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ABSTRACT. Reconstructing the evolutionary history of a set of 
species is an elementary problem in biology, and methods for solving 
this problem are evaluated based on two characteristics: accuracy 
and efficiency. Neighbor-joining reconstructs phylogenetic trees by 
iteratively picking a pair of nodes to merge as a new node until only one 
node remains; due to its good accuracy and speed, it has been embraced 
by the phylogeny research community. With the advent of large 
amounts of data, improved fast and precise methods for reconstructing 
evolutionary trees have become necessary. We improved the neighbor-
joining algorithm by iteratively picking two pairs of nodes and merging 
as two new nodes, until only one node remains. We found that another 
pair of true neighbors could be chosen to merge as a new node besides 
the pair of true neighbors chosen by the criterion of the neighbor-joining 
method, in each iteration of the clustering procedure for the purely 
additive tree. These new neighbors will be selected by another iteration 
of the neighbor-joining method, so that they provide an improved 
neighbor-joining algorithm, by iteratively picking two pairs of nodes to 
merge as two new nodes until only one node remains, constructing the 
same phylogenetic tree as the neighbor-joining algorithm for the same 
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input data. By combining the improved neighbor-joining algorithm 
with styles upper bound computation optimization of RapidNJ and 
external storage of ERapidNJ methods, a new method of reconstructing 
phylogenetic trees, FastJoin, was proposed. Experiments with sets 
of data showed that this new neighbor-joining algorithm yields a 
significant speed-up compared to classic neighbor-joining, showing 
empirically that FastJoin is superior to almost all other neighbor-joining 
implementations.

Key words: Phylogenetic tree; Neighbor-joining algorithm; FastJoin; 
Phylogenetic analysis

INTRODUCTION

Evolutionary trees are the basic tools for analysing differences between species, so 
phylogenetic analysis is a critical step in inferring the evolution of species and comprehend-
ing the information of genes and proteins. In order to better understand evolution of species, a 
precise method of reconstructing phylogenetic trees seems very important.

Neighbor-joining (Saitou and Nei, 1987; improved by Studier and Keppler, 1988) 
based on the minimum evolution principle is a widely used method for constructing phyloge-
netic trees, due to its elegance and speed (Nakhleh et al., 2002). Neighbor-joining is a greedy 
algorithm, which endeavors to minimize the sum of all branch lengths of the reconstructed 
tree. It requires a distance matrix D = (Dij)nxn as input, where Dij is the observed distance be-
tween taxa i and j, which is computed by some evolution models. More specifically, neighbor-
joining method begins with a star tree, then iteratively picks two nodes adjacent to the root and 
then joins them, by inserting a new node between the root and the two selected nodes. Among 
all possible pairs of nodes, the pair of nodes, corresponding to the minimum sum computed by 
Equation 1, is merged as one node.
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Each iteration needs to consider O(n2) possible joins, and the whole neighbor-joining 
algorithm needs to iterate n times approximately, so neighbor-joining method requires time 
in O(n3) and space in O(n2) to reconstruct phylogenetic trees, where n is the number of taxa.

Here some related studies are listed. QuickTree (Howe et al., 2002) is an efficient 
implementation of the canonical neighbor-joining algorithm by making a pre-processing to the 
identical sequences. It increases the speed by a factor in time compared with neighbor-joining 
method. Accordingly it costs O(n3) time. QuickJoin (Mailund and Pedersen, 2004; Mailund et 
al., 2006), RapidNJ (Simonsen et al., 2008), NINJA (Wheeler, 2009), and the acceleration of 
neighbor-joining algorithm (Zaslavsky and Tatusova, 2008) all produce the same phylogenetic 
trees as the neighbor-joining method and improve running time by using some techniques 
to find the globally minimum value of sum matrix rather than by traversing the whole sum 
matrix in each iteration. Although all these methods are O(n3) running time in the worst case, 
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in practice they do not need so much time. The ERapidNJ method (Simonsen et al., 2011) 
improves the performance of RapidNJ algorithm by means of the external memory to reduce 
the memory requirements of RapidNJ for reconstructing phylogenetic trees of the large data 
sets. Relaxed neighbor-joining (RNJ) (Evans et al., 2006; Sheneman et al., 2006) and fast 
neighbor-joining (Elias and Lagergren, 2005, 2009) modify the selection criteria. FastTree 
(Price et al., 2009, 2010) improves not only the performance of neighbor-joining method, but 
also the computation time and memory time of distance matrix.

