Cardiac remodeling in postischemic end-stage human hearts: Involvement of extracellular matrix and angiogenesis-related molecules

Abstract

Background: Extracellular matrix (ECM) participates in heart growth and influences cardiac stem-cell differentiation and migration. The modification of ECM associated with cardiomyopathies is a complex process involving a cohort of proteins. ECM proteins are involved in the regulation of neoangiogenesis in physiological and pathological conditions through their interaction with some angiogenic factors. Our aim was to investigate the role of some angiogenesis-related ECM proteins in the remodeling heart. Methods: We examined cardiac tissue samples from 21 explanted human hearts and 10 non-failing hearts before transplantation. Each specimen was submitted to morphological and biomolecular analysis. Results: We demonstrated a reduced expression of α2-chain laminin mRNA in pathological samples that could play an important role in the progression of cardiac failure by contributing to sarcolemma modifications. Reduced expression of tenascin cytotactin (TN-C) and TN-X in explanted hearts indicated chronic cardiac damage and an impaired capacity to stimulate new vessel development. The observed type IV collagen increase was not related to neoangiogenesis, as reflected by the decreased expression of vascular endothelial growth factor (VEGF)-A and VEGF receptor-2. The inverse correlation between heart dimension and VEGF-A immunopositivity seems particularly interesting. Conclusions: Our findings suggest that ECM reacts strongly to ischemic damage in failing hearts through some important modifications of its protein composition. Nevertheless, this reaction cannot completely restore myocardium structure if it is not supported by adequate neoangiogenesis. The decrease in some ECM proteins related to vessel development has a negative effect on postischemic neoangiogenesis and clinical outcome.

Share and Cite:

