual.

Since many parameters needed to be determined, and few samples had been collected, 
the estimation of marker effects via multiple regression by ordinary least squares was not fea-
sible. Instead, penalized estimation methods, such as RR and the Bayesian Lasso (BL), were 
used to estimate marker effects. In the RR model, the above optimization problem was simpli-
fied as suggested by Meuwissen et al. (2001):

http://geneticsmr.com//year2013/vol12-3/pdf/gmr2589_supplementary.pdf
http://geneticsmr.com//year2013/vol12-3/pdf/gmr2589_tables2.pdf
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where RR adds a constant, λ , to the diagonal of the matrix of coefficients, making the so-
lution unique and shrinking the estimate of marker effects towards zero, with the extent of 
shrinkage increasing as λ  increased.

Since RR had reduced all marker effects equally, which was presumably an incorrect 
assumption that could lead to over-shrinking of large effects, Bayesian methods were adopted 
to relax this assumption and better model marker effects of differing sizes. The combination 
of the RR model with the BL, as described by Crossa et al. (2010) and Pérez et al. (2010), ad-
dressed this issue of the GS model with the following formula.

(Equation 3)' '[ ]X X I X yλ β
∧

+ = , equivalently, ' 1 '[ ]X X I X yβ λ
∧

−= +

(Equation 4)1* F F R R L Ly X X Xµ β β β ε= + + + +

where y is a vector of response values and µ  is an intercept; and FX , RX , and LX  are 
incidence matrices for the vectors of effects Fβ , Rβ , and Lβ , respectively. The vector of 
regression coefficients Fβ , Rβ , and Lβ  were marker effects assigned by “fixed” assignation, 
RR estimation, and BL, respectively.

Genomic selection in soybean

The phenotype data of these varieties was collected by CGRIS, which provided formal 
authorization for the genetic analysis described in this study. All the statistical analyses were 
performed on the open source statistics software, R, with an RR-BLUP and BLR package. As-
sociation mapping in soybean was performed using the command “genome-wide association” 
of RR-BLUP in the software. For GS, the soybean varieties were divided into 2 groups by the 
Gibbs sampler, one being the training population (N = 238 individuals) and the other being the 
validation population (N = 50). The genomic selections were trained using the RR-BLUP and 
BLR methods as previously described (Pérez et al., 2010). The correlation between predicting 
the GEBVs and the true HSW values in the validation population was calculated for evaluat-
ing prediction effects of GS. The GS analysis employed 1000 replicates, and the GS models 
for RR-BLUP and BLR were compared to evaluate the predictive effects of the two methods.

RESULTS

Genotyping the soybean varieties based on SCAR markers

Seventy-nine SCAR markers were genotyped in 288 soybean varieties. As shown 
in Figure S1, the longer bands were insertion sites, while the shorter ones were sites without 
insertion mutation. The 79 SCAR markers yielded more than 22,000 genotype data, shown in 
Table S1, and polymorphism index analysis showed that SCAR polymorphisms were lower 
than those of SSR markers, but consistent with single nucleotide polymorphism (SNP) mark-
ers. The results indicated that these SCAR markers had other similar characters as SNP mark-
ers; for example, both have a bivalent (bi-allelic) character, which makes the SCAR markers 
well-suited for association mapping and genomic selection. However, as compared to SNP 

http://geneticsmr.com//year2013/vol12-3/pdf/gmr2589_supplementary.pdf
http://geneticsmr.com//year2013/vol12-3/pdf/gmr2589_supplementary.pdf
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markers, SCARs are technically easier to detect. The PCR and agarose gel methods used with 
SCAR are low cost and simple.