In this paper, we present a theoretically improved version of canonical neighbor-
joining that joins two pairs of nodes with the global minimum sum and the second minimum 
sum to merge as corresponding to two new nodes in each iteration instead of joining one 
pair of nodes with the global minimum sum for one iteration of canonical neighbor-joining, 
which lowers the computing time of canonical neighbor-joining and is proven in theory. And 
then combine this improved neighbor-joining algorithm with styles upper bound computation 
optimization of RapidNJ and external storage of ERapidNJ to create a new method of recon-
structing phylogenetic trees - FastJoin. We evaluate the performance of FastJoin by comparing 
running times of an implementation of the FastJoin method with other implementations for 
building canonical neighbor-joining trees.

METHODS

Canonical neighbor-joining

For simplicity we use the term nodes to describe the inserted terms and taxa. Neighbor-
joining is a hierarchical clustering algorithm. It takes a distance matrix D = (Dij)nxn as input, 
where Dij is the distance between taxa i and j. Taxa are then iteratively joined using a greedy 
algorithm, which minimizes the total sum of branch lengths in the reconstructed tree. On the 
whole, the algorithm needs n-3 iterations for rootless trees, where n is the number of taxa. Two 
taxa i and j are selected and joined into a new node in each iteration, selected by minimizing

( ) ( ) ( )2ij ijQ r D u i u j= − − − (Equation 2)

where

( ) lk
k

u l D=∑ (Equation 3)

And r is the number of unresolved nodes. Equation 2 is the deformation of Equation 1. 
When the minimum Q-value

{ }
0 01 0 ,min |ij i j r i jq Q Q≤ ≤= = (Equation 4)

is found, D is updated, by removing the i0’th and j0’th rows and columns and inserting a new 
row and a new column distances between the new node and the unresolved taxa, and then r 
reduces by one. This-operation continues until r ≤ 3. Distance between the new node formed by 
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joined the two taxa i0 and j0, denoted by a = i0∪j0, and an old taxon l, is calculated by

( )0 0 0 0
2al i l j l i jD D D D= + − (Equation 5)

Each iteration of the canonical neighbor-joining algorithm takes time O(r2) to traverse 
all of Q. Therefore, it needs O(n3) time and O(n2) space. The result of the algorithm is an 
unrooted bifurcating tree where the initial taxa correspond to leaves and each joining corre-
sponds to inserting an internal node in the tree.

RapidNJ and ERapidNJ

RapidNJ computers an upper bound on the values of Q, which is used to decrease the 
search scope when searching for a minimum Q-value. For utilizing the upper bound two new 
matrixes, S and I, are needed. S is a sorted representation of D with each row in increasing 
order and I maps S to D. Memory consumption is increased due to S and I, which limits infer-
ence of large phylogenetic trees although it reduces the running time of the neighbor-joining. 
ERapidNJ is the extension for RapidNJ that reduces the memory requirements of RapidNJ and 
allows phylogenies with more than 50,000 taxa to be inferred efficiently on a desktop com-
puter. Both RapidNJ and ERapidNJ reconstruct phylogeny trees by identifying and joining the 
pair of nodes with global minimum transformed distance.

Improved neighbor-joining algorithm

The neighbor-joining method has proven that for a purely additive tree, i.e., its dis-
tance matrix D is purely additive, taxa i and j are true neighbors when Qij is smallest among 
all Qst’s. According to this theory, the neighbor-joining method was set up. Here we can prove 
that the smallest value

{ { } { } { } { } { } }
0 0 0 0 0 00 , 0 0 0 0min | \ | \ | \ | \ |st s t r i l l r li l r j l l r lj l r s tq Q Q Q Q Q Q≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤= = (Equation 6)

That is, the smallest value of the remaining members of Q removed the i0’th and j0’th 
row and column members, also gives the true neighbors when the distance matrix D is purely 
additive, where 

0 0i jQ is the smallest Q-value.
Saitou and Nei (1987) have proven this lemma: if i and j are true neighbors, then Qij 

is the minimum value in their rows and columns. Following is the description and proof of a 
new theorem. In the following theorem and the whole process of proving, we let the distance 
matrix D be purely additive.

