Targeting of Androgen Receptor Expression by Andro-miRs as Novel Adjunctive Therapeutics in Prostate Cancer

Abstract

Prostate cancer begins as an androgen-responsive disease. However, subsequent accumulation of multiple sequential genetic and epigenetic alterations transforms the disease into an aggressive, castration-resistant prostate cancer (CRPC). The monoallelic Androgen Receptor (AR) is associated with the onset, growth and development of Prostate cancer. The AR is a ligand-dependent transcription factor, and the targeting of androgen- and AR-signaling axis remains the primary therapeutic option for Prostate cancer (PCa) treatment. A durable and functional disruption of AR signaling pathways combining both traditional and novel therapeutics is likely to provide better treatment options for CRPC. Recent work has indicated that expression of AR is modulated at the posttranscriptional level by regulatory miRNAs. Due to a relatively long 3’ untranslated region (UTR) of AR mRNA, the posttranscription expression is likely to be regulated by hundreds of miRNAs in normal as well as in disease state. The main objective of the article is to offer a thought-provoking concept of “andro-miRs” and their potential application in AR gene expression targeting. This new paradigm for targeting constitutively active AR and its tumor specific splicing isoforms using andro-miRs may pave the way for a novel adjunctive therapy and improved treatment of CRPC.

Share and Cite:

J. Ebron, C. Weyman and G. Shukla, "Targeting of Androgen Receptor Expression by Andro-miRs as Novel Adjunctive Therapeutics in Prostate Cancer," Journal of Cancer Therapy, Vol. 4 No. 4A, 2013, pp. 47-58. doi: 10.4236/jct.2013.44A006.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Siegel, D. Naishadham and A. Jemal, “Cancer Statistics,” CA: A Cancer Journal for Clinicians, Vol. 63, No. 1, 2013, pp. 11-30. doi:10.3322/caac.21166
[2] A. O. Brinkmann, “Molecular Basis of Androgen Insensitivity,” Molecular and Cellular Endocrinology, Vol. 179, No. 1-2, 2001, pp. 105-109.
[3] R. F. Ahman, E. D. Crawford, W. Kries, et al., “Adrenal Steroid Levels in Castrated Men with Prostatic Carcinoma Treated with Aminoglutethimide plus Hydrocortisone,” Cancer Research, Vol. 47, No. 17, 1987, pp. 4736-4739.
[4] C. Tran, S. Ouk, N. J. Clegg, et al., “Development of a Secondgeneration Antiandrogen for Treatment of Advanced Prostate Cancer,” Science, Vol. 324, No. 5928, 2009, pp. 787-790. doi:10.1126/science.1168175
[5] W. E. Rainey, B. R. Carr, H. Sasano, T. Suzuki and J. I. Mason, “Dissecting Human Adrenal Androgen Production,” Trends in Endocrinology & Metabolism, Vol. 13, No. 6, 2002, pp. 234-239. doi:10.1016/S1043-2760(02)00609-4
[6] D. W. Russell and J. D. Wilson, “Steroid 5 Alpha-Reductase: Two Genes/Two Enzymes,” Annual Review of Biochemistry, Vol. 63, 1994, pp. 25-61. doi:10.1146/annurev.bi.63.070194.000325
[7] D. J. Mangelsdorf, C. Thummel, M. Beato, P. Herrlich, G. Schütz, et al., “The Nuclear Receptor Super-Family: The second Decade,” Cell, Vol. 83, No. 6, 1995, pp. 835-839. doi:10.1016/0092-8674(95)90199-X
[8] G. Jenster, H. A. van der Korput, C. van Vroonhoven, T. H. van der Kwast, J. Trapman and A. O. Brinkmann, “Domains of the Human Androgen Receptor Involved in Steroid Binding, Transcriptional Activation, and Subcellular Localization,” Molecular Endocrinology, Vol. 5, No. 10, 1991, pp. 1396-1404.
[9] S. M. Powell, V. Christiaens, D. Voulgaraki, J. Waxman, F. Claessens and C. L. Bevan, “Mechanisms of Androgen Receptor Signalling via Steroid Receptor Coactivator-1 in Prostate,” Endocrine-Related Cancer, Vol. 11, No. 1, 2004, pp. 117-130. doi:10.1677/erc.0.0110117
[10] C. Huggins and C. V. Hodges, “Studies on Prostatic Cancer,” Cancer Research, Vol. 1, No. 1, 1941, pp. 293-297.