AM in soybean varieties

Association analysis of the 79 SCAR markers in soybean varieties identified 6 markers 
that are associated with HSW of soybean (significance level: 0.05). As shown in Table 1, many 
of these 6 SCAR markers were associated with functional genes, with roles in soybean seed 
development; as such, they are expected to represent promising candidates in gene association 
mapping. The marker SCAR114 target gene, Glyma05g08110, encodes a protein similar to the 
LEUNIG protein in Arabidopsis. Since LEUNIG regulates flower development, the soybean 
gene Glyma05g08110 may also play an important role in soybean flower development, which 
ultimately affects HSW. The SCAR356 target gene, Glyma10g07280, encodes the poly(A)-
binding protein 7, that regulates gene expression at the post-transcription level, but has yet 
to be directly correlated with soybean HSW. SCAR356 was located about 7 kb from a gene 
named Glyma10g07300, which encodes a product similar to the chloroplast outer membrane 
protein of Arabidopsis. Chloroplast outer membrane protein 1 is known to be expressed in 
plant pollen mother cells, where it functions in sepal differentiation, which would influence 
the soybean trait HSW.

Marker	 P value	 Target gene	 Function annotation

SCAR114	 0.0374	 Glyma05g08110	 Similar to LEUNIG of Arabidopsis
SCAR182	 0.0500	 Glyma03g25750	 Lysyl tRNA synthetase
SCAR235	 0.0366	 Glyma01g32680	 Putative mitogen-activated protein kinase kinase kinase
SCAR356	 0.0417	 Glyma10g07280	 PolyA-binding protein 7
GmAu1-46	 0.0332	 No target gene
GmAu1-474	 0.0337	 No target gene

Table 1. Significance of tests for association between soybean sequence-characterized amplified region (SCAR) 
markers and hundred-seed weight for the 288 soybean varieties using a mixed model.

Genomic selection in soybean

The soybean genomic selection method was performed based on RR-BLUP and BLR 
methods, and the prediction results showed high correlation with true values of HSW in soy-
bean (Figures 1 and 2). In RR-BLUP and BLR genomic selection, the correlation between 
GEBVs and true breeding values were 0.692 and 0.690, respectively. While the maximum 
relationship values were 0.854 and 0.904, both of which were higher than previously deter-
mined for wheat and maize (e.g., Bernardo and Yu, 2007; Crossa et al., 2010). The results in-
dicated that the HSW trait was controlled by many small-effect genes, which was more suited 
to genomic selection than the traditional MAS methods. The RR-BLUP prediction standard 
deviation was relatively small, as were the range of the correlation coefficient of GEBVs and 
true breeding values. These results indicated that the prediction was stable, suggesting that 
the differences between sample populations had little effect on the prediction results (Figure 
2). In contrast, the BLR prediction standard deviation and correlation coefficient were larger 
compared to RR-BLUP prediction (e.g., Pérez et al., 2010; Crossa et al., 2010; Schulz-Streeck 
and Piepho, 2010). The use of a different sampling population would thus be expected to pro-
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duce different prediction effects, as suggested by the fluctuating values obtained with different 
soybean populations (Figure 2). When the training population was used, the prediction was in 
good agreement with the true breeding values (Figure 1).

Figure 1. BLR correlation coefficient of genomic estimated breeding values and true breeding values. HSW = 
hundred seed weight.

Figure 2. Distribution of correlations between predictions from RR-BLUP and BLR models and true breeding 
values.
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DISCUSSION

Future of genomic selection in genetic breeding

To identify the genes or genetic loci that control agronomic traits of crops, genetic 
breeders have utilized mapping of QTLs or major genes (Varshney et al., 2005). Advance-
ments in high-throughput genotyping molecular technologies have allowed geneticists to de-
velop the MAS method of association mapping (Zhu et al., 2008), which allows for screening 
QTL in a natural population and has substantially reduced the time and labor required to map 
a population. However, both the QTL mapping and association mapping MAS methods are 
better suited to few large-effect genes, while many traits of animals and crops are determined 
by several small-effect genes; this feature limits the methods’ ability to identify genes control-
ling traits in animals and crops.

To minimize the limitations of QTL mapping and AM, Meuwissen et al. (2001) pro-
posed a genomic selection method for MAS. The GS method does not rely on only the most 
significant markers for MAS, but considers all genetic effects of molecular markers across the 
entire genome to calculate GEBVs. GS uses a “training population” of individuals, which have 
been both genotyped and phenotyped, to develop a model for predicting GEBVs of a “can-
didate population” based on their genotypic information. These GEBVs cannot elucidate the 
mechanism of effective genes, but they are the ideal selection criterion in genetic breeding. In 
breeding cycles, GS is capable of selecting much earlier traits with genotypic information, and 
does so at lower cost and reduced labor time, which has revolutionized both animal and plant 
breeding (e.g., Wong and Bernardo, 2008; Heffner et al., 2009; Calus, 2010).