Theorem: If i and j are chosen by the Equation 6, then i and j are true neighbors.
Proof: In the whole process of proving, we suppose that the smallest Q-value is Q12 and the smallest value of the remaining members of Q removed the 1’th and 2’th row and 

column is Qij for simplification. So 1 and 2 are true neighbors proven by Studier and Keppler, 
here i,j ≠ 1,2. Now we prove that i and j are true neighbors.

When n ≤ 4, this conclusion is obviously tenable for any purely additive tree. At the 
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moment the only remaining element in Q except the 1’th and 2’th row and column elements is 
Q34 when n = 4. So Q34 is the smallest value of the remaining elements in Q. Three and 4 are 
true neighbors because 1 and 2 are true neighbors.

When n ≥ 5, suppose that i and j are not neighbors. Neither i nor j has a neighbor ac-
cording to the above lemma. At least it contains another pair of neighbors except the pair of 1 
and 2 for the cases of more than four taxa for any tree. Let k and l be another pair of neighbors, 
so that i, j, k, and l are distinct and are represented by the tree in Figure 1. From the definition 
of Qij, the following Equation can be obtained by

( ) ( )
, , ,

kl ij im jm ij km lm kl
m i j k l

Q Q D D D D D D
≠

 − = + − − + − ∑ (Equation 7)

Obviously the Equation 7 is non-negative because D is purely additive matrix. If m is 
a fifth taxon, then it joins the tree in Figure 1 at a point x along one of the labeled arcs. Call 
that m is of type 1 if it joins the path from i to j at any node and that m is of type 2 if it joins 
the path from u to v at any node.

Figure 1. For the distinct taxa i, j, k, and l, the subtree includes two internal nodes u and v. k and l are neighbors, 
the x’s represent locations at which other taxa can intercept this subtree.

In one case, if m is of type 1, then the corresponding sum in Equation 7 is -2Dxu-2Duv, 
and in the other, if m is of type 2, then the corresponding sum in Equation 5 is 2Duv-4Dxv. Be-
cause the Equation 7 is non-negative, the terms corresponding to taxa m of type 2 are not less 
than the terms corresponding to taxa m of type 1. It shows that there are more taxa that join the 
path from i to j than the taxa that join the path from u to v. We have explained that neither i nor 
j has a neighbor, so there must be a pair of neighbors, which are s node and t node linked by o 
that intersect the path from i to j at some node p, which is different from u. Figure 2 illustrates 
relationships of these nodes, which is a part of a subtree. The above theory is applied to p, so 
there are more taxa that join the path from p to o than the taxa that join the path from i to j. It 
follows that the consequent about u and p contradict each other, so our assertion is also true 
for n ≥ 5. Accordingly this theorem follows.
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Based on the above theorem, the improved neighbor-joining algorithm is set up. In 
improved neighbor-joining method, the smallest value of Q, i.e.,

0 01 i jq Q= , and the smallest 
value of remaining members of Q removed the i0’th and j0’th rows and columns, i.e.,

0 02 s tq Q= , 
are found, and then D will be updated by removing the i0’th, j0’th, s0’th, and t0’th row and column. 
Two new rows and columns are inserted into distance matrix, which are distances between two 
new nodes and the old nodes, and then the number of remaining members r reduces by two. 
Distances between new nodes and old nodes can be calculated by Equation 5, where new 
nodes are a = i0∪j0 and b = s0∪t0. Distance between two new nodes a and b is calculated by

( )0 0 0 0 0 0 0 0 0 0 0 0
4ab i s j s i t j t i j s tD D D D D D D= + + + − − (Equation 8)

These operations continue until r ≤ 3.
It is pointed out that in practice, even these pairs may not be pairs of true neighbors; 

but, for a purely additive tree with no backward and parallel substitutions, this method is 
known to choose pairs of true neighbors.

