
©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

Methodology

FastJoin, an improved neighbor-joining
algorithm

J. Wang, M.-Z. Guo and L.L. Xing

School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, Heilongjiang, P.R. China

Corresponding author: J. Wang
E-mail: wangjuanangle@hit.edu.cn

Genet. Mol. Res. 11 (3): 1909-1922 (2012)
Received January 10, 2012
Accepted March 12, 2012
Published July 19, 2012
DOI http://dx.doi.org/10.4238/2012.July.19.10

ABSTRACT. Reconstructing the evolutionary history of a set of
species is an elementary problem in biology, and methods for solving
this problem are evaluated based on two characteristics: accuracy
and efficiency. Neighbor-joining reconstructs phylogenetic trees by
iteratively picking a pair of nodes to merge as a new node until only one
node remains; due to its good accuracy and speed, it has been embraced
by the phylogeny research community. With the advent of large
amounts of data, improved fast and precise methods for reconstructing
evolutionary trees have become necessary. We improved the neighbor-
joining algorithm by iteratively picking two pairs of nodes and merging
as two new nodes, until only one node remains. We found that another
pair of true neighbors could be chosen to merge as a new node besides
the pair of true neighbors chosen by the criterion of the neighbor-joining
method, in each iteration of the clustering procedure for the purely
additive tree. These new neighbors will be selected by another iteration
of the neighbor-joining method, so that they provide an improved
neighbor-joining algorithm, by iteratively picking two pairs of nodes to
merge as two new nodes until only one node remains, constructing the
same phylogenetic tree as the neighbor-joining algorithm for the same

1910

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

J. Wang et al.

input data. By combining the improved neighbor-joining algorithm
with styles upper bound computation optimization of RapidNJ and
external storage of ERapidNJ methods, a new method of reconstructing
phylogenetic trees, FastJoin, was proposed. Experiments with sets
of data showed that this new neighbor-joining algorithm yields a
significant speed-up compared to classic neighbor-joining, showing
empirically that FastJoin is superior to almost all other neighbor-joining
implementations.

Key words: Phylogenetic tree; Neighbor-joining algorithm; FastJoin;
Phylogenetic analysis

INTRODUCTION

Evolutionary trees are the basic tools for analysing differences between species, so
phylogenetic analysis is a critical step in inferring the evolution of species and comprehend-
ing the information of genes and proteins. In order to better understand evolution of species, a
precise method of reconstructing phylogenetic trees seems very important.

Neighbor-joining (Saitou and Nei, 1987; improved by Studier and Keppler, 1988)
based on the minimum evolution principle is a widely used method for constructing phyloge-
netic trees, due to its elegance and speed (Nakhleh et al., 2002). Neighbor-joining is a greedy
algorithm, which endeavors to minimize the sum of all branch lengths of the reconstructed
tree. It requires a distance matrix D = (Dij)nxn as input, where Dij is the observed distance be-
tween taxa i and j, which is computed by some evolution models. More specifically, neighbor-
joining method begins with a star tree, then iteratively picks two nodes adjacent to the root and
then joins them, by inserting a new node between the root and the two selected nodes. Among
all possible pairs of nodes, the pair of nodes, corresponding to the minimum sum computed by
Equation 1, is merged as one node.

() , 1 , , ,

1 1 1()
2 2 2 2

N

ij ik jk ij st
k i j s t N s t i j

S D D D D
N N≠ ≤ < < ≠

= + + +
− −∑ ∑ (Equation 1)

Each iteration needs to consider O(n2) possible joins, and the whole neighbor-joining
algorithm needs to iterate n times approximately, so neighbor-joining method requires time
in O(n3) and space in O(n2) to reconstruct phylogenetic trees, where n is the number of taxa.