Postiglione, L. , Santo, L. , Spigna, G. , Castaldo, C. , Guerra, G. , Ladogana, P. , Arcucci, A. , Calabrese, D. , Covelli, B. , Vitale, S. , Mele, V. and Montagnani, S. (2013) Cardiac remodeling in postischemic end-stage human hearts: Involvement of extracellular matrix and angiogenesis-related molecules. World Journal of Cardiovascular Diseases, 3, 91-99. doi: 10.4236/wjcd.2013.31A015.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Braunwald, E. (2008) Biomarkers in heart failure. New England Journal of Medicine, 358, 2148-2159. doi:10.1056/NEJMra0800239
[2] Goldsmith, E.C. and Borg, T.K. (2002) The dynamic interaction of the extra cellular matrix in cardiac remodeling. Journal Cardiac Failure, 8, 314-318. doi:10.1054/jcaf.2002.129258
[3] Cleutjens, P.M.J. and Creemers, E.E.J.M. (2002) Integration of concepts: Cardiac extracellular matrix remodelling after myocardial infarction. Journal Cardiac Failure, 8, 344-348. doi:10.1054/jcaf.2002.129261
[4] Postiglione, L., Montagnani, S., Rossi, G., et al. (2006) Granulocyte macrophage-colony stimulating factor receptor expression on human cardiomyocytes from end-stage heart failure patients. Eurpean Journal of Heart Failure, 8, 564-570. 8, 564-570. doi:10.1016/j.ejheart.2005.12.007
[5] Beltrami, A.P., Urbanek, K., Anversa, P., et al. (2001) Evidence that human cardiac myocytes divide after myocardial infarction. New England Journal of Medicine, 344, 1750-1757. doi:10.1056/NEJM200106073442303
[6] Beltrami, A.P., Barlucchi, L., Anversa, P., et al. (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114, 763-776. doi:10.1016/S0092-8674(03)00687-1
[7] Nadal-Ginard, B., Kajstura, J., Leri, A. and Anversa, P. (2003) Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circulation Research, 92, 139-150. doi:10.1161/01.RES.0000053618.86362.DF
[8] Urbanek, K., Quaini, F., Anversa, P., et al. (2003) Intense myocyte formation from cardiac stem cells in human cardiac hypertrophy. Proceedings of the National Academy of Sciences USA, 100, 10440-10445. doi:10.1073/pnas.1832855100
[9] Bendall, J.K., Heymes, T., Ratajczak, P. and Samuel, J.L. (2002) Extracellular matrix and cardiac remodelling. Cardiovascular Research, 95, 1226-1239.
[10] Shamhart, P.E. and Meszaros, J.G. (2010) Non-fibrillar collagens: Key mediators of postinfarction cardiac remodeling? Journal Molecular Cell Cardiology 48, 530- 537. doi:10.1016/j.yjmcc.2009.06.017
[11] Durbeej, M. (2010) Laminins. Cell Tissue Research, 339, 259-268. doi:10.1007/s00441-009-0838-2
[12] Jones, J.C.R., Dehart, G.W., Gonzales, M. and Goldfinger, L.E. (2000) Laminins: An overview. Microsc Research Technique, 1, 211-213. doi:10.1002/1097-0029(20001101)51:3<211::AID-JEMT1>3.0.CO;2-P
[13] Ehrig, K., Leivo, I., Argraves, W.S., Ruoslahti, E. and Engvall, E. (1990) Merosin, a tissue-specific basement membrane protein, is a laminin-like protein. Proceedings of the National Academy of Sciences USA, 87, 3264-3268. doi:10.1073/pnas.87.9.3264
[14] Campbell, K.P. (1995) Three muscular dystrophies: Loss of cytoskeleton-extracellular matrix linkage. Cell, 80, 675-679. doi:10.1016/0092-8674(95)90344-5
[15] Di Somma, S., Marotta, M., de Divitiis, O., et al. (2000) Changes in myocardial cytoskeletal intermediate filaments and myocyte contractile dysfunction in dilatative cardiomyopathy: An in vivo study in humans. Heart, 84, 659-667. doi:10.1136/heart.84.6.659
[16] Oliviero, P., Chassagne, C., Salichon, N., Corbier, A., et al. (2000) Expression of laminin α2-chain during normal and pathological growth of myocardium in rat and human. Cardiovascular Research, 46, 346-355. doi:10.1016/S0008-6363(00)00034-1
[17] Chiquet-Ehrismann, R. and Chiquet, M. (2003) Tenascins: Regulation and putative functions during pathological stress. Journal of Pathology, 200, 488-499. doi:10.1002/path.1415
[18] Imanaka-Yoshida, K., Hiroe, M., Yasutomi, Y. and Toyozaki, T., et al. (2002) Tenascin-C is a useful marker for disease activity in myocarditis. Journal of Pathology, 197, 388-394. doi:10.1002/path.1131
[19] Ikuta, T., Ariga, H. and Matsumoto, K. (2000) Extracellular matrix Tenascin X in combination with vascular endothelial growth factor B enhances endothelial cell proliferation. Genes Cells, 5, 913-927. doi:10.1046/j.1365-2443.2000.00376.x
[20] Ikuta, T., Ariga, H. and Matsumoto, K. (2001) Effect of Tenascin-X together with vascular endothelial growth factor A on cell proliferation in cultured embrionic hearts. Biological Pharmaceutical Bulletin, 24, 1320-1323. doi:10.1248/bpb.24.1320
[21] Shalcwijk, J., Zweers, M.C., Steijlen, P.M., Dean, W.B., et al. (2007) A recessive form of the Ehlers-Danlos syndrome caused by Tenascin-X deficiency. New England Journal of Medicine, 345, 1167-1172. doi:10.1056/NEJMoa002939
[22] Hicklin, D.J. and Ellis L.M. (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. Journal Clinical Oncology, 23, 1011-1027. doi:10.1200/JCO.2005.06.081
[23] Ferrara, N. and Kerbel, R.S. (2005) Angiogenesis as a therapeutic target. Nature, 438, 967-974. doi:10.1038/nature04483
[24] Koch, S., Tugues, S., Li, X., Gualandi, L. and Claesson-Welsh, L. (2011) Signal transduction by vascular endothelial growth factor receptors. Biochemical Journal, 437, 169-183. doi:10.1042/BJ20110301
[25] Dvorak, H.F., Nagy, J.A., Feng, D., Brown, L.F. and Dvorak, A.M. (1999) Vascular permeability factor/vascular endothelial growth factor and the significance of microvascular hyperpermeability in angiogenesis. Current Topics in Microbiology and Immunology, 237, 97-132. doi:10.1007/978-3-642-59953-8_6
[26] Zeng, H., Dvorak, H.F. and Mukhopadhyay, D. (2001) Vascular permeability factor (VPF)/vascular endothelial growth factor (VEGF) peceptor-1 down-modulates VPF/ VEGF receptor-2-mediated endothelial cell proliferation, but not migration, through phosphatidylinositol 3-kinasedependent pathways. Journal of Biological Chemistry, 276, 26969-26979. doi:10.1074/jbc.M103213200
[27] Lee, S., Chen, T.T., Barber, C.L., Jordan, M.C., et al. (2007) Autocrine VEGF signaling is required for vascular homeostasis. Cell, 30, 691-703. doi:10.1016/j.cell.2007.06.054
[28] Smadja, D.M., Bieche, I., Helley, D., Laurendeau, I., et al. (2007) Increased VEGFR2 expression during human late endothelial progenitor cells expansion enhances in vitro angiogenesis with up-regulation of integrin 6. Journal of Cellular and Molecular Medicine, 11, 1149-1161. doi:10.1111/j.1582-4934.2007.00090.x
[29] Rickham, P.P. (1964) Human experimentations. Code of ethics of the World Medical Association. Declaration of Helsinki. British Medical Journal, 2, 177.
[30] De Simone, G., Devereux, R.B., Roman, M.J., et al. (1994) Assessment of left ventricular function by the midwall fractional shortening-end-systolic stress relation in human hypertension. Journal American College of Cardiology, 23, 1444-1451. doi:10.1016/0735-1097(94)90390-5
[31] Devereux, R.B. and Reichek, N. (1977) Echocardiographic determination of left ventricular mass in man: Anatomic validation of method. Circulation, 5, 613-618. doi:10.1161/01.CIR.55.4.613

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.