In order to better describe the improved neighbor-joining algorithm and the neighbor-
joining algorithm, we show an example of the paper of Saitou and Nei (1987), which true 
topology is described by Figure 3, with eight taxa 1-8, and Table 1 is the lower triangular 
distance matrix between any two taxa inferred by this true tree. Figure 4 and Figure 5 il-
lustrate results of application of the canonical neighbor-joining method and the improved 
neighbor-joining method, respectively. Until r ≤ 3, r standing for the number of unresolved 
nodes, neighbor-joining executes six times, while the improved neighbor-joining just needs 
three times, and the reconstructed phylogenetic trees of the two methods are exactly the same 
finally. For n taxa, the neighbor-joining needs n - 3 times iterations until r ≤ 3. But, in contrast, 
the improved neighbor-joining algorithm just needs (n - 2) / 2 times iterations for even n and 
(n - 3) / 2

 
times iterations for odd n until r ≤ 3.

Figure 2. For the distinct taxa i, j, s, and t, the branch y stands for a subtree including the taxa k and l.
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Figure 3. An unrooted tree of eight taxa, 1-8; A-F are interior nodes, and italic numbers are branch lengths of tree.

Taxa	 			   Taxa

	 1	 2	 3	 4	 5	 6	 7

2	   7	 					   
3	   8	   5					   
4	 11	   8	   5				  
5	 13	 10	   7	   8			 
6	 16	 13	 10	 11	   5		
7	 13	 10	   7	   8	   6	   9	
8	 17	 14	 11	 12	 10	 13	 8

Table 1. Lower triangular distance matrix for the tree in Figure 3.

Figure 4. Application of the neighbor-joining method in the distance matrix of Table 1. Blackbody numbers are 
taxa, which need to cluster. Italic numbers are branch lengths, and branches with thicker lines indicate that their 
lengths have been determined. X and Y are the inserted new node and the center node, respectively. Z stands for 
the remaining internal node.
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The detail procedures of the neighbor-joining algorithm and the improved neighbor-
joining algorithm are listed as follows:

Figure 5. Application of the improved neighbor-joining algorithm to the distance matrix of Table 1. The notes are 
the same as that of Figure 4.

Neighbor-joining algorithm
Input: a distance matrix D = (Dij)nxn
Output: a phylogenetic tree

1.    Compute the sum matrix ( )ij n n
Q Q

×
= , according to the Equations 1 and 2

2.    Find the smallest value from matrix Q, which value supposed is
0 0i jQ , and then

           take i0 and j0 as a neighbor, which is denoted as a = i0∪j0
3.    n = n-1
4.    Update distance matrix D by Equation 5
5.    If (n > 3) go to 1

Improved neighbor-joining algorithm
Input: a distance matrix D = (Dij)nxn
Output: a phylogenetic tree

1.    Compute the matrix ( )ij n n
Q Q

×
= , according to Equations 2 and 3

2.    Find out the smallest Q-value
0 0i jQ , and then take i0 and j0 as a neighbor, which

           is denoted as a
3.     Find out the smallest value from Equation 6, which is

0 0s tQ , and then take s0 and
           t0 as a neighbor, which is denoted as b = s0∪t0
4.    n = n-2
5.    Update distance matrix D by Equations 5 and 8
6.    If (n > 3) go to 1

The similarity between improved neighbor-joining algorithm and neighbor-joining 
algorithm is that they search true neighbors at each iteration if their true tree is a purely addi-
tive tree. So the reconstructed trees by improved neighbor-joining algorithm and by neighbor-
joining algorithm are identical. From the descriptions of the above algorithms, it is obvious 
that the main difference between two methods is that the improved algorithm adds a step 
on the basis of neighbor-joining algorithm in which step we find out that the neighbors can 
be found out in the another step of neighbor-joining, and the needed time of updating dis-
tance matrix of the improved algorithm is almost half of neighbor-joining. The search time of 
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neighbor-joining algorithm is n2+(n-1)2+(n-2)2+(n-3)2+…+52+42, while the search time of the 
improved algorithm is n2+(n-2)2+(n-2)2+(n-4)2+…+62+42 and the update time of the improved 
neighbor-joining algorithm is also reduced. The running time of canonical neighbor-joining 
method comes mainly from the search time for the pair of nodes to join and the update time of 
distance matrix after joining. The improved neighbor-joining algorithm reduces running time 
of neighbor-joining algorithm by decreasing the search time and the updating time of distance 
matrix. So the neighbor-joining algorithm costs n3/3+O(n2) time and the improved neighbor-
joining algorithm costs n3/6+O(n2) time. The improved neighbor-joining algorithm costs O(n3) 
time and O(n2) space the same as the neighbor-joining method. The difference is that the im-
proved neighbor-joining algorithm increases the speed by a factor in time compared with the 
neighbor-joining algorithm. The most important is that the improved neighbor-joining algo-
rithm is set up on the basis of an important theorem so that these neighbors are true neighbors 
if their true tree is a purely additive tree.