Here some related studies are listed. QuickTree (Howe et al., 2002) is an efficient
implementation of the canonical neighbor-joining algorithm by making a pre-processing to the
identical sequences. It increases the speed by a factor in time compared with neighbor-joining
method. Accordingly it costs O(n3) time. QuickJoin (Mailund and Pedersen, 2004; Mailund et
al., 2006), RapidNJ (Simonsen et al., 2008), NINJA (Wheeler, 2009), and the acceleration of
neighbor-joining algorithm (Zaslavsky and Tatusova, 2008) all produce the same phylogenetic
trees as the neighbor-joining method and improve running time by using some techniques
to find the globally minimum value of sum matrix rather than by traversing the whole sum
matrix in each iteration. Although all these methods are O(n3) running time in the worst case,

1911

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

FastJoin, an improved neighbor-joining algorithm

in practice they do not need so much time. The ERapidNJ method (Simonsen et al., 2011)
improves the performance of RapidNJ algorithm by means of the external memory to reduce
the memory requirements of RapidNJ for reconstructing phylogenetic trees of the large data
sets. Relaxed neighbor-joining (RNJ) (Evans et al., 2006; Sheneman et al., 2006) and fast
neighbor-joining (Elias and Lagergren, 2005, 2009) modify the selection criteria. FastTree
(Price et al., 2009, 2010) improves not only the performance of neighbor-joining method, but
also the computation time and memory time of distance matrix.

In this paper, we present a theoretically improved version of canonical neighbor-
joining that joins two pairs of nodes with the global minimum sum and the second minimum
sum to merge as corresponding to two new nodes in each iteration instead of joining one
pair of nodes with the global minimum sum for one iteration of canonical neighbor-joining,
which lowers the computing time of canonical neighbor-joining and is proven in theory. And
then combine this improved neighbor-joining algorithm with styles upper bound computation
optimization of RapidNJ and external storage of ERapidNJ to create a new method of recon-
structing phylogenetic trees - FastJoin. We evaluate the performance of FastJoin by comparing
running times of an implementation of the FastJoin method with other implementations for
building canonical neighbor-joining trees.

METHODS

Canonical neighbor-joining

For simplicity we use the term nodes to describe the inserted terms and taxa. Neighbor-
joining is a hierarchical clustering algorithm. It takes a distance matrix D = (Dij)nxn as input,
where Dij is the distance between taxa i and j. Taxa are then iteratively joined using a greedy
algorithm, which minimizes the total sum of branch lengths in the reconstructed tree. On the
whole, the algorithm needs n-3 iterations for rootless trees, where n is the number of taxa. Two
taxa i and j are selected and joined into a new node in each iteration, selected by minimizing

() () ()2ij ijQ r D u i u j= − − − (Equation 2)

where

() lk
k

u l D=∑ (Equation 3)

And r is the number of unresolved nodes. Equation 2 is the deformation of Equation 1.
When the minimum Q-value

{ }
0 01 0 ,min |ij i j r i jq Q Q≤ ≤= = (Equation 4)

is found, D is updated, by removing the i0’th and j0’th rows and columns and inserting a new
row and a new column distances between the new node and the unresolved taxa, and then r
reduces by one. This-operation continues until r ≤ 3. Distance between the new node formed by

1912

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

J. Wang et al.

joined the two taxa i0 and j0, denoted by a = i0∪j0, and an old taxon l, is calculated by

()0 0 0 0
2al i l j l i jD D D D= + − (Equation 5)

Each iteration of the canonical neighbor-joining algorithm takes time O(r2) to traverse
all of Q. Therefore, it needs O(n3) time and O(n2) space. The result of the algorithm is an
unrooted bifurcating tree where the initial taxa correspond to leaves and each joining corre-
sponds to inserting an internal node in the tree.

RapidNJ and ERapidNJ

RapidNJ computers an upper bound on the values of Q, which is used to decrease the
search scope when searching for a minimum Q-value. For utilizing the upper bound two new
matrixes, S and I, are needed. S is a sorted representation of D with each row in increasing
order and I maps S to D. Memory consumption is increased due to S and I, which limits infer-
ence of large phylogenetic trees although it reduces the running time of the neighbor-joining.
ERapidNJ is the extension for RapidNJ that reduces the memory requirements of RapidNJ and
allows phylogenies with more than 50,000 taxa to be inferred efficiently on a desktop com-
puter. Both RapidNJ and ERapidNJ reconstruct phylogeny trees by identifying and joining the
pair of nodes with global minimum transformed distance.

