Simple Method for Preparing Glucose Biosensor Based on Glucose Oxidase in Nanocomposite Material of Single-Wall Carbon Nanotubes/Ionic Liquid

Abstract

Based on electric conductivity and wide potential window of ionic liquid (IL) and electric property of single-wall car- bon nanotubes (SWCNTs), composite material of IL-SWCNTs was prepared, glucose sensor was built with this mate-rial for immobilizing glucose oxidase (GOx). It showed good response, sensitivity and stability for long time for glu-cose detection. Linear range for the detection of glucose was from 0.5 × 10–6 M to 12 × 10–6 M while detection limit was 6.26 × 10–8 M (S/N = 3).

Share and Cite:

W. Wang, G. Yin, X. Ma and J. Wan, "Simple Method for Preparing Glucose Biosensor Based on Glucose Oxidase in Nanocomposite Material of Single-Wall Carbon Nanotubes/Ionic Liquid," Journal of Analytical Sciences, Methods and Instrumentation, Vol. 2 No. 2, 2012, pp. 54-59. doi: 10.4236/jasmi.2012.22011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. Wang, “Carbon-Nanotube Based Electrochemical Biosensors: A Review,” Electroanalysis, Vol. 17, No. 1, 2005, pp. 7-14. doi:10.1002/elan.200403113
[2] J. Wang, M. Musameh and Y. H. Lin, “Solubilization of Carbon Nanotubes By nafion toward the Preparation of Amperometric Biosensors,” Journal of the American Chemical Society, Vol. 125, No. 9, 2003, pp. 2408-2409. doi:10.1021/ja028951v
[3] W. H. Lo, H. Y. Yang and G. T. Wei, “One-Pot Desulfurization of Light Oils by Chemical Oxidation and Solvent Extraction with Room Temperature Ionic Liquids,” Green Chemistry, Vol. 5, 2003, p. 639. doi:10.1039/b305993f
[4] Q. Wang, H. Tang, Q. Xie, L. Tan, Y. Zhang, B. Li and S. Yao, “Room-Temperature Ionic Liquids/Multi-Walled Carbon Nanotubes/Chitosan Composite Electrode for Electrochemical Analysis of NADH,” Electrochimca Acta, Vol. 52, No. 24, 2007, pp. 6630-6637. doi:10.1016/j.electacta.2007.04.057
[5] F. Xiao, F. Zhao, J. Li, R. Yan, J. Yu and B. Zeng, “Sensitive Voltammetric Determination of Chloramphenicol by Using Single-Wall Carbon Nanotube-Gold Nanoparticle-Ionic Liquid Composite Film Modified Glassy Carbon Electrodes,” Analytica Chimica Acta, Vol. 596, 2007, pp. 79-85. doi:10.1016/j.aca.2007.05.053
[6] Y. Liu, L. Huang and S. Dong, “Electrochemical Catalysis and Thermal Stability Characterization of Laccase-Carbon Nanotubes-Ionic Liquid Nanocomposite Modified Graphite Electrode,” Biosensors and Bioelectronics, Vol. 23, No.1, 2007, pp. 35-41. doi:10.1016/j.bios.2007.03.009
[7] Q. Zhao, D. Zhan, H. Ma, M. Zhang, Y. Zhao, P. Jing, Z. Zhu, X. Wan, Y. Shao and Q. Zhuang, “Direct Proteins Electrochemistry Based on Ionic Liquid Mediated Carbon Nanotube Modified Glassy Carbon Electrode,” Frontiers in Bioscience, Vol. 10, No. 1, 2005, pp. 326-334. doi:10.2741/1530
[8] S. R. Lee, Y. T. Lee, K. Sawada, H. Takao and M. Ishida, “Development of a Disposable Glucose Biosensor Using Electroless-Plated Au/Ni/Copper Low Electrical Resistance Electrodes,” Biosensors and Bioelectronics, Vol. 24, No. 3, 2008, pp. 410-414. doi:10.1016/j.bios.2008.04.017
[9] J. D. Newman and A. P. Turner, “Home Blood Glucose Biosensors: A Commercial Perspective,” Biosensors and Bioelectronics, Vol. 20, No. 12, 2005, pp. 2435-2453. doi:10.1016/j.bios.2004.11.012
[10] X. W. Shen, C. Z. Huang and Y. F. Li, “Localized Surface Plasmon Resonance Sensing Detection of Glucose in the Serum Samples of Diabetes Sufferers Based on the Redox Reaction of Chlorauric Acid,” Talanta, Vol. 72, No. 4, 2007, pp. 1432-1437. doi:10.1016/j.talanta.2007.01.066
[11] C. Song, P. E. Pehrsson and W. Zhao, “Optical Enzymatic Detection of Glucose Based on Hydrogen Peroxide-Sensitive HiPco Carbon Nanotubes,” Journal of Materials Research, Vol. 21, No. 11, 2006, pp. 2817-2823. doi:10.1557/jmr.2006.0343
[12] Z. Cheng, E. Wang and X. Yang, “Capacitive Detection of Glucose Using Molecularly Imprinted Polymers,” Biosensors and Bioelectronics, Vol. 16, No. 3, 2001, pp. 179-185. doi:10.1016/S0956-5663(01)00137-3
[13] J. Kremeskotter, R. Wilson and D. J. Schiffrin, “Detection of Glucose via Electrochemilumine-Science in a Thin-Layer Cell with a Planar Optical Waveguide,” Measurement Science and Technology, Vol. 6, No. 9, 1995, pp. 1325-1328. doi:10.1088/0957-0233/6/9/012
[14] P. W. Barone, R. S. Parker and M. S. Strano, “In Vivo Fluorescence Detection of Glucose Using a Single-Walled Carbon Nanotube Optical Sensor: Design, Fluorophore Properties, Advantages, and Disadvantages,” Analytical Chemistry, Vol. 77, No. 23, 2005, pp. 7556-7562. doi:10.1021/ac0511997
[15] M. Morikawa, N. Kimizuka, M. Yoshihara and T. Endo, “New Colorimetric Detection of Glucose by Means of Electronaccepting Indicators: Ligand Substitution of [Fe(acac)3-n(phen)n]n+ Complexes Triggered by Electron Transfer from Glucose Oxidase,” Chemistry—A European Journal, Vol. 8, No. 24, 2002, pp. 5580-5584. doi:10.1002/1521-3765(20021216)8:24<5580::AID-CHEM5580>3.0.CO;2-V
[16] P. Du, B. Zhou and C. X. Cai, “Development of an Amperometric Biosensor for Glucose Based on Electrocatalytic Reduction of Hydrogen Peroxide at the Single-Walled Carbon Nanotube/Nile Blue A Nanocomposite Modified Electrode,” Electroanalytical Chemistry, Vol. 614, No. 1-2, 2008, pp. 149-156. doi:10.1016/j.jelechem.2007.11.036

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.