Cell Survival Assays for Individualised Chemotherapy in Primary Glioma Cultures—Colourmetric or Luminescent?

Abstract

In vitro chemosensitivity testing of short term primary glioma cultures derived from brain biopsies is still in the research phase and has not yet found a place in clinical use. The main reasons for this slow progression are the small amounts of tissue available and the lack of a suitably sensitive assay capable of use in the clinical setting. This study examines whether the MTS and ATP cell survival assays, which determine cytotoxicity via colorimetric and luminescence analysis respectively, could potentially fulfill this role. Primary glioma cultures were tested for chemosensitivity using the MTS and ATP assays and were found to be generally sensitive to cisplatin and paclitaxel but relatively resistant to carmustine and etoposide. For both assays, LD50 values lay in the range 2 - 130 μg/ml but in the vast majority of cases, those obtained by the ATP assay were markedly lower those obtained by the MTS assay. Moreover, at cell numbers less than 2000 in the cases of paclitaxel and carmustine and less than 4500 in the case of cisplatin, these drugs were generally indicated as ineffective against the glioma cultures tested by the MTS assay but effective against these cultures by the ATP assay. These data clearly demonstrate that the ATP assay is more sensitive when estimating small cell numbers generated by primary glioma cultures from brain biopsies and more reliably detects higher kill rates by anticancer drugs. This study also supports the feasibility of using the ATP assay for chemosensitivity testing in a clinical setting.

Share and Cite:

T. Dawson, K. Ashton, A. Golash, C. Davis, R. Iyer, P. Roberts, F. Harris and R. Lea, "Cell Survival Assays for Individualised Chemotherapy in Primary Glioma Cultures—Colourmetric or Luminescent?," Neuroscience and Medicine, Vol. 2 No. 4, 2011, pp. 376-383. doi: 10.4236/nm.2011.24050.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. L. Rosenblum, “Chemosensitivity Testing for Human Brain Tumors,” Progress in Clinical and Biological Research, Vol. 48, 1980, pp. 259-276.
[2] U. Bogdahn, “Chemosensitivity of Malignant Human Brain Tumors. Preliminary Results,” Journal of Neurooncology, Vol. 1, No. 2, 1983, pp.149-166. doi:10.1007/BF00182961
[3] G. Nikkhah, J. C. Tonn, O. Hoffmann, H. P. Kraemer, J. L. Darling, W. Schachenmayr and R. Schonmayr “The MTT Assay for Chemosensitivity Testing of Human Tumors of the Central Nervous System. Part II: Evaluation of Patient- and Drug-Specific Variables” Journal of Neurooncology, Vol. 13 No. 1, 1992, pp. 13-24. doi:10.1007/BF00172942
[4] J. C. Tonn, W. Schachenmayr and H. P. Kraemer, “In Vitro Chemosensitivity Test of Malignant Gliomas: Clinical Relevance of Test Results Independent of Adjuvant Chemotherapy,” Anticancer Research, Vol. 14, No. 3B, 1994, pp. 1371-1375.
[5] L. Mollgard, M. Prenkert, A. Smolowicz, C. Paul and U. Tidefelt, “In Vitro Chemosensitivity Testing of Selected Myeloid Cells in Acute Myeloid Leukemia,” Leukemia and Lymphoma, Vol. 44, No. 5, 2003, pp. 783-789. doi:10.1080/1042819031000067594
[6] L. Mollgard, U. Tidefelt, B. Sundman-Engberg, C. Lofgren and C. Paul, “In Vitro Chemosensitivity Testing in Acute Non Lymphocytic Leukemia Using the Bioluminescence ATP Assay,” Leukemia Research, Vol. 24, No. 5, 2000, pp. 445-452. doi:10.1016/S0145-2126(00)00003-5
[7] T. Hayon, A. Dvilansky, O. Shpilberg and I. Nathan, “Appraisal of the MTT-Based Assay as a Useful Tool for Predicting Drug Chemosensitivity in Leukemia,” Leukemia and Lymphoma Vol. 44, No. 11, 2003, pp. 1957-1962. doi:10.1080/1042819031000116607
[8] A. Desjardins, J. N. Rich, J. A. Quinn, J. Vredenburgh, S. Gururangan, S. Sathornsumetee, D. A. Reardon, A. H. Friedman, D. D. Bigner and H. S. Friedman, “Chemotherapy and Novel Therapeutic Approaches in Malignant Gliomas,” Frontiers in Bioscience, Vol. 10, 2005, pp. 2645-2668. doi:10.2741/1727
[9] M. G. Castro, R. Cowen, I. K. Williamson, A. David, M. J. Jimenez-Dalmaroni, X. Yuan, A. Bigliari, J. C. Williams, J. Hu and P. R. Lowenstein, “Current and Future Strategies for the Treatment of Malignant Brain Tumors,” Pharmacology and Therapeutics, Vol. 98, No. 1, 2003, pp. 71-108. doi:10.1016/S0163-7258(03)00014-7
[10] N. G. Avgeropoulos and T. T. Batchelor, “New Treatment Strategies for Malignant Gliomas,” Oncologist, Vol. 4, No. 3, 1999, pp. 209-224.