Improved neighbor-joining algorithm

The neighbor-joining method has proven that for a purely additive tree, i.e., its dis-
tance matrix D is purely additive, taxa i and j are true neighbors when Qij is smallest among
all Qst’s. According to this theory, the neighbor-joining method was set up. Here we can prove
that the smallest value

{ { } { } { } { } { } }
0 0 0 0 0 00 , 0 0 0 0min | \ | \ | \ | \ |st s t r i l l r li l r j l l r lj l r s tq Q Q Q Q Q Q≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤= = (Equation 6)

That is, the smallest value of the remaining members of Q removed the i0’th and j0’th
row and column members, also gives the true neighbors when the distance matrix D is purely
additive, where

0 0i jQ is the smallest Q-value.
Saitou and Nei (1987) have proven this lemma: if i and j are true neighbors, then Qij

is the minimum value in their rows and columns. Following is the description and proof of a
new theorem. In the following theorem and the whole process of proving, we let the distance
matrix D be purely additive.

Theorem: If i and j are chosen by the Equation 6, then i and j are true neighbors.
Proof: In the whole process of proving, we suppose that the smallest Q-value is Q12 and the smallest value of the remaining members of Q removed the 1’th and 2’th row and

column is Qij for simplification. So 1 and 2 are true neighbors proven by Studier and Keppler,
here i,j ≠ 1,2. Now we prove that i and j are true neighbors.

When n ≤ 4, this conclusion is obviously tenable for any purely additive tree. At the

1913

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

FastJoin, an improved neighbor-joining algorithm

moment the only remaining element in Q except the 1’th and 2’th row and column elements is
Q34 when n = 4. So Q34 is the smallest value of the remaining elements in Q. Three and 4 are
true neighbors because 1 and 2 are true neighbors.

When n ≥ 5, suppose that i and j are not neighbors. Neither i nor j has a neighbor ac-
cording to the above lemma. At least it contains another pair of neighbors except the pair of 1
and 2 for the cases of more than four taxa for any tree. Let k and l be another pair of neighbors,
so that i, j, k, and l are distinct and are represented by the tree in Figure 1. From the definition
of Qij, the following Equation can be obtained by

() ()
, , ,

kl ij im jm ij km lm kl
m i j k l

Q Q D D D D D D
≠

 − = + − − + − ∑ (Equation 7)

Obviously the Equation 7 is non-negative because D is purely additive matrix. If m is
a fifth taxon, then it joins the tree in Figure 1 at a point x along one of the labeled arcs. Call
that m is of type 1 if it joins the path from i to j at any node and that m is of type 2 if it joins
the path from u to v at any node.

Figure 1. For the distinct taxa i, j, k, and l, the subtree includes two internal nodes u and v. k and l are neighbors,
the x’s represent locations at which other taxa can intercept this subtree.

In one case, if m is of type 1, then the corresponding sum in Equation 7 is -2Dxu-2Duv,
and in the other, if m is of type 2, then the corresponding sum in Equation 5 is 2Duv-4Dxv. Be-
cause the Equation 7 is non-negative, the terms corresponding to taxa m of type 2 are not less
than the terms corresponding to taxa m of type 1. It shows that there are more taxa that join the
path from i to j than the taxa that join the path from u to v. We have explained that neither i nor
j has a neighbor, so there must be a pair of neighbors, which are s node and t node linked by o
that intersect the path from i to j at some node p, which is different from u. Figure 2 illustrates
relationships of these nodes, which is a part of a subtree. The above theory is applied to p, so
there are more taxa that join the path from p to o than the taxa that join the path from i to j. It
follows that the consequent about u and p contradict each other, so our assertion is also true
for n ≥ 5. Accordingly this theorem follows.

1914

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

J. Wang et al.

Based on the above theorem, the improved neighbor-joining algorithm is set up. In
improved neighbor-joining method, the smallest value of Q, i.e.,

0 01 i jq Q= , and the smallest
value of remaining members of Q removed the i0’th and j0’th rows and columns, i.e.,

0 02 s tq Q= ,
are found, and then D will be updated by removing the i0’th, j0’th, s0’th, and t0’th row and column.
Two new rows and columns are inserted into distance matrix, which are distances between two
new nodes and the old nodes, and then the number of remaining members r reduces by two.
Distances between new nodes and old nodes can be calculated by Equation 5, where new
nodes are a = i0∪j0 and b = s0∪t0. Distance between two new nodes a and b is calculated by

()0 0 0 0 0 0 0 0 0 0 0 0
4ab i s j s i t j t i j s tD D D D D D D= + + + − − (Equation 8)

These operations continue until r ≤ 3.
It is pointed out that in practice, even these pairs may not be pairs of true neighbors;

but, for a purely additive tree with no backward and parallel substitutions, this method is
known to choose pairs of true neighbors.

