Spatial perturbation with synthetic protein scaffold reveals robustness of asymmetric cell division

Abstract

Asymmetric cell division is an important mechanism for creating diversity in a cellular population. Stem cells commonly perform asymmetric division to generate both a daughter stem cell for self-renewal and a more differentiated daughter cell to populate the tissue. During asymmetric cell division, protein cell fate determinants asymmetrically localize to the opposite poles of a dividing cell to cause distinct cell fate. However, it remains unclear whether cell fate determination is robust to fluctuations and noise during this spatial allocation process. To answer this question, we engineered Caulobacter, a bacterial model for asymmetric division, to express synthetic scaffolds with modular protein interaction domains. These scaffolds perturbed the spatial distribution of the PleC-DivJ- DivK phospho-signaling network without changing their endogenous expression levels. Surprisingly, enforcing symmetrical distribution of these cell fate de terminants did not result in symmetric daughter fate or any morphological defects. Further computational analysis suggested that PleC and DivJ form a robust phospho-switch that can tolerate high amount of spatial variation. This insight may shed light on the presence of similar phospho-switches in stem cell asymmetric division regulation. Overall, our study demonstrates that synthetic protein scaffolds can provide a useful tool to probe biological systems for better understanding of their operating principles.

 

Share and Cite:

Li, J. , Bu, P. , Chen, K. and Shen, X. (2013) Spatial perturbation with synthetic protein scaffold reveals robustness of asymmetric cell division. Journal of Biomedical Science and Engineering, 6, 134-143. doi: 10.4236/jbise.2013.62017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Tajbakhsh, S., Rocheteau, P. and Le Roux, I. (2009) Asymmetric cell divisions and asymmetric cell fates. Annual Review of Cell and Developmental Biology, 25, 671-699. doi:10.1146/annurev.cellbio.24.110707.175415
[2] Knoblich, J.A. (2001) Asymmetric cell division during animal development. Nature Reviews. Molecular Cell Biology, 2, 11-20. doi:10.1038/35048085
[3] Neumuller, R.A. and Knoblich, J.A. (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Development, 23, 2675-2699. doi:10.1101/gad.1850809
[4] Morrison, S.J. and Kimble, J. (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441, 1068-1074. doi:10.1038/nature04956
[5] Caussinus, E. and Hirth, F. (2007) Asymmetric stem cell division in development and cancer. Progress in Molecular and Subcellular Biology, 45, 205-225. doi:10.1007/978-3-540-69161-7_9
[6] Dey-Guha, I., Wolfer, A., Yeh, A.C., Albeck, J.G., Darp, R., Leon, E., Wulfkuhle, J., Petricoin, E.F., Wittner, B.S. and Ramaswamy, S. (2011) Asymmetric cancer cell division regulated by AKT. Proceedings of the National Academy of Sciences of the USA, 108, 12845-12850. doi:10.1073/pnas.1109632108
[7] Sugiarto, S., Persson, A.I., Munoz, E.G., Waldhuber, M., Lamagna, C., Andor, N., Hanecker, P., Ayers-Ringler, J., Phillips, J., Siu, J., Lim, D.A., Vandenberg, S., Stallcup, W., Berger, M.S., Bergers, G., Weiss, W.A. and Petritsch, C. (2011) Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell, 20, 328-340. doi:10.1016/j.ccr.2011.08.011
[8] Pine, S.R., Ryan, B.M., Varticovski, L., Robles, A.I. and Harris, C.C. (2010) Microenvironmental modulation of asymmetric cell division in human lung cancer cells. Proceedings of the National Academy of Sciences of the USA, 107, 2195-2200. doi:10.1073/pnas.0909390107
[9] Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., Bernard, L., Viale, G., Pelicci, P.G. and Di Fiore, P.P. (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell, 140, 62-73. doi:10.1016/j.cell.2009.12.007
[10] Jacobs, C., Domian, I.J., Maddock, J.R. and Shapiro, L. (1999) Cell cycle-dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell, 97, 111-120. doi:10.1016/S0092-8674(00)80719-9
[11] Goley, E.D., Toro, E., McAdams, H.H. and Shapiro, L. (2009) Dynamic chromosome organization and protein localization coordinate the regulatory circuitry that drives the bacterial cell cycle. Cold Spring Harbor Symposia on Quantitative Biology, 74, 55-64. doi:10.1101/sqb.2009.74.005