[11] Z. Culig, A. Hobisch, G. Bartsch and H. Klocker, “Androgen Receptor—An Update of Mechanisms of Action in Prostate Cancer,” Urological Research, Vol. 28, No. 4, 2000, pp. 211-219. doi:10.1007/s002400000111
[12] S. P. Balk, Y.-J. Ko and J. Glenn, “Bubley Biology of Prostate-Specific Antigen,” Journal of Clinical Oncology, Vol. 21, No. 2, 2003, pp. 383-391. doi:10.1200/JCO.2003.02.083
[13] S. P. Balk, “Androgen Receptor as a Target in AndrogenIndependent Prostate Cancer,” Urology, Vol. 60, No. 2, 2002, pp. 132-138. doi:10.1016/S0090-4295(02)01593-5
[14] G. J. Bubley and S. P. Balk, “Treatment of Metastatic Prostate Cancer. Lessons from the Androgen Receptor,” Hematology/Oncology Clinics of North America, Vol. 10, No. 3, 1996, pp. 713-725. doi:10.1016/S0889-8588(05)70363-4
[15] B. J. Feldman and D. Feldman, “The Development of Androgen-Independent Prostate Cancer,” Nature Reviews Cancer, Vol. 1, No. 1, 2001, pp. 34-45. doi:10.1038/35094009
[16] R. S. Brown, J. Edwards, A. Dogan, H. Payne, S. J. Harland, et al., “Amplification of the Androgen Receptor Gene in Bone Metastases from Hormone-Refractory Prostate Cancer,” The Journal of Pathology, Vol. 198, No. 2, 2002, pp. 237-44. doi:10.1002/path.1206
[17] J. Edwards, N. S. Krishna, K. M. Grigor and J. M. Bartlett, “Androgen Receptor Gene Amplification and Protein Expression in Hormone Refractory Prostate Cancer,” British Journal of Cancer, Vol. 89, No. 3, 2003, pp. 552-556. doi:10.1038/sj.bjc.6601127
[18] P. Koivisto, J. Kononen, C. Palmberg, T. Tammela, E. Hyytinen, J. Isola, et al., “Androgen Receptor Gene Amplification: A Possible Molecular Mechanism for Androgen Deprivation Therapy Failure in Prostate Cancer,” Cancer Research, Vol. 57, No. 2, 1997, pp. 314-319.
[19] N. D. Tararova, N. Narizhneva, V. Krivokrisenko, A. V. Gudkov and K. V. Gurova, “Prostate Cancer Cells Tolerate a Narrow Range of Androgen Receptor Expression and Activity,” Prostate, Vol. 67, No. 16, 2007, pp. 1801-1815. doi:10.1002/pros.20662
[20] K. K. Waltering, M. A. Helenius, B. Sahu, V. Manni, M. J. Linja, O. A. Janne and T. Visakorpi, “Increased Expression of Androgen Receptor Sensitizes Prostate Cancer Cells to Low Levels of Androgens,” Cancer Research, Vol. 69, No. 20, 2009, pp. 8141-8149. doi:10.1158/0008-5472.CAN-09-0919
[21] S. M. Powell, V. Christiaens, D. Voulgaraki, J. Waxman, F. Claessens and C. L. Bevan, “Mechanisms of Androgen Receptor Signalling via Steroid Receptor Coactivator-1 in Prostate,” Endocrine-Related Cancer, Vol. 11, No. 1, 2004, pp. 117-130. doi:10.1677/erc.0.0110117
[22] B. Gottlieb, L. K. Beitel, A. Nadarajah, et al., “The Androgen Receptor Gene Mutations Database: 2012 Update,” Human Mutation, Vol. 33, No. 5, 2012, pp. 887-894. doi:10.1002/humu.22046
[23] G. Wilding, M. Chen and E. P. Gelmann, “Aberrant Response in Vitro of Hormone-Responsive Prostate Cancer Cells to Antiandrogens,” Prostate, Vol. 14, No. 2, 1989, pp. 103-115. doi:10.1002/pros. 2990140204
[24] M.-E. Taplin and S. P. Balk, “Androgen Receptor: A Key Molecule in the Progression of Prostate Cancer to Hormone Independence,” Journal of Cellular Biochemistry, Vol. 91, No. 3, 2004, pp. 483-490. doi:10.1002/jcb.10653