In order to better describe the improved neighbor-joining algorithm and the neighbor-
joining algorithm, we show an example of the paper of Saitou and Nei (1987), which true
topology is described by Figure 3, with eight taxa 1-8, and Table 1 is the lower triangular
distance matrix between any two taxa inferred by this true tree. Figure 4 and Figure 5 il-
lustrate results of application of the canonical neighbor-joining method and the improved
neighbor-joining method, respectively. Until r ≤ 3, r standing for the number of unresolved
nodes, neighbor-joining executes six times, while the improved neighbor-joining just needs
three times, and the reconstructed phylogenetic trees of the two methods are exactly the same
finally. For n taxa, the neighbor-joining needs n - 3 times iterations until r ≤ 3. But, in contrast,
the improved neighbor-joining algorithm just needs (n - 2) / 2 times iterations for even n and
(n - 3) / 2

times iterations for odd n until r ≤ 3.

Figure 2. For the distinct taxa i, j, s, and t, the branch y stands for a subtree including the taxa k and l.

1915

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

FastJoin, an improved neighbor-joining algorithm

Figure 3. An unrooted tree of eight taxa, 1-8; A-F are interior nodes, and italic numbers are branch lengths of tree.

Taxa	 			 Taxa

	 1	 2	 3	 4	 5	 6	 7

2	 7	 					
3	 8	 5					
4	 11	 8	 5				
5	 13	 10	 7	 8			
6	 16	 13	 10	 11	 5		
7	 13	 10	 7	 8	 6	 9	
8	 17	 14	 11	 12	 10	 13	 8

Table 1. Lower triangular distance matrix for the tree in Figure 3.

Figure 4. Application of the neighbor-joining method in the distance matrix of Table 1. Blackbody numbers are
taxa, which need to cluster. Italic numbers are branch lengths, and branches with thicker lines indicate that their
lengths have been determined. X and Y are the inserted new node and the center node, respectively. Z stands for
the remaining internal node.

1916

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

J. Wang et al.

The detail procedures of the neighbor-joining algorithm and the improved neighbor-
joining algorithm are listed as follows:

Figure 5. Application of the improved neighbor-joining algorithm to the distance matrix of Table 1. The notes are
the same as that of Figure 4.

Neighbor-joining algorithm
Input: a distance matrix D = (Dij)nxn
Output: a phylogenetic tree

1. Compute the sum matrix ()ij n n
Q Q

×
= , according to the Equations 1 and 2

2. Find the smallest value from matrix Q, which value supposed is
0 0i jQ , and then

 take i0 and j0 as a neighbor, which is denoted as a = i0∪j0
3. n = n-1
4. Update distance matrix D by Equation 5
5. If (n > 3) go to 1

Improved neighbor-joining algorithm
Input: a distance matrix D = (Dij)nxn
Output: a phylogenetic tree

1. Compute the matrix ()ij n n
Q Q

×
= , according to Equations 2 and 3

2. Find out the smallest Q-value
0 0i jQ , and then take i0 and j0 as a neighbor, which

 is denoted as a
3. Find out the smallest value from Equation 6, which is

0 0s tQ , and then take s0 and
 t0 as a neighbor, which is denoted as b = s0∪t0
4. n = n-2
5. Update distance matrix D by Equations 5 and 8
6. If (n > 3) go to 1

The similarity between improved neighbor-joining algorithm and neighbor-joining
algorithm is that they search true neighbors at each iteration if their true tree is a purely addi-
tive tree. So the reconstructed trees by improved neighbor-joining algorithm and by neighbor-
joining algorithm are identical. From the descriptions of the above algorithms, it is obvious
that the main difference between two methods is that the improved algorithm adds a step
on the basis of neighbor-joining algorithm in which step we find out that the neighbors can
be found out in the another step of neighbor-joining, and the needed time of updating dis-
tance matrix of the improved algorithm is almost half of neighbor-joining. The search time of