This improved neighbor-joining algorithm is particularly effective on data sets, which 
are phylip formatted distance matrices using QuickTree translated from Pfam (Finn et al., 
2006) data, which gave rise to poor performance in canonical neighbor-joining (see Figure 
6 and Figure 7). From the two figures, it is obvious that the improved neighbor-joining algo-
rithm is superior to the neighbor-joining algorithm in execution time because iteration times 
of improved neighbor-joining are half of neighbor-joining. Although the running time of the 
improved neighbor-joining algorithm is not the half of neighbor-joining algorithm, which is 
influenced by the term O(n2) of the respective running time equation and, with the increasing 
of the number of taxa, the half trend is more and more obvious.

Figure 6. Performance of improved neighbor-joining (NJ) algorithm compared to neighbor-joining on small Pfam 
data (<500 taxa).
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The improved neighbor-joining algorithm reduces the running time of canonical 
neighbor-joining by increasing the speed of joining, which search strategy can choose any 
advanced one of neighbor-joining. Consequently we choose, to the best of our knowledge, the 
fastest search strategy of RapidNJ and the external storage of ERapidNJ for large scale data, 
and then combine it with the improved neighbor-joining algorithm to create a new advanced 
method of neighbor-joining, FastJoin, for reducing the running time of reconstructing phylo-
genetic trees. The results of experiments show that the running time of FastJoin is reduced on 
the majority of experimental data.

FastJoin

By combining the improved neighbor-joining algorithm with the upper bound com-
putation optimizations of RapidNJ and the external storage style of ERapidNJ methods, a new 
method of reconstructing phylogenetic trees, we create a new algorithm - FastJoin, which finds 
two pairs of nodes to merge as corresponding to two new nodes and then updates the distance 
matrix in each iteration instead of finding a pair of nodes of RapidNJ and ERapidNJ. The 
search strategy of FastJoin is the same as that of RapidNJ and the external memory of FastJoin 
is the same as that of ERapidNJ.

RESULTS

To evaluate the performance of FastJoin, we compared running times with RapidNJ, 
ERapidNJ and some other advanced neighbor-joining on Pfam data sets. QuickJoin, Clearcut 

Figure 7. Performance of improved neighbor-joining (NJ) algorithm compared to neighbor-joining on large Pfam 
data (500-3500 taxa).
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and NINJA have been used as reference in our experiments. QuickJoin is an implementation 
of heuristics for canonical neighbor-joining. Clearcut is an implementation for the RNJ algo-
rithm, while NINJA uses an upper bound on Q-value like RapidNJ and first utilize external 
memory efficiently so that more than 50,000 taxa can be built in a few hours on a desktop 
computer with only 2 GB of RAM.

QuickJoin, RapidNJ and ERapidNJ are implemented in C++, Clearcut in C while 
NINJA is implemented in Java.

QuickTree, which is a fast implementation with a heuristic for treating identical se-
quences to reduce the running time of canonical neighbor-joining, is not included in our ex-
periments. In Simonsen et al. (2008, 2011), there are the comparisons of the RapidNJ with 
QuickTree and ERapidNJ with QuickTree. There are three programs using external memory 
in order to reconstruct trees of large scale datasets.

All experiments were performed on machines with an Intel Xeon E5504 2.0 GHz 
CPU, 8 GB RAM and 147 GB HDD. The operating system was Debian 4.1 32 bit with Java 
1.6 installed. FastJoin was written in C++. We used the “real-time” output from the standard 
time tool for measurements of running time. Five runs of each program on every data set were 
made, and the best time of the five runs was used in order to avoid perturbation from other 
processes on the system.

