Characteristics of SnO2:F Thin Films Deposited by Ultrasonic Spray Pyrolysis: Effect of Water Content in Solution and Substrate Temperature

Abstract

Fluorine doped tin oxide, SnO2:F, thin films were deposited by ultrasonic chemical spray starting from tin chloride and hydrofluoric acid. The physical characteristics of the films as a function of both water content in the starting solution and substrate temperature were studied. The film structure was polycrystalline in all cases, showing that the intensity of (200) peak increased with the water content in the starting solution. The electrical resistivity decreased with the water content, reaching a minimum value, in the order of 8 × 10-4 Ωcm, for films deposited at 450℃ from a starting solution with a water content of 10 ml per 100 ml of solution; further increase in water content increased the corresponding resistivity. Optical transmittances of SnO2:F films were high, in the order of 75%, and the band gap values oscillated around 3.9 eV. SEM analysis showed uniform surface morphologies with different geometries depending on the deposition conditions. Composition analysis showed a stoichiometric compound with a [Sn/O] ratio around 1:2 in all samples. The presence of F into the SnO2 lattice was detected, within 2 at % respect to Sn.

Share and Cite:

M. Sánchez-García, A. Maldonado, L. Castañeda, R. Silva-González and M. Olvera, "Characteristics of SnO2:F Thin Films Deposited by Ultrasonic Spray Pyrolysis: Effect of Water Content in Solution and Substrate Temperature," Materials Sciences and Applications, Vol. 3 No. 10, 2012, pp. 690-696. doi: 10.4236/msa.2012.310101.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] C. G. Granqvist, “Transparent Conductors as Solar Energy Materials: A Panoramic Review,” Solar Energy Materials & Solar Cells, Vol. 91, No. 17, 2007, pp. 1529- 1598. doi:10.1016/j.solmat.2007.04.031
[2] G. J. Exarhos and X.-D. Zhou, “Discovery-Based Design of Transparent Conducting Oxide Films,” Thin Solid Films, Vol. 515, No. 18, 2007, pp. 7025-7052.doi:10.1016/j.tsf.2007.03.014
[3] S. Malato, P. Fernández-Ibá?ez, M. I. Maldonado, J. Blanco and W. Gernjak, “Decontamination and Disinfection of Water by Solar Photocatalysis: Recent Overview and Trends,” Catalysis Today, Vol. 147, No. 1, 2009, pp. 1-59. doi:10.1016/j.cattod.2009.06.018
[4] B. Li, L. D. Wang, B. N. Kang, P. Wang and Y. Qiu, “Review of Recent Progress in Solid-State Dye-Sensi- tized Solar Cells,” Solar Energy Materials & Solar Cells, Vol. 90, No. 5, 2006, pp. 549-573. doi:10.1016/j.solmat.2005.04.039
[5] F. C. Krebs, “Fabrication and Processing of Polymer Solar Cells: A Review of Printing and Coating Techniques,” Solar Energy Materials & Solar Cells, Vol. 93, 2009, pp. 394-412. doi:10.1016/j.solmat.2008.10.004
[6] G. Frenzer and W. F. Maier, “Amorphous Porous Mixed oxides: Sol-Gel Ways to a Highly Versatile Class of Materials and Catalysts Annu,” Materials Research, Vol. 36, 2006, pp. 281-331. doi:10.1146/annurev.matsci.36.032905.092408
[7] G. Oskam, “Metal Oxide Nanoparticles: Synthesis, Characterization and Application,” Journal of Sol-Gel Science and Technology, Vol. 37, No. 3, 2006, pp. 161-164.doi:10.1007/s10971-005-6621-2