1917

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

FastJoin, an improved neighbor-joining algorithm

neighbor-joining algorithm is n2+(n-1)2+(n-2)2+(n-3)2+…+52+42, while the search time of the
improved algorithm is n2+(n-2)2+(n-2)2+(n-4)2+…+62+42 and the update time of the improved
neighbor-joining algorithm is also reduced. The running time of canonical neighbor-joining
method comes mainly from the search time for the pair of nodes to join and the update time of
distance matrix after joining. The improved neighbor-joining algorithm reduces running time
of neighbor-joining algorithm by decreasing the search time and the updating time of distance
matrix. So the neighbor-joining algorithm costs n3/3+O(n2) time and the improved neighbor-
joining algorithm costs n3/6+O(n2) time. The improved neighbor-joining algorithm costs O(n3)
time and O(n2) space the same as the neighbor-joining method. The difference is that the im-
proved neighbor-joining algorithm increases the speed by a factor in time compared with the
neighbor-joining algorithm. The most important is that the improved neighbor-joining algo-
rithm is set up on the basis of an important theorem so that these neighbors are true neighbors
if their true tree is a purely additive tree.

This improved neighbor-joining algorithm is particularly effective on data sets, which
are phylip formatted distance matrices using QuickTree translated from Pfam (Finn et al.,
2006) data, which gave rise to poor performance in canonical neighbor-joining (see Figure
6 and Figure 7). From the two figures, it is obvious that the improved neighbor-joining algo-
rithm is superior to the neighbor-joining algorithm in execution time because iteration times
of improved neighbor-joining are half of neighbor-joining. Although the running time of the
improved neighbor-joining algorithm is not the half of neighbor-joining algorithm, which is
influenced by the term O(n2) of the respective running time equation and, with the increasing
of the number of taxa, the half trend is more and more obvious.

Figure 6. Performance of improved neighbor-joining (NJ) algorithm compared to neighbor-joining on small Pfam
data (<500 taxa).

1918

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

J. Wang et al.

The improved neighbor-joining algorithm reduces the running time of canonical
neighbor-joining by increasing the speed of joining, which search strategy can choose any
advanced one of neighbor-joining. Consequently we choose, to the best of our knowledge, the
fastest search strategy of RapidNJ and the external storage of ERapidNJ for large scale data,
and then combine it with the improved neighbor-joining algorithm to create a new advanced
method of neighbor-joining, FastJoin, for reducing the running time of reconstructing phylo-
genetic trees. The results of experiments show that the running time of FastJoin is reduced on
the majority of experimental data.

FastJoin

By combining the improved neighbor-joining algorithm with the upper bound com-
putation optimizations of RapidNJ and the external storage style of ERapidNJ methods, a new
method of reconstructing phylogenetic trees, we create a new algorithm - FastJoin, which finds
two pairs of nodes to merge as corresponding to two new nodes and then updates the distance
matrix in each iteration instead of finding a pair of nodes of RapidNJ and ERapidNJ. The
search strategy of FastJoin is the same as that of RapidNJ and the external memory of FastJoin
is the same as that of ERapidNJ.

RESULTS

To evaluate the performance of FastJoin, we compared running times with RapidNJ,
ERapidNJ and some other advanced neighbor-joining on Pfam data sets. QuickJoin, Clearcut

Figure 7. Performance of improved neighbor-joining (NJ) algorithm compared to neighbor-joining on large Pfam
data (500-3500 taxa).

1919

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

FastJoin, an improved neighbor-joining algorithm

and NINJA have been used as reference in our experiments. QuickJoin is an implementation
of heuristics for canonical neighbor-joining. Clearcut is an implementation for the RNJ algo-
rithm, while NINJA uses an upper bound on Q-value like RapidNJ and first utilize external
memory efficiently so that more than 50,000 taxa can be built in a few hours on a desktop
computer with only 2 GB of RAM.

QuickJoin, RapidNJ and ERapidNJ are implemented in C++, Clearcut in C while
NINJA is implemented in Java.

QuickTree, which is a fast implementation with a heuristic for treating identical se-
quences to reduce the running time of canonical neighbor-joining, is not included in our ex-
periments. In Simonsen et al. (2008, 2011), there are the comparisons of the RapidNJ with
QuickTree and ERapidNJ with QuickTree. There are three programs using external memory
in order to reconstruct trees of large scale datasets.

All experiments were performed on machines with an Intel Xeon E5504 2.0 GHz
CPU, 8 GB RAM and 147 GB HDD. The operating system was Debian 4.1 32 bit with Java
1.6 installed. FastJoin was written in C++. We used the “real-time” output from the standard
time tool for measurements of running time. Five runs of each program on every data set were
made, and the best time of the five runs was used in order to avoid perturbation from other
processes on the system.