Advantage of SCAR markers in genetic breeding

SCAR markers facilitate detection of large fragments that have been inserted or de-
leted in the genome. SCAR features site-specificity, reproducibility, low cost, simplicity, and 
less time-consuming to results. Therefore, it has been widely used in genetic breeding strat-
egies of plants and animals, such as genetic mapping, map-based cloning, and molecular-
assisted breeding. Traditional SCAR markers were developed from the conversion of RAPD 
or AFLP markers; the initial development process, however, was complex, expensive, slow, 
and with low throughput, which limited the application and development of SCAR markers 
(Noguera et al., 2005). We previously developed a multitude of SCAR markers in soybean, 
which have since greatly decreased the cost of genotyping soybean (e.g., Shu et al., 2010; Shu 
et al., 2011). Furthermore, since the SCAR marker is bi-allelic, similar to the SNP markers, it 
is well-suited to any genetic research, including GS. Currently, the SSR and SNP markers are 
both widely used for GS in animals and crops; however, the SSR markers have many alleles 
per locus, which has added more potentially confounding parameters to the subsequent statis-
tical analysis and limits its application in the GS model (Solberg et al., 2008). The SNPs are 
bi-allelic markers and detected by high-throughput genotyping. However, the instrumentation 
required for genotyping SNPs is extremely costly and the data analysis is very complicated, 
which has restricted their application in crop genetic breeding. However, SCAR markers, with 
their advantages of easy detection and bi-allelic nature, are ideal for genetic research in crops. 
In addition, most of the SCAR markers used in this study are gene-targeting markers, which 
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make them effective for genomic selection in soybean. The correlation coefficient between 
GEBVs and true breeding values was high (0.904), especially considering the low density of 
the SCAR genome-wide. Thus, SCARs are highly effective markers in genomic selection, as 
compared to SSRs or SNPs.

Application of GS in soybean genetic breeding

In soybean genetic breeding, many QTL have been identified by population map-
ping. Beneficial genes, such as those conferring abiotic- or disease-resistance and linked to 
QTL, have been mapped, identified, and manipulated to produce more robust soybean crops. 
However, QTL mapping is population-dependent, and the selection effect decreases in popu-
lations with different genomic structures. To identify more general molecular markers for 
MAS, association mapping in a natural population was developed for screening molecular 
markers, which are related to desired traits of crops. QTL for important traits in soybean have 
been identified by AM using SSR markers, including those related to protein content and iron 
deficiency (e.g., Wang et al., 2008; Jun et al., 2008). Importantly, however, AM cannot resolve 
problems of small-effect genes and multi-gene interaction, which has limited the application 
of AM in soybean.

Before genomic selection, the BLUP method should be used to predict yield perfor-
mance of cross-based agronomic traits in soybean. This approach has previously guided the 
selection of high-performance parents for crossing to improve the yield trait of soybean plants 
(e.g., Panter and Allen, 1995a,b). However, the number of useful agronomic traits is small, and 
the agronomic traits are highly variable in different environments. Therefore, we constructed 
a genomic selection method based on genotype information for predicting the soybean trait 
HSW, which is stable in individuals. The results showed that GS was a more precise predictor 
than the selection-based phenotype data. Since GS in soybean considers the whole genome, 
it is more suitable for soybean genetic breeding than traditional MAS or selection based on 
other agronomic traits.

In summary, we used SCAR markers to genotype a population of different soybean 
varieties. RR-BLUP and BLR were used to perform the GS of HSW. The results showed 
that low-density SCAR markers sufficiently genotyped soybean individuals, and that the 
GEBVs from GS were highly correlated with the true breeding values. Therefore, GS would 
be suitable for estimation of crop breeding traits, not only in soybean, but also possibly in 
other economically important crops, such as wheat, maize, and rice. Finally, the collective 
data from our study indicates that GS may resolve the current limitations of the crop genetic 
breeding process.
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