Evolution of Internal Crack in BCC Fe under Compressive Loading

Abstract

A molecular dynamics model has been developed to investigate the evolution of the internal crack of nano scale during heating or compressive loading in BCC Fe. The initial configuration does not contain any pre-existing dislocations. In the case of heating, temperature shows a significant effect on crack evolution and the critical temperature at which the crack healing becomes possible is 673 K. In the case of compressive loading, the crack can be healed at 40 K at a loading rate 0.025 × 1018 Pa·m1/2/s in 6 × 10-12 s. The diffusion of Fe atoms into the crack area results in the healing process. However, dislocations and voids appear during healing and their positions change continuously.

Share and Cite:

D. Wei, Z. Jiang and J. Han, "Evolution of Internal Crack in BCC Fe under Compressive Loading," Journal of Modern Physics, Vol. 3 No. 10, 2012, pp. 1594-1601. doi: 10.4236/jmp.2012.310197.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] K. Laha, J. Kyono, T. Sasaki, S. Kishimoto and N. Shinya, “Improved Creep Strength and Creep Ductility of Type 347 Austenitic Stainless Steel through the Self-Healing Effect of Boron for Creep Cavitation,” Metallurgical and Materials Transactions A, Vol. 36, No. 2, 2005, pp. 399-409.
[2] N. Shinya and J. Kyono, “Effect of Boron Nitride Precipitation at Cavity Surface on Rupture Properties,” Materials Transactions, Vol. 47, No. 9, 2006, pp. 2302-2307. doi:10.2320/matertrans.47.2302
[3] V. I. Kumanin, M. L. Sokolova and S. V. Luneva, “Damage Evolution in Metallic Materials,” Metal Science and Heat Treatment, Vol. 37, No. 4, 1995, pp. 131-135. doi:10.1007/BF01189467
[4] V. I. Kumanin, L. A. Kovaleva and M. L. Sokolova, “The Use of Recovery Heat Treatment to Eliminate Damage in Metallic Materials,” Metal Science and Heat Treatment, Vol. 37, No. 4, 1995, pp. 136-140. doi:10.1007/BF01189468
[5] K. Gao, S. Li, L. Qiao and W. Chu, “Molecular Dynamics Simulation and in Situ TEM Study of Crack Healing,” Materials Science and Technology, Vol. 18, No. 10, 2002, pp. 1109-1114. doi:10.1179/026708302225006133
[6] K. Gao, L. Qiao and W. Chu, “In Situ TEM Observation of Crack Healing in Alpha-Fe,” Scripta Materialia, Vol. 44, No. 7, 2001, 1055-1059. doi:10.1016/S1359-6462(01)00671-6
[7] D. B. Wei, J. T. Han, J. X. Xie, C. G. Fu, L. Z. Wang and Y. X. He, “Steel Crack Healing at Elevated Temperature in Vacuum,” Acta Metallurgica Sinica, Vol. 36, 2000, pp. 713-717.
[8] D. B. Wei, J. T. Han, Z. Y. Jiang, C. Lu and A. K. Tieu, “A Study on Crack Healing in 1045 Steel,” Journal of Materials Processing Technology, Vol. 177, No. 1-3, 2006, pp. 233-237. doi:10.1016/j.jmatprotec.2006.04.067
[9] D. B. Wei, J. T. Han, A. K. Tieu and Z. Y. Jiang, “An Analysis on the Inhomogeneous Microstructure in Crack Healing Area,” Key Engineering Materials, Vol. 274-276, 2004, pp. 1053-1058. doi:10.4028/www.scientific.net/KEM.274-276.1053
[10] V. A. Konkova, “Development and Curing of Nucleating Microcracks in Deformed Aluminum,” Metal Science and Heat Treatment, Vol. 38, No. 11, 1996, pp. 490-493. doi:10.1007/BF01156525
[11] W. B. Beere and G. W. Greenwood, “Effect of Hydrostatic Pressure on the Shrinkage of Cavities in Metals,” Metal Science, Vol. 5, No. 1, 1971, pp. 107-113. doi:10.1179/030634571790439757