All implementations need a distance matrice in Phylip format as input. The data used
are protein sequence alignments from Pfam, which are translated into Phylip formatted dis-
tance matrices using Quick-Tree as input to all tools. Pfam data sets represent real-data and
can test how efficient the different algorithms used in the implementations. Figure 8 and Fig-
ure 9 show the results of the experiments on these data, which indicate that FastJoin is faster
than all internal memory advanced neighbor-joining and is faster than many external memory
advanced neighbor-joining on large data sets.

Figure 8. Performance of FastJoin compared to RapidNJ, Clearcut and QuickJoin on data sets with 500 to 12,000.

1920

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

J. Wang et al.

DISCUSSION

Figure 8 shows the implementations of four internal memory versions of advanced
neighbor-joining. QuickJoin has the longest running time, while FastJoin has the shortest,
which is faster than the tool RapidNJ, and with the increasing of the data scale, the saving
time of the FastJoin algorithm for reconstructing phylogenetic trees is more and more. Some
outliers can be observed in Figure 8, where the running time of FastJoin is more than the run-
ning time of Clearcut, QuickJoin and RapidNJ, only less than the running time of NINJA. The
FastJoin algorithm is extension of RapidNJ and ERapidNJ by applying the improved canonical
neighbor-joining algorithm. In Figure 8 these outliers are just the outliers of RapidNJ method,
where the running time of RapidNJ is more than the running time of Clearcut and QuickJoin
and less than NINJA, so the reason of these outliers is the same as the reason of RapidNJ,
which is explained specifically in Simonsen et al. (2008).

Figure 9 shows the implementations of three external memory versions of advanced
neighbor-joining on data sets with 5000 to 45,000 taxa, while larger data sets cannot be oper-
ated subject to the restriction of the size of HDD. As seen in Figure 9 the FastJoin method
is faster than the NINJA method on many data sets and has almost the same speed of re-
constructing phylogenetic trees with the ERapidNJ method. Except for a few outliers from
NINJA, FastJoin and ERapidNJ have roughly the same running time and both of them have
less running time than NINJA, which is consentaneous with the results of paper of Simonsen
et al. (2011)���. It is not obvious that the FastJoin algorithm is superior to the ERapidNJ algo-
rithm from Figure 9 since the running time of FastJoin algorithm is a little less than that of the
ERapidNJ algorithm except some outliers. The FastJoin algorithm is superior to the NINJA

Figure 9. Performance of FastJoin compared to ERapidNJ and NINJA on data sets with 5000 to 45,000.

1921

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

FastJoin, an improved neighbor-joining algorithm

algorithm except some outliers. There are several outliers, where the running time of FastJoin
is slightly more than that of ERapidNJ and FastJoin and ERapidNJ have more running time
than NINJA has because NINJA computers a tighter bound on Q-values than FastJoin and
ERapidNJ. Hence NINJA has an advantage over FastJoin and ERapidNJ for some large scale
data sets. A result with 46,279 taxa is not shown in Figure 9, because of the lack of HDD,
FastJoin and ERapidNJ do not run on the machine with 100 GB HDD, while NINJA was able
to finish these data within 4 h on this machine. So FastJoin and ERapidNJ need more external
memory than NINJA on large data sets.

For most data sets FastJoin and ERapidNJ are superior to NINJA and FastJoin is
slightly faster than ERapidNJ. If large data sets need to run and the external memory of ma-
chine is limited, I think NINJA is the best choice. Because the FastJoin method is by combin-
ing the improved neighbor-joining algorithm to the ERapidNJ method, FastJoin and ERapidNJ
have almost identical properties. The real running time of the FastJoin method is slightly less
than the running time of ERapidNJ, which is not obvious on figure.

CONCLUSIONS

Experiment results and analysis of time complexity of algorithm showed that the im-
proved neighbor-joining algorithm is superior to the canonical neighbor-joining algorithm. By
combining this improved algorithm with the RapidNJ and the ERapidNJ method, we created
the FastJoin method. The FastJoin method improves the running time by reducing the scale of
searching and the time of joining. While the worst case running time of FastJoin is still O(n3),
it is superior to many advanced neighbor-joining such as RapidNJ, Clearcut, QuickJoin. When
using the external memory, the FastJoin method exceeds NINJA on majority data sets and
FastJoin outperforms ERapidNJ slightly on many data sets. The results of this experiment tell
us that FastJoin and ERapidNJ have more external memory compared with NINJA.