[25] Z. Guo, X. Yang, F. Sun, R. Jiang, D. E. Linn, H. Chen, et al., “A Novel Androgen Receptor Splice Variant Is UpRegulated During Prostate Cancer Progression and Promotes Androgen Depletion-Resistant Growth,” Cancer Research, Vol. 69, No. 6, 2009, pp. 2305-2313. doi:10.1158/0008-5472.CAN-08-3795
[26] S. Haille and M. D. Sadar, “Androgen Receptor and Its Splice Variants in Prostate Cancer,” Cellular and Molecular Life Sciences, Vol. 68, No. 24, 2011, pp. 3971-3981. doi:10.1007/s00018-011-0766-7
[27] S. C. Chan, Y. Li and S. M. Dehm, “Androgen Receptor Splice Variants Activate Androgen Receptor Target Genes and Support Aberrant Prostate Cancer Cell Growth Independent of Canonical Androgen Receptor Nuclear Localization Signal,” The Journal of Biological Chemistry, Vol. 287, No. 23, 2002, pp. 19736-19749. doi:10.1074/jbc.M112.352930
[28] Y. Li, S. C. Chan, L. J. Brand, T. H. Hwang, K. A. Silverstein and S. M. Dehm, “Androgen Receptor Splice Variants Mediate Enzalutamide Resistance in CastrationResistant Prostate Cancer Cell Lines,” Cancer Research, Vol. 73, No. 2, 2013, pp. 483-489. doi:10.1158/0008-5472.CAN-12-3630
[29] S. A. O?ate, S. Y. Tsai, M. J. Tsai and B. W. O’Malley, “Sequence and Characterization of a Coactivator for the Steroid Hormone Receptor Superfamily,” Science, Vol. 270, No. 5240, 1995, pp. 1354-1357. doi:10.1126/science.270.5240.1354
[30] H. C. Shen and G. A. Coetzee, “The Androgen Receptor: Unlocking the Secrets of Its Unique Transactivation Domain,” Vitamins & Hormones, Vol. 71, 2005, pp. 301-319. doi:10.1016/S0083-6729(05)71010-4
[31] B. Lemon and R. Tjian, “Orchestrated Response: A Symphony of Transcription Factors for Gene Control,” Genes & Development, Vol. 14, No. 20, 2000, pp. 2551-2569. doi:10.1101/gad.831000
[32] M. Fu, C. Wang, A. T. Reutens, J. Wang, R. H. Angeletti, L. Siconolfi-Baez, V. Ogryzko, M. L. Avantaggiati and G. Pestell, “P300 and P300/cAMP-Response ElementBinding Protein-Associated Factor Acetylate the Androgen Receptor at Sites Governing Hormone-Dependent Transactivation,” The Journal of Biological Chemistry, Vol. 275, No. 27, 2000, pp. 20853-20860. doi:10.1074/jbc. M000660200
[33] G. Liao, L.Y. Chen, A. Zhang, A. Godavarthy, F. Xia, J. C. Ghosh, et al. “Regulation of Androgen Receptor Activity by the Nuclear Receptor Corepressor SMRT,” The Journal of Biological Chemistry, Vol. 278, No. 2003, pp. 5052-5061. doi:10.1074/jbc.M206374200
[34] R. C. Wu, J. Qin, P. Yi, J. Wong, S. Y. Tsai, M. J. Tsai and B. W. O’Malley, “Selective Phosphorylations of the SRC-3/AIB1 Coactivator Integrate Genomic Reponses to Multiple Cellular Signaling Pathways,” Molecular Cell, Vol. 15, No. 6, 2004, pp. 937-949. doi:10.1016/j.molcel.2004.08.019
[35] P. ?stling, S. K. Leivonen, A. Aakula, et al., “Systematic Analysis of microRNAs Targeting the Androgen Receptor in Prostate Cancer Cells,” Cancer Research, Vol. 71, No. 5, 2011, pp. 1956-1967. doi:10.1158/0008-5472.CAN-10-2421
[36] K. Sikand, J. E. Slaibi, , R. Singh, S. D. Slane and G. C. Shukla, “MiR 488* Inhibits Androgen Receptor Expression in Prostate Carcinoma Cells,” International Journal of Cancer, Vol. 129, No. 4, 2011, pp. 810-819. doi:10.1002/ijc.25753
[37] O. L. Zegarra-Moro, L. J. Schmidt, H. Huang and D. J. Tindall, “Disruption of Androgen Receptor Function Inhibits Proliferation of Androgen-Refractory Prostate Cancer Cells,” Cancer Research, Vol. 62, No. 4, 2002, pp. 1008-1013.