[12] Jensen, R.B., Wang, S.C. and Shapiro, L. (2002) Dynamic localization of proteins and DNA during a bacterial cell cycle. Nature Reviews. Molecular Cell Biology, 3, 167-176. doi:10.1038/nrm758
[13] Shen, X., Collier, J., Dill, D., Shapiro, L., Horowitz, M. and McAdams, H.H. (2008) Architecture and inherent robustness of a bacterial cell-cycle control system. Proceedings of the National Academy of Sciences of the USA, 105, 11340-11345. doi:10.1073/pnas.0805258105
[14] Laub, M.T., Shapiro, L. and McAdams, H.H. (2007) Systems biology of caulobacter. Annual Review of Genetics, 41, 429-441. doi:10.1146/annurev.genet.41.110306.130346
[15] Thanbichler, M. (2009) Spatial regulation in Caulobacter crescentus. Current Opinion in Microbiology, 12, 715 721. doi:10.1016/j.mib.2009.09.013
[16] Pierce, D.L., O’Donnol, D.S., Allen, R.C., Javens, J.W., Quardokus, E.M. and Brun, Y.V. (2006) Mutations in DivL and CckA rescue a divJ null mutant of Caulobacter crescentus by reducing the activity of CtrA. Journal of Bacteriology, 188, 2473-2482. doi:10.1128/JB.188.7.2473-2482.2006
[17] Angelastro, P.S., Sliusarenko, O. and Jacobs-Wagner, C. (2010) Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus. Journal of Bacteriology, 192, 539-552. doi:10.1128/JB.00985-09
[18] Scott, J.D. and Pawson, T. (2009) Cell signaling in space and time: Where proteins come together and when they’re apart. Science, 326, 1220-1224. doi:10.1126/science.1175668
[19] Dueber, J.E., Yeh, B.J., Chak, K. and Lim, W.A. (2003) Reprogramming control of an allosteric signaling switch through modular recombination. Science, 301, 1904-1908. doi:10.1126/science.1085945
[20] Bashor, C.J., Helman, N.C., Yan, S. and Lim, W.A. (2008) Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science, 319, 1539 1543. doi:10.1126/science.1151153
[21] Dueber, J.E., Wu, G.C., Malmirchegini, G.R., Moon, T.S., Petzold, C.J., Ullal, A.V., Prather, K.L. and Keasling, J.D. (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nature Biotechnology, 27, 753 759. doi:10.1038/nbt.1557
[22] Skerker, J.M. and Laub, M.T. (2004) Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nature Reviews. Microbiology, 2, 325-337. doi:10.1038/nrmicro864
[23] Boyd, C.H. and Gober, J.W. (2001) Temporal regulation of genes encoding the flagellar proximal rod in Caulo bacter crescentus. Journal of Bacteriology, 183, 725-735. doi:10.1128/JB.183.2.725-735.2001
[24] Thanbichler, M., Iniesta, A.A. and Shapiro, L. (2007) A comprehensive set of plasmids for vanillate and xylose inducible gene expression in Caulobacter crescentus. Nucleic Acids Research, 35, e137. doi:10.1093/nar/gkm818
[25] Deich, J., Judd, E.M., McAdams, H.H. and Moerner, W.E. (2004) Visualization of the movement of single histidine kinase molecules in live caulobacter cells. Proceedings of the National Academy of Sciences of the USA, 101, 15921 15926. doi:10.1073/pnas.0404200101
[26] Goldbeter, A. and Koshland Jr., D.E., (1981) An amplified sensitivity arising from covalent modification in biological systems. Proceedings of the National Academy of Sciences of the USA, 78, 6840-6844. doi:10.1073/pnas.78.11.6840
[27] Kitano, H. (2004) Biological robustness. Nature Reviews. Genetics, 5, 826-837. doi:10.1038/nrg1471
[28] Elowitz, M. and Lim, W.A. (2010) Build life to under stand it. Nature, 468, 889-890. doi:10.1038/468889a
[29] Alon, U. (2007) An introduction to systems biology: De sign principles of biological circuits. Chapman & Hall/ CRC, Boca Raton.
[30] Ely, B. and Johnson, R.C. (1977) Generalized transduction in Caulobacter crescentus. Genetics, 87, 391 399.
[31] Tropini, C. and Huang, K.C. (2012) Interplay between the localization and kinetics of phosphorylation in flagellar pole development of the bacterium Caulobacter crescen tus. Plos Computational Biology, 8, 1-12. doi:10.1371%2Fjournal.pcbi.1002602
[32] Li, S., Brazhnik, P., Sobral, B. and Tyson, J.J. (2009) Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus. PLoS Computational Biology, 5, e1000463. doi:10.1371/journal.pcbi.1000463

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.