[11] T. Mosmann, “Rapid Colorimetric Assay for Cellular Growth and Survival: Application to Proliferation and Cytotoxicity Assays,” Journal of Immunological Methods, Vol. 65, No. 1-2, 1983, pp. 55-63. doi:10.1016/0022-1759(83)90303-4
[12] A. H. Cory, T. C. Owen, J. A. Barltrop and J. G. Cory, “Use of an Aqueous Soluble Tetrazolium Formazan Assay for Cell-Growth Assays in Culture,” Cancer Communications, Vol. 3, No. 7, 1991, pp. 207-212.
[13] S. P. M. Crouch, R. Koslowski, K. J. Slater and J. F. Fletcher, “The Use of ATP-Bioluminescence in Cytokine Bioassays as a Measure of Cell Proliferation and Cytotoxicity,” Lymphokine and Cytokine Research, Vol. 12, No. 5, 1993, pp. 397-397.
[14] A. T. O’Meara and B. U. Sevin, “Predictive Value of the ATP Chemosensitivity Assay in Epithelial Ovarian Cancer,” Gynecologic Oncology, Vol. 83, No. 2, 2001, pp. 334-342. doi:10.1006/gyno.2001.6395
[15] K. Endo, Y. Maehara, T. Kusumoto, Y. Ichiyoshi, M. Kuwano and K. Sugimachi, “Expression of Multidrug- Resistance-Associated Protein (MRP) and Chemosensitivity in Human Gastric Cancer,” International Journal of Cancer, Vol. 68, No. 3, 1996, pp. 372-377. doi:10.1002/(SICI)1097-0215(19961104)68:3<372::AID-IJC16>3.0.CO;2-A
[16] H. Kawamura, K. Ikeda, I. Takiyama and M. Terashima, “The Usefulness of the ATP Assay with Serum-Free Culture for Chemosensitivity Testing of Gastrointestinal Cancer,” European Journal of Cancer. Vol. 33, No. 6, 1997, pp. 960-966. doi:10.1016/S0959-8049(97)00075-0
[17] C. M. Kurbacher, O. M. Grecu, U. Stier, T. J. Gilster, M. M. Janat, M. Untch, G. Konecny, H. W. Bruckner and I. A. Cree, “ATP Chemosensitivity Testing in Ovarian and Breast Cancer: Early Clinical Trials: Recent Results,” Cancer Research, Vol. 161, 2003, pp. 221-230.