[38] S. Chen, C. S. Song, Y. Lavrovsky, B. Bi, R. Vellanoweth, B. Chatterjee and A. K. Roy, “Catalytic Cleavage of the Androgen Receptor Messenger RNA and Functional Inhibition of Androgen Receptor Activity by a Hammerhead Ribozyme,” Molecular Endocrinology, Vol. 12, No. 10, 1998, pp. 1558-1566. doi:10.1210/me.12.10.1558
[39] H. Cheng, R. Snoek, F. Ghaidi, M. E. Cox and P. S. Rennie, “Short Hairpin RNA Knockdown of the Androgen Receptor Attenuates Ligand-Independent Activation and Delays Tumor Progression,” Cancer Research, Vol. 66, No. 21, 2006, pp. 10613-10620. doi:10.1158/0008-5472.CAN-06-0028
[40] X. Liao, S. Tang, J. B. Thrasher, T. L. Griebling and B. Li, “Small-Interfering RNA-Induced Androgen Receptor Silencing Leads to Apoptotic Cell Death in Prostate Cancer,” Molecular Cancer Therapeutics, Vol. 4, No. 4, 2005, 505-515. doi:10.1158/1535-7163.MCT-04-0313
[41] Q. Yang, K. M. Fung, W. V. Day, B. P. Kropp and H. K. Lin, “Androgen Receptor Signaling is Required for Androgen-Sensitive Human Prostate Cancer Cell Proliferation and Survival,” Cancer Cell International, Vol. 5, 2005, p. 8. doi:10.1186/1475-2867-5-8
[42] F. Hamy, V. Brondani, R. Spoerri, S. Rigo, C. Stamm and T. Klimkait, “Specific Block of Androgen Receptor Activity by Antisense Oligonucleotides,” Prostate Cancer and Prostatic Diseases, Vol. 6, No. 1, 2003, pp. 27-33. doi:10.1038/sj.pcan.4500603
[43] Y. J. Ko, G. R. Devi, C. A. London, A. Kayas, M. T. Reddy, P. L. Iversen, G. J. Bubley and S. P. Balk, “Androgen Receptor Down-Regulation in Prostate Cancer with Phosphorodiamidate Morpholino Antisense Oligomers,” Journal of Urology, Vol. 172, No. 3, 2004, pp. 1140-1144. doi:10.1097/01.ju.0000134698.87862.e6
[44] D. P. Bartel, “MicroRNAs: Genomics, Biogenesis, Mechanism, and Function,” Cell, Vol. 116, No. 2, 2004, pp. 281-297. doi:10.1016/S0092-8674(04)00045-5
[45] B. P. Lewis, C. B. Burge and D. P. Bartel, “Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are Microrna Targets,” Cell, Vol. 120, No. 2, 2005, pp. 15-20. doi:10.1016/j.cell.2004.12.035
[46] R. C. Friedman, K. K. Farh, C. B. Burge and D. P. Bartel, “Most Mammalian mRNAs Are Conserved Targets of MicroRNAs,” Genome Research, Vol. 19, No. 1, 2009, pp. 92-105. doi:10.1101/gr. 082701.108
[47] H. W. Hwang and J. T. Mendell, “MicroRNAs in Cell Proliferation, Cell Death, and Tumorigenesis,” British Journal of Cancer, Vol. 94, No. 6, 2007, pp. 776-780.
[48] R. C. Lee, R. L. Feinbaum and V. Ambros “The C. elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to Lin-14,” Cell, Vol. 75, No. 5, 1993, pp. 843-854. doi:10.1016/0092-8674(93)90529-Y
[49] J. Xiao, A.-Y.Gong, A. N. Eischeid, D. Chen, C. Deng, C. Y. F. Young and X.-M. Chen, “Mir-141 Modulates Androgen Receptor Transcriptional Activity in Human Prostate Cancer Cells through Targeting the Small Heterodimer Partner Protein,” Prostate, Vol. 72, No. 14, 2012, pp. 1514-1522. doi:10.1002/pros.22501
[50] G. A. Calin, C. Sevignani, C. D. Dumitru, T. Hyslop, E. Noch, S. Yendamuri, M. Shimizu, S. Rattan, F. Bullrich, M. Negrini and C. M. Croce, “Human microRNA Genes are Frequently Located at Fragile Sites and Genomic Regions Involved in Cancers,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 101, No. 9, 2004, pp. 2999-3004. doi:10.1073/pnas.0307323101
[51] K. Sikand, S. D. Slane and G. C. Shukla, “Intrinsic Expression of Host Genes and Intronic MiRNAs in Prostate Carcinoma Cells,” Cancer Cell International, Vol. 9, No. 1, 2009, p. 21. doi:10.1186/1475-2867-9-21
[52] T. Sun, Q. Wang, S. Balk, et al., “The Role of Microrna-221 and Micro-RNA-222 in Androgen-Independent Prostate Cancer Cell Lines,” Cancer Research, Vol. 69, 2009, Article ID: 3356Y3363.