All implementations need a distance matrice in Phylip format as input. The data used 
are protein sequence alignments from Pfam, which are translated into Phylip formatted dis-
tance matrices using Quick-Tree as input to all tools. Pfam data sets represent real-data and 
can test how efficient the different algorithms used in the implementations. Figure 8 and Fig-
ure 9 show the results of the experiments on these data, which indicate that FastJoin is faster 
than all internal memory advanced neighbor-joining and is faster than many external memory 
advanced neighbor-joining on large data sets.

Figure 8. Performance of FastJoin compared to RapidNJ, Clearcut and QuickJoin on data sets with 500 to 12,000.
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DISCUSSION

Figure 8 shows the implementations of four internal memory versions of advanced 
neighbor-joining. QuickJoin has the longest running time, while FastJoin has the shortest, 
which is faster than the tool RapidNJ, and with the increasing of the data scale, the saving 
time of the FastJoin algorithm for reconstructing phylogenetic trees is more and more. Some 
outliers can be observed in Figure 8, where the running time of FastJoin is more than the run-
ning time of Clearcut, QuickJoin and RapidNJ, only less than the running time of NINJA. The 
FastJoin algorithm is extension of RapidNJ and ERapidNJ by applying the improved canonical 
neighbor-joining algorithm. In Figure 8 these outliers are just the outliers of RapidNJ method, 
where the running time of RapidNJ is more than the running time of Clearcut and QuickJoin 
and less than NINJA, so the reason of these outliers is the same as the reason of RapidNJ, 
which is explained specifically in Simonsen et al. (2008).

Figure 9 shows the implementations of three external memory versions of advanced 
neighbor-joining on data sets with 5000 to 45,000 taxa, while larger data sets cannot be oper-
ated subject to the restriction of the size of HDD. As seen in Figure 9 the FastJoin method 
is faster than the NINJA method on many data sets and has almost the same speed of re-
constructing phylogenetic trees with the ERapidNJ method. Except for a few outliers from 
NINJA, FastJoin and ERapidNJ have roughly the same running time and both of them have 
less running time than NINJA, which is consentaneous with the results of paper of Simonsen 
et al. (2011)���������������������������������������������������������������������������������. It is not obvious that the FastJoin algorithm is superior to the ERapidNJ algo-
rithm from Figure 9 since the running time of FastJoin algorithm is a little less than that of the 
ERapidNJ algorithm except some outliers. The FastJoin algorithm is superior to the NINJA 

Figure 9. Performance of FastJoin compared to ERapidNJ and NINJA on data sets with 5000 to 45,000.
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algorithm except some outliers. There are several outliers, where the running time of FastJoin 
is slightly more than that of ERapidNJ and FastJoin and ERapidNJ have more running time 
than NINJA has because NINJA computers a tighter bound on Q-values than FastJoin and 
ERapidNJ. Hence NINJA has an advantage over FastJoin and ERapidNJ for some large scale 
data sets. A result with 46,279 taxa is not shown in Figure 9, because of the lack of HDD, 
FastJoin and ERapidNJ do not run on the machine with 100 GB HDD, while NINJA was able 
to finish these data within 4 h on this machine. So FastJoin and ERapidNJ need more external 
memory than NINJA on large data sets.

For most data sets FastJoin and ERapidNJ are superior to NINJA and FastJoin is 
slightly faster than ERapidNJ. If large data sets need to run and the external memory of ma-
chine is limited, I think NINJA is the best choice. Because the FastJoin method is by combin-
ing the improved neighbor-joining algorithm to the ERapidNJ method, FastJoin and ERapidNJ 
have almost identical properties. The real running time of the FastJoin method is slightly less 
than the running time of ERapidNJ, which is not obvious on figure.

CONCLUSIONS

Experiment results and analysis of time complexity of algorithm showed that the im-
proved neighbor-joining algorithm is superior to the canonical neighbor-joining algorithm. By 
combining this improved algorithm with the RapidNJ and the ERapidNJ method, we created 
the FastJoin method. The FastJoin method improves the running time by reducing the scale of 
searching and the time of joining. While the worst case running time of FastJoin is still O(n3), 
it is superior to many advanced neighbor-joining such as RapidNJ, Clearcut, QuickJoin. When 
using the external memory, the FastJoin method exceeds NINJA on majority data sets and 
FastJoin outperforms ERapidNJ slightly on many data sets. The results of this experiment tell 
us that FastJoin and ERapidNJ have more external memory compared with NINJA.
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