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ABSTRACT 
 
The effect of multiple-step thermal ageing treatment (MSTAT) on the corrosion characteristics of 
A356.0-type Al-Si-Mg alloy in simulated seawater has been studied. The MSTAT treatment also 
consists of Double Thermal Ageing (DTAT- T7), Single Thermal Ageing (STAT- T6), Step-
Quenching and Ageing (SQA). The corrosion of the thermal treated samples was characterized 
by electrochemical Potentiodynamics polarization techniques consisting of linear polarization 
and chronopotentiometric method using the fit Tafel plot. Generally, from the linear 
polarization, the corrosion rate decreases at all temperatures with the ageing time. The 
corrosion behavior of the DTAT and SQA Al-Si-Mg alloy in the simulated seawater showed 
better resistance than the STAT Al-Si-Mg alloy. Samples in the SQA-STAT have improved 
corrosion resistance than the SQA-DTAT one. The chronopotentiometric corrosion study of some 
selected samples indicates a decrease in the corrosion resistance with open circuit potential 
exposure time. Consequently, the form of corrosion in the studied Al-Si-Mg alloy are slightly 
uniform and predominantly pitting corrosion as obtained from the SEM study. The pits diameter 
were found to range from 30-50µm.  
 
Key words: pits diameter, MSTAT, degradation behavior, corrosion rate. 
 
 
1. INTRODUCTION 
 
Foundry aluminium alloys based on the Al-Si system are widely used in the automobile field 
since they provide excellent fluidity and castability, good resistance to corrosion and mechanical 
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properties [1-4]. Al-Si alloys are characterized by a wide temperature range in the semi-solid 
region [1,5]. Al-Si alloys, which comprise 85% to 90% of the total aluminium cast parts 
produced, exhibit excellent castability, mechanical and physical properties [6,7]. Aluminium 
alloys has successfully penetrated the automotive market, largely (> 75%) in the form of castings 
[8]. Addition of Mg to Al-Si (A356 alloys) is the main solid solution strengthener to aluminium 
alloys and responsible to precipitation hardening (PH) to yield higher strength [9-12]. A356 
alloys contains silicon but also magnesium as main alloying elements. It shows response to heat 
treatment [1,3,13-16] and increase strength by precipitation of Mg2Si in aluminium matrix [1,17-
24]. 
 
Aluminium and its alloys are considered to be highly corrosion resistant under the majority of 
available service condition [25]. The various grades of pure aluminium are most resistance, 
followed closely by the Al-Mg, Al-Mn alloys. Next in order is Al-Mg-Si and then Al-Si alloy. 
The alloy containing copper are the least resistant to corrosion; but this can be improved by 
coating each side of the copper containing alloy with a thin layer of high purity aluminium, thus 
gaining a three ply metal, i.e. Alclad. This cladding acts as a mechanical shield and also protects 
the material by sacrificial [26]. When aluminium surface are exposed to the atmosphere, a thin 
invisible oxide (Al2O3) skin forms, which protects the metal from corrosion in many 
environments [25]. This film protect the metal from further oxidation unless this coating is 
destroyed, the material remains fully protected against corrosion [27,28]. The composition of an 
alloy and its thermal treatment are of important for susceptibility of alloys to corrosion [29].  
 
In the development and processing of aluminium alloys, various works have been reported on the 
degradation of the alloys at various environment and operating conditions. Several methods of 
controlling and preventing or minimizing corrosion attach in aluminium alloys have been 
demonstrated by different authors. Alloying addition have been reported to successfully reduced 
corrosion attack in aluminium alloy [30,31]. Other methods of corrosion control include 
inhibitors addition [32-34]. Heat treatment (PH) (including DTAT) [31,35-40]. Corrosion 
resistance of Al-Si-Mg alloy is much better than the aluminium-copper alloys [41]. On the 
microstructural and submicroscopic scales, the electrochemical properties develop point-to-point 
non-uniformities that account for changes in resistance of the alloy [42]. Abdulrahman and 
Agbodion [43] studied the effect of ageing time and temper on the corrosion of Al-Si-Cu alloy in 
varying HCl concentrated acid solution. They noticed that the rate of corrosion of the alloy 
increased with increase in concentrations of the acid and decreased sharply with time.  
 
Khoshnaw and Gardi [44] studied the effect of ageing time and temperature on exfoliation 
corrosion of aluminium alloys 2024-T3 and 7075-T6. They observed that with increase in the 
ageing time for aluminium alloy type 2024-T3, the susceptibility to exfoliation corrosion 
increase while for the 7075-T6 decreased. The intermetallic compounds formed such as CuAl2 
and MZn2 phase increase with increase in ageing time for both alloys. Aluminium alloys has 
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been used for along time because of it essential properties. New demanding applications are 
developed continuously. To be able to make the alloys competitive in future applications, assess 
to powerful tools and methods for materials or/ properties development is essential. The interest 
in this work for DTAT and SQA treatments comes from the possibility to improve the corrosion 
resistance of Al-Si-Mg alloy in the T6 temper. It is on this note that an electrochemical corrosion 
test consisting of linear polarization and chronopotentiometric as a means of corrosion 
assessment of this group of alloy was carried out after these novel thermal treatments. 
 