[18] S. Sharma, M. H. Neale, F. Di Nicolantonio, L. A. Knight, P. A. Whitehouse, S. J. Mercer, B. R. Higgins, A. Lamont, R. Osborne, A. C. Hindley, C. M/ Kurbacher and I. A. Cree, “Outcome of ATP-Based Tumor Chemosensitivity Assay Directed Chemotherapy in Heavily Pre-Treated Recurrent Ovarian Carcinoma,” BMC Cancer, Vol. 3, No. 19, 2003. http://www.biomedcentral.com/1471-2407/3/19
[19] T. P. Dawson, R. V. Iyer, R. W. Lea, P. Roberts, F. Harris, K. Ashton, A. Golash and C. H. G. Davis, “The MTS Versus the ATP Assay for in Vitro Chemosensitivity Testing of Primary Glioma Tissue Culture,” Neuropathology and Applied Neurobiology, Vol. 36, No. 6, 2010, pp. 564-567. doi:10.1111/j.1365-2990.2010.01096.x
[20] D. E. Thurston, “Chemistry and Pharmacology of Anticancer Drugs,” CRC Press, Oxford, 2006. doi:10.1201/9781420008906
[21] H. B. Newton, “Intra-Arterial Chemotherapy of Primary Brain Tumors,” Current Treatment Options in Oncology, Vol. 6, No. 6, 2005, pp. 519-530. doi:10.1007/s11864-005-0030-1
[22] National Institute for Health and Clinical Excellence, “Glioma (Newly Diagnosed and High Grade)—Carmustine Implants and temozolomide: Appraisal Consultation Document,” 2010.
[23] S. H. Tseng, M. S. Bobola, M. S. Berger and J. R. Silber, “Characterization of Paclitaxel (Taxol) Sensitivity in Human Glioma-and Medulloblastoma-Derived Cell Lines,” Neuro-Oncology, Vol. 1, No. 2, 1999, pp. 101-108.
[24] M. Zhao, C. Liang, A. M. Li, J. Chang, H. J. Wang, R. M. Yan, J. J. Zhang and J. L. Tai, “Magnetic Paclitaxel Nanoparticles Inhibit Glioma Growth and Improve the Survival of Rats Bearing Glioma Xenografts,” Anticancer Research, Vol. 30, No. 6, 2010, pp. 2217-2223.
[25] M. M. Mrugala, S. Kesari, N. Ramakrishna and P. Y. Wen, “Therapy for Recurrent Malignant Glioma in Adults,” Expert Review of Anticancer Therapy, Vol. 4, No. 5, 2004, pp. 759-782. doi:10.1586/14737140.4.5.759
[26] R. V. Iyer, “A feasibility Study of Chemosensitivity Testing in Primary Cultures from Malignant Gliomas, and Analysis of Drug Resistance Mechanisms,” MD, University of Central Lancashire, 2006.
[27] M. Westphal, Z. Ram, V. Riddle, D. Hilt and E. Bortey, and on Behalf of the Executive Committee of the Gliadel Study Group, “Gliadel (R) Wafer in Initial Surgery for Malignant Glioma: Long-Term Follow-up of a Multicenter Controlled Trial,” Acta Neurochirurgica, Vol. 148, No. 3, 2006, pp. 269-275. doi:10.1007/s00701-005-0707-z
[28] N. D. Doolittle, M. E. Miner, W. A. Hall, T. Siegal, E. J. Hanson, E. Osztie, L. D. McAllister, J. S. Bubalo, D. F. Kraemer, D. Fortin, R. Nixon, L. L. Muldoon and E. A. Neuwelt, “Safety and Efficacy of a Multicenter Study Using Intraarterial Chemotherapy in Conjunction with Osmotic Opening of the Blood-Brain Barrier for the Treatment of Patients with Malignant Brain Tumors,” Cancer, Vol. 88, No. 3, 2000, pp. 637-647. doi:10.1002/(SICI)1097-0142(20000201)88:3<637::AID-CNCR22>3.0.CO;2-Y
[29] Z. Lidar, Y. Mardor, T. Jonas, R. Pfeffer, M. Faibel, D. Nass, M. Hadani and Z. Ram, “Convection-Enhanced Delivery of Paclitaxel for the Treatment of Recurrent Malignant Glioma: A Phase I/II Clinical Study,” Journal of Neurosurgery, Vol. 100, No. 3, 2004, pp. 472-479. doi:10.3171/jns.2004.100.3.0472
[30] W. K. Yung, J. R. Shapiro and W. R. Shapiro, “Heterogeneous Chemosensitivities of Subpopulations of Human Glioma Cells in Culture,” Cancer Research, Vol. 42, No. 3, 1982, pp. 992-998.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.