[8] M. O. Nwodo, S. C. Ezugwu, F. I. Ezema, P. U. Asogwa and R. U. Osuji, “Chemical Bath Deposition and Characterization of PVD Capped Tin Oxide Thin Films,” Journal of Optoelectronics and Bomedical Materials, Vol. 2, No. 4, 2010, pp. 267-272.
[9] P. S. Patil, “Review Versatility of Chemical Spray Pyrolysis Technique,” Materials Chemistry and Physics, Vol. 59, No. 3, 1999, pp. 185-198.doi:10.1016/S0254-0584(99)00049-8
[10] A. A. Yadav, E. U. Masumdar, A. V. Moholkar, M. Neu- mann-Spallart, K. Y. Rajpure and C. H. Bhosale, “Electrical, Structural and Optical Properties of SnO2:F Thin Films: Effect of the Substrate Temperatura,” Journal of Alloys and Compounds, Vol. 488, No. 1, 2009, pp. 350- 355. doi:10.1016/j.jallcom.2009.08.130
[11] E. Elangovan, K. Ramamurthi, “Studies on Micro-Struc- tural and Electrical Properties of Spray-Deposited Fluorine-Doped Tin Oxide Thin Films from Low-Cost Precursor,” Thin Solid Films, Vol. 476, No. 2, 2005, pp. 231- 236. doi:10.1016/j.tsf.2004.09.022
[12] K. B. Sundaram and G. K. Bhagavat, “High-Temperature Annealing Effects on Tin Oxide Films,” Journal of Physics D: Applied Physics, Vol. 16, No. 1, 1983, pp. 69-76. doi:10.1088/0022-3727/16/1/011
[13] C.-C. Lin, M.-C. Chiang and Y.-W. Chen, “Temperature Dependence of Fluorine-Doped Tin Oxide Films Produced by Ultrasonic Spray Pyrolysis,” Thin Solid Films, Vol. 518, No. 4, 2009, pp. 1241-1244. doi:10.1016/j.tsf.2009.05.064
[14] C.-Y. Kim and D.-H. Riu, “Texture Control of Fluorine-Doped Tin Oxide Thin Film,” Thin Solid Films, Vol. 519, No. 10, 2011, pp. 3081-3085.doi:10.1016/j.tsf.2010.12.096
[15] D. Jadsadapattarakul, C. Euvananont, C. Thanachayanont, J. Nukeawa and T. Sooknoi, “Tin Oxide Thin Films Deposited by Ultrasonic Spray Pyrolysis,” Ceramics International, Vol. 34, No. 4, 2008, pp. 1051-1054.doi:10.1016/j.ceramint.2007.09.096
[16] B. Zhang, Y. Tian, J. X. Zhang and W. Cai, “Structural, Optical, Electrical Properties and FTIR Studies of Fluorine Doped SnO2 Films Deposited by Spray Pirolisis,” Journal of Materials Science, Vol. 46, No. 6, 2011, pp. 1884-1889. doi:10.1007/s10853-010-5021-3
[17] C. Luyo, I. Fábregas, L. Reyes, J. L. Solís, J. Rodríguez, W. Estrada and R. J. Candal, “SnO2 Thin-Films Prepared by a Spray-Gel Pyrolysis: Influence of Sol Properties on Film Morphologies,” Thin Solid Films, Vol. 516, No. 1, 2007, pp. 25-33. doi:10.1016/j.tsf.2007.05.023
[18] J. C. Manifacier, J. Gasiot and J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n, h and the Thickness of a Weakly Absorbing Thin Film,” Journal of Physics E: Scientific Instruments, Vol. 9, No. 11, 1976, p. 1002. doi:10.1088/0022-3735/9/11/032
[19] Joint Committee on Powder Diffraction Standards (JCPDS), International Centre for Diffraction Data, 1997, Card No. 41-1445.
[20] A. P. Roth and J. B. Webb, “Band-Gap Narrowing in Heavily Defect-Doped ZnO,” Physical Review B, Vol. 25, No. 12, 1982, pp. 7836-7839.
[21] F. R. Flory, “Thin Films for Optical Systems,” Marcel Dekker, Inc., New York, 1995. pp. 285-287.
[22] V. Bilgin, I. Akyuz, E. Ketenci, S. Kose and F. Atay, “Electrical, Structural and Surface Properties of Fluorine Doped Tin Oxide Films,” Applied Surface Science, Vol. 256, No. 22, 2010, pp. 6586-6591. doi:10.1016/j.apsusc.2010.04.052

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.