[53] S. Galardi, N. Mercatelli, E. Giorda, S. Massalini, G. V. Frajese, S. A. Ciafre and M. G. Farace, “miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1,” The Journal of Biological Chemistry, Vol. 282, No. 32, 2007, pp. 23716-23724. doi:10.1074/jbc.M701805200
[54] T. Sun, Q. Wang, S. Balk, M. Brown, G. S. Lee and P. Kantoff, “The Role of microRNA-221 and MicroRNA222 in Androgen-Independent Prostate Cancer Cell Lines,” Cancer Research, Vol. 69, No. 8, 2009, pp. 3356-3363. doi:10.1158/0008-5472.CAN-08-4112
[55] S. L. Lin, A. Chiang, D. Chang and S. Y. Ying, “Loss of Mir-146 a Function in Hormone-Refractory Prostate Cancer,” RNA, Vol. 14, No. 3, pp. 417-424. doi:10.1261/rna.874808
[56] X. B. Shi, L. Xue, J. Yang, A. H. Ma, J. Zhao, M. Xu, et al., “An Androgen-Regulated miRNA Suppresses Bak1 Expression and Induces Androgen-Independent Growth of Prostate Cancer Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, No. 50, 2007, pp. 19983-19988. doi:10.1073/pnas.0706641104
[57] K. P. Porkka, M. J. Pfeiffer, K. K. Waltering, R. L. Vessella, T. L. Tammela and T. Visakorpi, “MicroRNA Expression Profiling in Prostate Cancer,” Cancer Research, Vol. 67, No. 13, 2007, pp. 6130-6135. doi:10.1158/0008-5472.CAN-07-0533
[58] G. K. Scott, A. Goga, D. Bhaumik, C. E. Berger, C. S. Sullivan and C. C. Benz, “Coordinate Suppression of ERBB2 and ERBB3 by Enforced Expression of Micro-RNA miR-125a or miR-125b,” The Journal of Biological Chemistry, Vol. 282, No. 2, 2007, pp. 1479-1486. doi:10.1074/jbc.M609383200
[59] B. Zhang, X. Pan, G. P. Cobb and T. A. Anderson, “MicroRNAs as Oncogenes and Tumor Suppressors,” Developmental Biology, Vol. 302, No. 1, 2007, pp. 1-12. doi:10.1016/j.ydbio.2006.08.028
[60] P. Gandellini, M. Folini and N. Zaffaroni, “Towards the Definition of Prostate Cancer-Related MicroRNAs: Where Are We Now?” Trends in Molecular Medicine, Vol. 15, No. 9, 2009, pp. 381-390. doi:10.1016/j.molmed.2009.07.004
[61] S. Galardi, N. Mercatelli, E. Giorda, S. Massalini, G. V. Frajese, S. A. Ciafre and M. G. Farace, “MIR-221 and MIR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1,” The Journal of Biological Chemistry, Vol. 282, No. 32, 2007, pp. 23716-23724. doi:10.1074/jbc.M701805200
[62] J. Xiao, A.-Y. Gong, A. N. Eischeid, D. Chen, C. Deng, C. Y. F. Young and X.-M. Chen, “MIR-141 Modulates Androgen Receptor Transcriptional Activity in Human Prostate Cancer Cells through Targeting the Small Heterodimer Partner Protein,” Prostate, Vol. 72, No. 14, 2012, 1514-1522. doi:10.1002/pros.22501
[63] N. Nadiminty, R. Tummala, W. Lou, Y. Zhu, X.-B. Shi, et al., “MicroRNA let-7c Is Downregulated in Prostate Cancer and Suppresses Prostate Cancer Growth,” PLoS ONE, Vol. 7, No. 3, 2012, Article ID: e32832. doi:10.1371/journal.pone.0032832
[64] M. R. Epis, K. M. Giles, A. Barker, T. S. Kendrick and P. J. Leedman, “MIR-331-3p Regulates ERBB-2 Expression and Androgen Receptor Signaling in Prostate Cancer,” The Journal of Biological Chemistry, Vol. 284, No. 37, 2009, pp. 24696-24704. doi:10.1074/jbc.M109.030098