ACKNOWLEDGMENTS

Research supported by the Natural Science Foundation of China (under grant
#60932008, #61172098), the Specialized Research Fund for the Doctoral Program of Higher
Education of China (under grant #20112302110040) and the Fundamental Research Funds
for the Central Universities (under grant #HIT.ICRST.2010022).

REFERENCES

Elias I and Lagergren J (2005). Fast Neighbor Joining. In: Proceedings of the 32nd International Colloquium: 11-15 July
2005 (L Caires, GF Italiano, L Monteiro, C Palamidessi, et al., eds.). Springer Berlin Heidelberg, Lisbon, 1263-1274.

Elias I and Lagergren J (2009). Fast neighbor joining. Theor. Comput. 410: 1993-2000.
Evans J, Sheneman L and Foster J (2006). Relaxed neighbor joining: a fast distance-based phylogenetic tree construction

method. J. Mol. Evol. 62: 785-792.
Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, et al. (2006). Pfam: clans, web tools and services. Nucleic Acids

Res. 34: D247-D251.
Howe K, Bateman A and Durbin R (2002). QuickTree: building huge neighbor-joining trees of protein sequences.

Bioinformatics 18: 1546-1547.
Mailund T and Pedersen CNS (2004). QuickJoin - fast neighbor-joining tree reconstruction. Bioinformatics 20: 3261-

3262.

1922

©FUNPEC-RP www.funpecrp.com.brGenetics and Molecular Research 11 (3): 1909-1922 (2012)

J. Wang et al.

Mailund T, Brodal GS, Fagerberg R, Pedersen CNS, et al. (2006). Recrafting the neighbor-joining method. BMC
Bioinformatics 7: 29.

Nakhleh L, Moret BME, Roshan U and John KS (2002). The Accuracy of Fast Phylogenetic Methods for Large Datasets.
In: Proceedings of the Seventh Pacific Symposium on Biocomputing: 2001 (Altman RB, Dunker AK, Hunter L,
Lauderdale K, et al., eds.). World Scientific, Singapore, 211-222.

Price MN, Dehal PS and Arkin AP (2009). FastTree: computing large minimum evolution trees with profiles instead of a
distance matrix. Mol. Biol. Evol. 26: 1641-1650.

Price MN, Dehal PS and Arkin AP (2010). FastTree 2-approximately maximum-likelihood trees for large alignments.
PLoS One 5: e9490.

Saitou N and Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol.
Evol. 4: 406-425.

Sheneman L, Evans J and Foster JA (2006). Clearcut: a fast implementation of relaxed neighbor joining. Bioinformatics
22: 2823-2824.

Simonsen M, Mailund T and Pedersen CNS (2008). Rapid Neighbor-Joining. In: Proceedings of the Eighth International
Workshop on Algorithms in Bioinformatics: 15-19 September 2008 (Crandall KA and Lagergren J, eds.). Springer
Berlin Heidelberg, Karlsruhe, 113-122.

Simonsen M, Mailund T and Pedersen CNS (2011). Inference of Large Phylogenies Using Neighbor-Joining. In:
Proceedings of the Third International Joint Conference: 20-23 January 2010 (Fred A, Filipe J and Gamboa H, eds.).
Springer Berlin Heidelberg, Valencia, 334-344.

Studier JA and Keppler KJ (1988). A note on the neighbor-joining algorithm of Saitou and Nei. Mol. Biol. Evol. 5: 729-
731.

Wheeler TJ (2009). Large-Scale Neighbor-Joining with NINJA. In: Proceedings of the Ninth International Workshop
on Algorithms in Bioinformatics: 12-13 September 2009 (Salzberg SL and Warnow T, eds.). Springer Berlin
Heidelberg, Philadelphia, 375-389.

Zaslavsky L and Tatusova T (2008). Accelerating the Neighbor-Joining Algorithm Using the Adaptive Bucket Data
Structure. In: Proceedings of the Fourth International Symposium: 6-9 May 2008 (Mandoiu I, Sunderraman R and
Zelikovsky A, eds.). Springer Berlin Heidelberg, Atlanta, 122-133.