2. MATERIALS AND METHODS 
 
The A356.0-type Al-Si-Mg alloy with chemical composition (see Table 1) was produced 
according to the methods described elsewhere [30,45]. Some seconds to pouring of the molten 
alloy into the mould, 0.01% elemental sodium was added and stirred thoroughly. The cast 
samples were machined to specified electrochemical corrosion dimensions at the Centre for 
Advanced Manufacturing Technology (CAMT), Tshwane University of Technology, 
Soshanguve, Pretoria, Republic of South Africa. 
 
 
Table 1. Chemical composition of the produced A356.0-type Al-Si-Mg alloy (wt %). 
 

Al Si Mg Fe Mn Cr Pb+Sn Zn Cu Ti    Ni Na 

92.14 7.00 0.30 0.08 0.03 0.20 0.03 0.05 0.03 0.11 0.03 0.01 
 
 
The electrochemical potentiodynamics technique was used to characterize the corrosion rate 
(current densities) consisting of linear polarization and chronopotentiometric or open circuit 
potential (OCP). A potentiostat coupled to a computer system, a glass corrosion cell kit with a 
platinum counter electrode and a saturated Ag/Ag reference electrode were used. The working 
electrodes consist of thermally aged alloys. The samples were positioned at the glass corrosion 
cell kit, leaving a 3.803cm2 alloy surfaces in contact with the solution. Polarization test were 
carried out in a 3.5wt%NaCl solution at room temperature (RT) using a potentiostat. The 
polarization curves were determined by stepping the potential at a scan rate of 0.003V/sec. The 
polarization curves were plotted using Autolab data acquisition system (Autolab model: 
AuT71791 and PGSTAT 30), and both the corrosion rate and potential were estimated by the 
Tafel extrapolation method (Tafel plot or corrosion rate analysis) using both the anodic and 
cathodic branches of the polarization curves. The chronopotentiometric (OCP) was also used to 
assess the corrosion behavior of some alloys samples in order to determine whether there was 
prolong or short passive or active condition. The electrochemical corrosion test was done at 
Department of Chemical and Metallurgical Engineering, Tshwane University of Technology, 
Pretoria, Republic of South Africa. 
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3. RESULTS AND DISCUSSIONS 
 
3.1 Results 
 
The corrosion rate analysis from the linear polarizations using the data from the Tafel plots have 
been represented in the normal form; shown as Figures 1-6 and the OCP curves are presented as 
Figure 7. The SEM of the surface morphology of some treated as-corroded samples can be found 
in Plates 1-5.  
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Figure 1: Variation of corrosion rate with ageing time for DTAT-T7 and 
STAT-T6 A356.0-type Al-Si-Mg alloy at 150oC from the Tafel 

plot data in simulated seawater environment. 
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Figure 2: Variation of corrosion rate with ageing time for DTAT-T7 and 
STAT-T6 A356.0-type Al-Si-Mg alloy at 180oC from the Tafel 

plot data in simulated seawater environment. 
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Figure 3: Variation of corrosion rate with ageing time for DTAT-T7 and 

STAT-T6 A356.0-type Al-Si-Mg alloy at 210oC from the Tafel 
plot data in simulated seawater environment. 
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Figure 4: Variation of corrosion rate with ageing time for DTAT-T7 and 
STAT-T6 A356.0-type Al-Si-Mg alloy at 220oC SQ temperature and aged  

180oC/2hr from the Tafel plot in simulated seawater environment. 
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Figure 5: Variation of corrosion rate with ageing time for DTAT-T7 and 
STAT-T6 A356.0-type Al-Si-Mg alloy at 220oC SQ temperature and aged  

at 180oC/4hr  from the Tafel plot in simulated seawater environment. 
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Figure 6: Comparative study of corrosion rate for DTAT-T7 and STAT- 
T6 A356.0-type Al-Si-Mg alloy at 150oC, 180oC and 210oC at various  

ageing time from the Tafel plot data in simulated Seawater environment 
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Figure 7: Chronopotentiometric curve for some selected DTAT and STAT A356.0-type alloys 
(A) STAT-T6 150oC/18hr (B) STAT-T6,180oC/20hr (C)STAT-T6, 210oC/20hr (D)DTAT-T7, 
180oC/20hr (E)DTAT-T7 210oC/20hr (F)SQA DTAT-T7, 220oC/3Osec., 180oC/4hr (G)DTAT-
T7 150oC/18hr (H)SQA STAT-T6, 220oC/3Osec., 180oC/4hr    
 