[65] K. A. O’Donnell, E. A. Wentzel, K. I. Zeller, C. V. Dang and J. T. Mendell, “c-Myc-Regulated MicroRNAs Modulate E2F1 Expression,” Nature, Vol. 435, No. 7043, 2005, pp. 839-843. doi:10.1038/nature03677
[66] Y. Lu, J. M. Thomson, H. Y. Wong, S. M. Hammond and B. L. Hogan, “Transgenic Over-Expression of the MicroRNA MiR-17-92 Cluster Promotes Proliferation and Inhibits Differentiation of Lung Epithelial Progenitor Cells,” Developmental Biology, 2007, Vol. 310, No. 2, pp. 442-453. doi:10.1016/j.ydbio.2007.08.007
[67] A. Hossain, M. T. Kuo and G. F. Saunders, “Mir-17-5p Regulates Breast Cancer Cell Proliferation by Inhibiting Translation of AIB1 mRNA,” Molecular and Cellular Biology, Vol. 26, No. 21, 2006, pp. 8191-201. doi:10.1128/MCB.00242-06
[68] Q. Wang, Y. C. Li, J. Wang, J. Kong, Y. Qi and R. J. Quigg, X. Li, “MiR-17-92 Cluster Accelerates Adipocyte Differentiation by Negatively Regulating Tumor-Suppressor Rb2/p130,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 105, No. 8, 2008, pp. 2889-2894. doi:10.1073/pnas.0800178105
[69] L. Fontana, M. E. Fiori, S. Albini, L. Cifaldi, S. Giovinazzi, M. Forloni, R. Boldrini, A. Donfrancesco, V. Federici, P. Giacomini, C. Peschle and D. Fruci, “Antagomir-17-5p Abolishes the Growth of Therapy-Resistant Neuroblastoma through p21 and BIM,” PLoS One, 2008 , Vol. 3, No. 5, Article ID: e2236. doi:10.1371/journal.pone.0002236
[70] C. Xiao, L. Srinivasan, D. P. Calado, H. C. Patterson, B. Zhang, J. Wang, J. M. Henderson, J. L Kutok and K. Rajewsky, “Lymphoproliferative Disease and Autoimmunity in Mice with Increased miR-17-92 Expression in Lymphocytes,” Nature Immunology, Vol. 9, No. 4, 2008, pp. 405-14. doi:10.1038/ni1575
[71] C. D. Chen, D. S. Welsbie, C. Tran, et al., “Molecular Determinants of Resistance to Antiandrogen Therapy,” Nature Medicine, Vol. 10, No. 1, 2004, pp. 33-39. doi:10.1038/nm972
[72] D. Baek, J. Villen, C. Shin, F. D. Camargo, S. P. Gygi and D. P. Bartel, “The Impact of MicroRNAs on Protein Output,” Nature, Vol. 455, No. 7209, 2008, pp. 64-71. doi:10.1038/nature07242
[73] M. Selbach, B. Schwanhausser, N. Thierfelder, Z. Fang, R. Khanin and N. Rajewsky, “Widespread Changes in Protein Synthesis Induced by MicroRNAs,” Nature, Vol. 455, No. 7209, 2008, pp. 58-63. doi:10.1038/nature07228
[74] P. W. Faber, H. C. van Rooij, H. A. van der Korput, et al., “Characterization of the Human Androgen Receptor Transcription Unit,” The Journal of Biological Chemistry, Vol. 266, No. 17, 1991, pp. 10743-10749.
[75] J. Trapman, P. Klaassen, G. G. Kuiper, J. A. van der Korput, P. W. Faber, H. C. van Rooij, et al., “Cloning, Structure and Expression of a cDNA Encoding the Human Androgen Receptor,” Biochemical and Biophysical Research Communications, Vol. 153, No. 1, 1988, pp. 241-248. doi:10.1016/S0006-291X(88)81214-2
[76] D. B. Lubahn, D. R. Joseph, M. Sar, J. Tan, H. N. Higgs, R. E. Larson, et al., “The Human Androgen Receptor: Complementary Deoxyribonucleic Acid Cloning, Sequence Analysis and Gene Expression in Prostate,” Momlecular Endocrinology, Vol. 2, No. 12, 1988, pp. 1265-1275. doi:10.1210/mend-2-12-1265

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.