[12] A. Gittins, “Stability of Grain Boundary Cavities in Copper,” Nature, Vol. 214, 1967, pp. 586-587. doi:10.1038/214586a0
[13] T. Matuszewski, P. Machmeier and H. McQueen, “The Workability of Commercial and Experimental 0.6% Carbon Low Alloy Steels in the Temperature Range of 650 - 870 deg C,” Metallurgical Transactions A, Vol. 25, No. 4, 1994, pp. 827-837.
[14] D. B. Wei, J. T. Han, J. X. Xie, C. G. Fu, L. Z. Wang and Y. X. He, “Experimental Study on Inner Crack Healing in Steel During Hot Plastic Deforming,” Acta Metallurgica Sinica, Vol. 36, No. 6, 2000, pp. 622-625.
[15] J. Foct and N. Akdut, “Why Are ‘Duplex’ Microstructures Easier to Form than Expected?” Scripta Metallurgica et Materialia, Vol. 27, No. 8, 1992, pp. 1033-1038. doi:10.1016/0956-716X(92)90469-U
[16] G. H. Zhou, K. W. Gao, L. J. Qiao, Y. Wang and W. Y. Chu, “Atomistic Simulation of Microcrack Healing in Aluminium,” Modelling and Simulation in Materials Science, Vol. 8, 2000, pp. 603-609. doi:10.1088/0965-0393/8/4/313
[17] S. Li, K. W. Gao, L. J. Qiao, F. X. Zhou and W. Y. Chu, “Molecular Dynamics Simulation of Microcrack Healing in Copper,” Computational Materials Science, Vol. 20, No. 2, 2001, pp. 143-150. doi:10.1016/S0927-0256(00)00130-0
[18] D. B. Wei, J. T. Han, A. K. Tieu and Z. Y. Jiang, “Simulation of Crack Healing in BCC Fe,” Scripta Materialia, Vol. 51, No. 6, 2004, pp. 583-587. doi:10.1016/j.scriptamat.2004.05.032
[19] D. W. Heermann, “Computer Simulation Methods in Theoretic Physics,” 2nd Edition, Springer-Verlg, Berlin, 1990. doi:10.1007/978-3-642-75448-7
[20] M. W. Finnis and J. E. Sinclair, “A Simple Empirical N-Body Potential for Transition Metals,” Philosophical Magazine A, Vol. 50, No. 1, 1984, pp. 45-55. doi:10.1080/01418618408244210
[21] G. J. Ackland, G. Tichy, V. Vitek and M. W. Finnis, “Simple N-Body Potentials for the Noble Metals and Nickel,” Philosophical Magazine A, Vol. 56, No. 6, 1987, pp. 735-756. doi:10.1080/01418618708204485
[22] G. J. Ackland, D. J. Bacon, A. F. Calder and T. Harry, “Computer Simulation of Point Defect Properties in Dilute Fe-Cu Alloy Using a Many-Body Interatomic Potential,” Philosophical Magazine A, Vol. 75, No. 3, 1997, pp. 713-732. doi:10.1080/01418619708207198
[23] H. Noguchi and Y. Furuya, “A Method of Seamlessly Combining a Crack Tip Molecular Dynamics Enclave with a Linear Elastic Outer Domain in Simulating Elastic-Plastic Crack Advance,” International Journal of Fracture Mechanics, Vol. 87, No. 4, 1997, pp. 309-329. doi:10.1023/A:1007442003884
[24] M. F. Kanninen and P. C. Gehlen, “Atomic Simulation of Crack Extension in BCC Fe,” International Journal of Fracture Mechanics, Vol. 7, No. 4, 1971, pp. 471-474. doi:10.1007/BF00189120
[25] B. deCelis, A. S. Argon and Y. J. Sidney, “Molecular Dynamics Simulation of Crack Tip Processes in Alpha-Iron and Copper,” Journal of Applied Physics, Vol. 54, No. 9, 1983, pp. 4864-4878. doi:10.1063/1.332796
[26] H. Tada, P. C. Paris and G. R. Irwin, “The Stress Analysis of Cracks Handbook,” ASME Press, London, 2000.
[27] D. C. Rapaport, “The Art of Molecular Dynamics Simulation,” Cambridge University Press, Cambridge, 1995.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.