 
3.2 Discussion of Results 
 
3.2.1 Corrosion characteristics 
 
3.2.1.1 Potentiodynamics linear polarization and MSTAT treatment 
 
From Figures 1-6, the potentiodynamics polarization curves for A356.0-type Al-Si-Mg alloy 
subjected to different MSTAT treatment in a 3.5wt% NaCl are presented. However, the 
corrosion rate decreases with increasing ageing time (see Figures 1-6) for all the DTAT, STAT, 
SQA; DTAT and STAT samples considered. This is in agreement to those reported [43,44,46-
49]. The corrosion rate of DTAT and STAT samples at 150oC, 180oC and 210oC decreases with 
increasing ageing time (1-20hr). The DTAT treatment has demonstrated a remarkable decrease 
in the corrosion rate than STAT samples at all ageing time. For example, at 150oC/1hr DTAT 
and STAT, the corrosion rates are 0.09766 and 0.284mm/year respectively. While at 18hr same 
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temperature, DTAT and STAT corrosion rates are 0.0002171 and 0.03093mm/year respectively. 
However, similar results [50] and trends [48] have been reported. On the other hand, since the 
grain boundaries are often more susceptible to corrosion than the grain interiors because of the 
microstructural heterogeneity associated with grain boundaries [38,51,52]. It is expected that 
samples with higher have pronounced grain boundaries, as such higher hardness is expected for 
such sample. For all the DTAT samples investigated, the corrosion rate has been observed to be 
significantly lower than that obtained at the STAT condition for all ageing temperatures and time 
comparatively. One of the reasons for this behavior is that the pre-ageing treatment at 105oC/5hr 
in the DTAT is responsible for these decreases in the corrosion rate compare to those observed 
with the STAT samples. The phases formed which enhanced hardness may probably have some 
deleterious effect on the physicochemical properties of the alloy in the electrochemical 
polarization condition. 
 
However, the SQA; DTAT-T7 at 180oC/2hr and 4hr have higher corrosion rate than those of 
SQA; STAT-T6 at 180oC/2hr and 4hr for all the step-quenching time considered (see figure 4 
and 5). For example the current densities at SQA; DTAT-T7 at 180oC/2hr and 4hr 
(220oC/30sec.) are 2.031 and 0.5µA/cm2 as compared to those at SQA; STAT at 180oC/2hr and 
4hr (220oC/30sec), the current densities are 1.419 and 0.1696µA/cm2 respectively. This results 
showed a very wide difference in the corrosion rate of the two conditions indicating that SQA; 
DTAT-T7 are more susceptible to corrosion attach than SQA; STAT-T6 samples within the 
studied conditions. 
 
It is also believed that after quenching, particles of the second phase precipitates occurred which 
affect the physicochemical properties of the alloy. The ageing temperatures and the degree of 
supersaturation play a major role in the final properties of the alloy. However, as the ageing 
progresses, the inter-atomic spacing and the bond between the molecules changed which account 
for the electrochemical behavior of these samples. Such tendency agreed with the results 
obtained in previous study [29, 46]. The corrosion resistances of A356.0-type Al-Si-Mg alloy 
studied seems to be strongly associated not only with the distribution of eutectics which is 
dependent on the interdendritic spacing, but also with the fineness of the eutectic inter-phase 
spacing. 
 
Comparatively, samples aged at 150oC for 18hr at DTAT exhibit the highest corrosion resistance 
in 3.5wt%NaCl solution simulated environment considered in this work. The sequence below 
presents the decreasing order of corrosion resistance of the sample at various ageing temperature 
and time:                                                         
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      DTAT-T7, 150oC/18hr 
 
 
                                                      DTAT-T7, 210oC/20hr 
 
 
                                                      DTAT-T7, 180oC/20hr 
 
 
                                                      STAT-T6, 180oC/20hr 
 
 
                                                      STAT-T6, 150oC/18hr 
 
 
                                                      STAT-T6, 210oC/20hr 
 
and    
                          SQA 180oC/4hr; STAT-T6            SQA 180oC/4hr; DTAT-T7 
                          
                           SQA 180oC/2hr; STAT-T6          SQA 180oC/2hr; DTAT-T7. 
  
  
The results above motivated the interest in examining the samples of best corrosion resistance at 
each ageing temperature considered using the chronopotentiometric analysis which enables the 
evaluation of the corrosion kinetic of the selected sample through corrosion potentials with 
prolong time. 
 
3.2.1.2 Chronopotentiometric and MSTAT treatments 
 
From the OCP study of the selected samples of higher corrosion resistance, the corrosion 
potential, E (V), decreases with the electrochemical exposure time (see Figure 7). This becomes 
stable (passive) throughout the study time. This shows that the resistances of the thermally 
treated alloy to corrosion attach decreases with increasing electrochemical exposure time and 
that the samples later developed passivity (protection against corrosion). At this ‘stable-level’, it 
is assumed that the sample has some level of passivity and immunity as a result of the corroding 
products which covers the corroding surface and retard/stabilizes corrosion attach. These 
observations have been reported [47,50]. It can also be observed, for example, that sample with 
highest corrosion resistance still have the best corrosion potential (T7150oC/18hr) indicating 
higher corrosion resistance in 3.5wt%NaCl solution. 
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3.2.2 Microstructures and degradation behavior after corrosion study of A356.0-type Al-Si-Mg 
alloy 
 
The microstructure of some selected as-corroded samples after electrochemical corrosion study 
using SEM indicates some traces of cracks and pronounced pits; showing that the samples have 
suffered pitting corrosion attach (Plates 1-5). The exposure surface shows evidence of localized 
attach at the location of the intermetallic caused by the dissolution of the matrix. There was 
evidence of corroding products of intermetallic compounds in all the samples examined. Besides, 
several pits are visible in all samples examined at different magnifications; x300, x1000, x10000. 
In Plates 1 and 3 there seems to be uniform surface pits formations which are less deep as 
compared to those in Plates 2, 4 and 5. More pronounced deeper pit were seen in T6 150oC/3hr 
(Plate 4) and SQA T7 220oC/20sec.180oC/2hr (see Plate 5).  

 

   
T7 180oC/20hr x300                           T7 180oC/20hr x1000 

 
T7 180oC/20hr x10,000 

 
Plate 1: SEM Secondary Electron Image of the damaged surface Morphology of as- corroded T7 
180/20hr in 3.5wt%NaCl Solution. Microstructures at different magnifications indicates several 
and severe pits. 
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T6 180oC/2hr x300                          T6 180oC/2hr x1000 

 
T6 180oC/2hr x10, 000 

Plate 2: SEM Secondary Electron Image of the damaged surface Morphology of as-corroded T6 
180/2hr in 3.5wt%NaCl Solution. Microstructures at different magnifications indicate several 
and severe pits higher than those observed in plate 10a. 

 

   
T7 150oC/4hr x300                           T7 150oC/4hr x1000 

 
T7 150oC/4hr x10, 000 

Plate 3: SEM Secondary Electron Image of the damaged surface Morphology of as-corroded T7 
150/4hr in 3.5wt%NaCl Solution. Microstructures at different magnifications indicates several 
and severe pits. Indicating traces of cracks. 
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T6 150oC/3hr x300                       T6 150oC/3hr x1000 

 
T6 150oC/3hr x10, 000 

Plate 4: SEM Secondary Electron Image of the damage surface Morphology of as-corroded T6 
150/3hr in 3.5wt%NaCl solution. Microstructures at different magnifications indicate severe pits 
deeper and wider than those observed in plate 10a, b, c. 

        
SQA T7 220oC/20sec.180oC/2hr x300   SQA T7 220oC/20sec.180oC/2hr x1000 

 
SQA T7 220oC/20sec.180oC/2hr x10,000 

Plate 5: SEM Secondary Electron Image of the damaged surface Morphology of as-corroded 
SQA T7220oC/20sec.180oC/2hr in 3.5wt%NaCl solution. Microstructures at different 
magnifications indicate severe pits deeper and wider than those observed in plate 10a, b, c. 
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The resultants pits diameter have been determined from the SEM surface morphology to range 
between 30-50µm. Specifically in T6 180oC/2hr (see Plate 2) the pit diameter are averages of 
44.4445 and 50µm. It is probable that the pits are formed by intermetallic dropping out from the 
surface due to the dissolution of the surrounding matrix. However, it is also possible that the pits 
are caused by selective dissolution of the intermetallic/or particles of the second phase 
precipitates. Consequently, the form of corrosion in the studied samples A356.0-type Al-Si-Mg 
alloy are slightly uniform and predominantly pitting corrosion as obtained by the SEM.     
 
4. CONCLUSIONS    
    
(1) From the linear polarization and Tafel extrapolation plot, the corrosion rate decreases  
      at all temperatures with the ageing time.  
(2) The corrosion of the DTAT and SQA A356.0-type Al-Si-Mg alloy in the simulated   
      Seawater showed better resistance than the STAT A356.0-type Al-Si-Mg alloy.  
(3) Those samples in the SQA-STAT have improved corrosion resistance than the SQA 
      DTAT samples. The chronopotentiometric corrosion study of some selected samples  
      indicate a decrease and stability in there corrosion resistance with electrochemical    
      exposure time. 
(4) Consequently, the forms of corrosion in the studied A356.0-type Al-Si-Mg alloy are  
      uniform pitting corrosion as obtained from the SEM study with pits diameter ranging  
      from 30-50µm.    
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